diff --git a/docs/algorithms/FilterAlgorithm.ipynb b/docs/algorithms/FilterAlgorithm.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..657fb080fab3027514613f820ff0fb0e849a0bfb --- /dev/null +++ b/docs/algorithms/FilterAlgorithm.ipynb @@ -0,0 +1,2628 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from geomagio.edge import EdgeFactory\n", + "from geomagio.algorithm import Algorithm\n", + "from obspy.core import UTCDateTime, Stream, Stats\n", + "import numpy as np\n", + "import scipy as sp\n", + "import scipy.linalg as spl\n", + "import scipy.signal as sps\n", + "import matplotlib.pyplot as pl\n", + "import datetime as dt\n", + "import json" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "class FilterAlgorithm(Algorithm):\n", + " \"\"\"Filter Algorithm\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# excerpted from https://github.com/scipy/scipy/issues/7725#issuecomment-322094749\n", + "sample_rate = 10.0\n", + "cutoff = 0.2\n", + "width = 0.3\n", + "stop_db = 50.0\n", + "stop_db = np.abs(stop_db)\n", + "\n", + "# Convert to normalized frequencies\n", + "nyq = 0.5*sample_rate\n", + "cutoff = cutoff / nyq\n", + "width = width / nyq\n", + "\n", + "numtaps, beta = sps.kaiserord(ripple=stop_db, width=width)\n", + "numtaps |= 1\n", + "taps = sps.firwin(numtaps, cutoff, window=('kaiser', beta), scale=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "99" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "numtaps" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.533514120981248" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "beta" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-4.52198796e-05, -1.11619355e-04, -2.01483397e-04, -3.16506684e-04,\n", + " -4.57626335e-04, -6.24859943e-04, -8.17155093e-04, -1.03225668e-03,\n", + " -1.26659826e-03, -1.51522326e-03, -1.77174156e-03, -2.02832596e-03,\n", + " -2.27575221e-03, -2.50348516e-03, -2.69981225e-03, -2.85202413e-03,\n", + " -2.94664077e-03, -2.96967983e-03, -2.90696256e-03, -2.74445127e-03,\n", + " -2.46861053e-03, -2.06678395e-03, -1.52757659e-03, -8.41232992e-04,\n", + " 8.97254861e-19, 1.00153625e-03, 2.16614984e-03, 3.49372106e-03,\n", + " 4.98103797e-03, 6.62166161e-03, 8.40586129e-03, 1.03206248e-02,\n", + " 1.23497468e-02, 1.44739951e-02, 1.66713562e-02, 1.89173528e-02,\n", + " 2.11854322e-02, 2.34474143e-02, 2.56739920e-02, 2.78352727e-02,\n", + " 2.99013480e-02, 3.18428788e-02, 3.36316814e-02, 3.52413005e-02,\n", + " 3.66475558e-02, 3.78290461e-02, 3.87676015e-02, 3.94486690e-02,\n", + " 3.98616244e-02, 4.00000000e-02, 3.98616244e-02, 3.94486690e-02,\n", + " 3.87676015e-02, 3.78290461e-02, 3.66475558e-02, 3.52413005e-02,\n", + " 3.36316814e-02, 3.18428788e-02, 2.99013480e-02, 2.78352727e-02,\n", + " 2.56739920e-02, 2.34474143e-02, 2.11854322e-02, 1.89173528e-02,\n", + " 1.66713562e-02, 1.44739951e-02, 1.23497468e-02, 1.03206248e-02,\n", + " 8.40586129e-03, 6.62166161e-03, 4.98103797e-03, 3.49372106e-03,\n", + " 2.16614984e-03, 1.00153625e-03, 8.97254861e-19, -8.41232992e-04,\n", + " -1.52757659e-03, -2.06678395e-03, -2.46861053e-03, -2.74445127e-03,\n", + " -2.90696256e-03, -2.96967983e-03, -2.94664077e-03, -2.85202413e-03,\n", + " -2.69981225e-03, -2.50348516e-03, -2.27575221e-03, -2.02832596e-03,\n", + " -1.77174156e-03, -1.51522326e-03, -1.26659826e-03, -1.03225668e-03,\n", + " -8.17155093e-04, -6.24859943e-04, -4.57626335e-04, -3.16506684e-04,\n", + " -2.01483397e-04, -1.11619355e-04, -4.52198796e-05])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taps" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0034504636745052" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(taps)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "taps=taps/sum(taps)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-4.50643866e-05, -1.11235541e-04, -2.00790576e-04, -3.15418344e-04,\n", + " -4.56052742e-04, -6.22711300e-04, -8.14345224e-04, -1.02870717e-03,\n", + " -1.26224294e-03, -1.51001301e-03, -1.76564925e-03, -2.02135136e-03,\n", + " -2.26792681e-03, -2.49487668e-03, -2.69052868e-03, -2.84221717e-03,\n", + " -2.93650846e-03, -2.95946829e-03, -2.89696669e-03, -2.73501420e-03,\n", + " -2.46012197e-03, -2.05967711e-03, -1.52232387e-03, -8.38340329e-04,\n", + " 8.94169561e-19, 9.98092368e-04, 2.15870132e-03, 3.48170755e-03,\n", + " 4.96391018e-03, 6.59889237e-03, 8.37695691e-03, 1.02851364e-02,\n", + " 1.23072809e-02, 1.44242249e-02, 1.66140301e-02, 1.88523036e-02,\n", + " 2.11125840e-02, 2.33667880e-02, 2.55857094e-02, 2.77395583e-02,\n", + " 2.97985293e-02, 3.17333839e-02, 3.35160355e-02, 3.51201198e-02,\n", + " 3.65215396e-02, 3.76989672e-02, 3.86342953e-02, 3.93130209e-02,\n", + " 3.97245562e-02, 3.98624560e-02, 3.97245562e-02, 3.93130209e-02,\n", + " 3.86342953e-02, 3.76989672e-02, 3.65215396e-02, 3.51201198e-02,\n", + " 3.35160355e-02, 3.17333839e-02, 2.97985293e-02, 2.77395583e-02,\n", + " 2.55857094e-02, 2.33667880e-02, 2.11125840e-02, 1.88523036e-02,\n", + " 1.66140301e-02, 1.44242249e-02, 1.23072809e-02, 1.02851364e-02,\n", + " 8.37695691e-03, 6.59889237e-03, 4.96391018e-03, 3.48170755e-03,\n", + " 2.15870132e-03, 9.98092368e-04, 8.94169561e-19, -8.38340329e-04,\n", + " -1.52232387e-03, -2.05967711e-03, -2.46012197e-03, -2.73501420e-03,\n", + " -2.89696669e-03, -2.95946829e-03, -2.93650846e-03, -2.84221717e-03,\n", + " -2.69052868e-03, -2.49487668e-03, -2.26792681e-03, -2.02135136e-03,\n", + " -1.76564925e-03, -1.51001301e-03, -1.26224294e-03, -1.02870717e-03,\n", + " -8.14345224e-04, -6.22711300e-04, -4.56052742e-04, -3.15418344e-04,\n", + " -2.00790576e-04, -1.11235541e-04, -4.50643866e-05])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taps" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c1fa991d0>]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8lNed7/HPb2ZUkBASqKKCRFWhGmTA3XRwgXUhsZ3EyY0TJxt7s0l2s3FubhIn2d378r25cZKNtzjrZG3HsR2IC7GxMQhcMdgSpglJIESREGjUe59z/9DIK8sSGsRIz5Tf+/Xi5SlH8/zGj/TV0ZlzziPGGJRSSgUHm9UFKKWUGj8a+kopFUQ09JVSKoho6CulVBDR0FdKqSCioa+UUkFEQ18ppYKIhr5SSgURDX2llAoiDqsLGCwuLs5kZGRYXYZSSvmVgoKCGmNM/EjtfC70MzIyyM/Pt7oMpZTyKyJyxpN2OryjlFJBRENfKaWCiIa+UkoFEQ19pZQKIh6FvoisF5ESESkVkYeGeD5MRJ53P79fRDIGPT9NRFpE5O+9U7ZSSqnRGDH0RcQOPAZsAHKAu0UkZ1Cz+4B6Y8ws4FHgkUHPPwq8dvnlKqWUuhye9PSXAqXGmDJjTBfwHLBpUJtNwJPu21uBVSIiACLyV0AZUOidkpVSSo2WJ/P0U4DyAfcrgGXDtTHG9IhIIxArIu3A94A1gA7tKL9U39rFkXONHDvfRPzEMBamRTM9biJ2m1hdmlKXzJPQH+o7e/CFdYdr8xPgUWNMi7vjP/QBRO4H7geYNm2aByUpNbaMMeworOLnb5RQ6mz51PORoXZuW5zCd9dmER0RYkGFSo2OJ6FfAaQNuJ8KVA7TpkJEHEA0UEffXwR3isj/AWIAl4h0GGN+M/CLjTGPA48D5Obm6pXalaXO1rbx421H2VNSTVZSFN9bn8XC1GhykifhbO7kcEUj+8pq+eP+s7x25AL/86Zsbl+cwsU6Nkr5CjHm4hnrDvHjwCrgHPAhcI8xpnBAmweA+caYr4vIXcDtxpjPDHqdh4EWY8zPL3a83Nxco9swKKvkFVXxjWcO4LAJ314zhy9dnYHDPvRHX4WVjfzwpaMcONvA2pxEfnPPYkIdOgtaWUNECowxuSO1G/E71BjTAzwI7ACKgD8ZYwpF5KcistHd7An6xvBLge8An5rWqZSv21Ps5K//cIDMpCjy/u5GvnLdjGEDH2BucjRbv341P7gpmzeOVfHAHw/Q1eMax4qVunQj9vTHm/b0lRXeLHFy/1MFZCZF8Yf7ll3yOP1T75/mRy8Xsm5uX48/5CK/LJQaC17r6SsV6ArO1HH/0wXMTpzI0/ctHdUHs/delcHDt+awo7CKv99yCF/rTCnVz+e2VlZqPDW2d/PNZw8yNTqcZ76yjJiI0FG/1peumU5zRw//b+dxrp4Zy2ev1JloyvdoT18FLWMM//PFI1Q1dfCru664rMDv98CKWVw9M5aHtx3jZPWnp3oqZTUNfRW0thRU8Orh83xn7RwWpcV45TVtNuEXn1lEeIiNbz77EZ09vV55XaW8RUNfBaVTNa08vK2Qq2bE8rXrZ3r1tZOiw3nkjgUUVjbx8x0lXn1tpS6Xhr4KOsYYfrytELtN+MVnF47Jdgpr5yZxz7JpPPHuKYrON3n99ZUaLQ19FXTeLKnm7ePVfGv1HKZGTxiz4/zDukwmTQjhZ68c09k8ymdo6Kug0t3r4mevHmNGXCRfWJ4+pseKiQjl26vnsPdkLTuPVY3psZTylIa+CipPv3+GsupWfnBz9rhsmXDPsmnMSpjIP20v0g91lU/Q0FdBo761i1/uOs51s+NYmZUwLscMsdv44S05nKlt46m9Z8blmEpdjIa+Chq/2VNKS2cPP7wlZ1x3xLxhTjwrMuP5dd4JGtu7x+24Sg1FQ18FhdqWTp7Zf4bbrkhlTmLUuB//u+uyaO7s4am9p8f92EoNpKGvgsLv3jtFZ4+Lv77Ru3PyPZWTPIlVWQn87r1TtHb2WFKDUqChr4JAY3s3T+09w4Z5ScxKmGhZHd9YMYv6tm6e/eCsZTUopaGvAt7T75+mubOHb9w4y9I6lqRP5qoZsTz+dhkd3TqTR1lDQ18FtLauHp549xQrMuOZlxJtdTk8uHIWzuZOthZUWF2KClIa+iqgPftBOfVt3Ty40tpefr+rZ8ayKC2Gf3/rJD29epUtNf409FXA6nUZfv/eKZZmTGFJ+hSrywFARPjGjTOpqG/XVbrKEhr6KmC9WeKkor6dL12TYXUpn7AqO5GUmAk89b4u1lLjT0NfBawn3z9D4qQw1uQkWl3KJ9htwueXp/N+WS3Hq5qtLkcFGQ19FZBO1bTy9vFqPrcs3ScvUv7ZK9MIddh4Wnv7apz53k+DUl7wh31nCLELdy1Ns7qUIU2JDOXWBcm8cKCC5g7dmkGNHw19FXDaunr4U3456+dNJSEq3OpyhnXvVem0dvXywoFzVpeigoiGvgo4Lx+spLmjhy9eNbb75V+uhWkxLEyL4an3T+tFVtS40dBXAeeZ/WfInjqJJemTrS5lRPcuT+dkdSvvl9VaXYoKEhr6KqAcq2zi6Lkm7roybVy3Tx6tm+ZPJSrMoSt01bjR0FcBZWtBBaF2GxsXJltdikcmhNq5ZWEyrx25QIvuvqnGgYa+ChhdPS5eOniO1TkJTI4Mtbocj925JJX27l5ePVxpdSkqCGjoq4Cxu9hJXWsXm5f45jTN4SyeFsOM+Egd4lHjQkNfBYytBeUkRIVx3ew4q0u5JCLC5iVpfHi6nlM1rVaXowKchr4KCNXNnewpqea2xSk4fHAF7khuX5yCTeDP2ttXY8z/fjqUGsJLH52j12XYvCTV6lJGJXFSONfPiefPByrodemcfTV2NPRVQNhaUMGitBhmJYz/Rc+9ZfOSNM43drD3ZI3VpagApqGv/F7xhSZKqpq57YoUq0u5LKuyE4gKc/DyQZ3Fo8aOhr7ye9sOVmKTvoVO/iw8xM7auUnsOHpBr6GrxoyGvvJrxhj+criSa2bFER8VZnU5l23jomSaO3t4s6Ta6lJUgNLQV37to/IGyuva/WYF7kiumRlLbGQofzmkQzxqbHgU+iKyXkRKRKRURB4a4vkwEXne/fx+EclwP75URA66/x0Skdu8W74KdtsOVhLqsLFuXpLVpXiFw27jpvlT2VVUpdsyqDExYuiLiB14DNgA5AB3i0jOoGb3AfXGmFnAo8Aj7sePArnGmEXAeuA/RMThreJVcOt1GV49cp4VmfFMCg+xuhyv2bgomc4eFzuPXbC6FBWAPOnpLwVKjTFlxpgu4Dlg06A2m4An3be3AqtERIwxbcaY/u5KOKATkJXX7Curpbq5k40L/XvWzmBLpk0mOTqcbTqLR40BT0I/BSgfcL/C/diQbdwh3wjEAojIMhEpBI4AXx/wS0Cpy7LtYCWRoXZWZSdYXYpX2WzCrQuTeedEDfWtXVaXowKMJ6E/1Kbkg3vsw7Yxxuw3xswFrgS+LyKfun6diNwvIvkikl9drbMW1Mi6ely8XniBtXOTCA+xW12O1926MJkel+G1ozrEo7zLk9CvAAZuW5gKDP678+M27jH7aKBuYANjTBHQCswbfABjzOPGmFxjTG58fLzn1augtfdkDY3t3dzs53PzhzM3eRIZsRG8dvS81aWoAONJ6H8IzBaR6SISCtwFbBvUZhvwRfftO4Hdxhjj/hoHgIikA5nAaa9UroLa60cvMDHMwbV+tqOmp0SEDfOnsvdkrQ7xKK8aMfTdY/APAjuAIuBPxphCEfmpiGx0N3sCiBWRUuA7QP+0zmuBQyJyEHgR+IYxRjcWUZelp9fFjsILrMxKCMihnX4b5iXR6zLsLKqyuhQVQDyaPmmM2Q5sH/TYjwbc7gA2D/F1TwNPX2aNSn3C/lN11Ld1c9P8wJibP5z5KdGkxEzgtSPn+Uyuf10YRvkuXZGr/M5rR88zIcTODXMCa9bOYCLCTfOTeLe0hqaObqvLUQFCQ1/5lV6X4fWjVazIimdCaOAO7fRbP28q3b2GPB3iUV6ioa/8Sv7pOmpaOtkwLzBn7Qx2RVoMSZPC2X5Ep24q79DQV37ltaMXCHPYWJEV2EM7/Ww2Yf28JN46Xq178Siv0NBXfsPlMrx+9ALXz4lnYljwbOG0YV4SXT0u9hQ7rS5FBQANfeU3Dp9r5EJTBxsCZEdNT+VmTCFuYhg7CnWIR10+DX3lN94ovIDdJqzKSrS6lHFltwlrchJ4s6Sazh69opa6PBr6ym+8cayK5TOmEB0RONsoe2ptThItnT28f7LW6lKUn9PQV37hZHULpc4W1uYE19BOv6tmxhIZaueNYzp1U10eDX3lF3a6w25NTnAN7fQLD7FzY2YCO49V4XLpZSnU6GnoK7/wRuEF5qdEkxwzwepSLLN2biLVzZ0crGiwuhTlxzT0lc9zNnXwUXkDa4O0l9/vxswEHDbhjUId4lGjp6GvfN6uIifGwNq5wTme3y96QghXzYzlDb12rroMGvrK571x7ALpsRHMSZxodSmWW5uTSFl1K6XOFqtLUX5KQ1/5tOaObvaW1rI2JxGRoa7KGVxWu4e4dKGWGi0NfeXT3j5eQ1evizVBOlVzsKnRE1iQGs0u3XVTjZKGvvJpu4qqmBwRwpL0yVaX4jNWZydysLyB6uZOq0tRfkhDX/msnl4Xe0qcrMhKwG7ToZ1+q7MTMQbdgE2Nioa+8lkFZ+ppaOtmdXZwT9UcLHtqFCkxE/TauWpUNPSVz9pVVEWo3cb1c+KtLsWniAirshN450Q1Hd26AZu6NBr6ymflFTlZNmNKUO2d76nV2Yl0dLvYe7LG6lKUn9HQVz7pZHULZTWtQbvXzkj6fxnuPKbj+urSaOgrn9R/IfCVQXJZxEsV5rBz/Zw4dhfrBmzq0mjoK5+065iT7KmTSJ0cYXUpPmt1diJVTZ0crWy0uhTlRzT0lc+pb+0i/0wda7K1l38xKzITsEnf3kRKeUpDX/mcN487cRlYpVM1L2pyZCi56VPYpRdWUZdAQ1/5nF1FTuKjwpifEm11KT5vVXYCx843cb6x3epSlJ/Q0Fc+pbvXxdsl1azMTMCmq3BHtMo9BJanQzzKQxr6yqd8eKqO5s4eVup4vkdmxk9k2pQIduuWDMpDGvrKp+QVOwl12Lh2VpzVpfiF/tW575XW0N6lq3PVyDT0lU/ZXezkqhmxROoqXI+tykqks8fFe6W6OleNTENf+YyT1S2cqmlltQ7tXJKl0/tW5+YV6yweNTINfeUzdrs/jFyhq3AvSajDxvVz4sgrcmKMrs5VF6ehr3zGrqIqspKidBXuKKzMSsTZ3ElhZZPVpSgfp6GvfEJjWzf5Z+o/noKoLs2KzHhE0MsoqhFp6Cuf8NaJanpdhpVZugp3NGInhnFFWozO11cj0tBXPiGvqIopkaEsSouxuhS/tSo7kSPnGqlq6rC6FOXDPAp9EVkvIiUiUioiDw3xfJiIPO9+fr+IZLgfXyMiBSJyxP3fld4tXwWCnl4Xb5ZUsyJTr4V7OfqHxvTauepiRgx9EbEDjwEbgBzgbhHJGdTsPqDeGDMLeBR4xP14DXCrMWY+8EXgaW8VrgLHgbMNNLZ363j+ZcpM7Lt2bp6GvroIT3r6S4FSY0yZMaYLeA7YNKjNJuBJ9+2twCoREWPMR8aYSvfjhUC4iIR5o3AVOPKKq3DYhOtm6yrcyyEirMxK4N0TNXrtXDUsT0I/BSgfcL/C/diQbYwxPUAjEDuozR3AR8aYztGVqgLVbve1cKPCQ6wuxe+tzE6gvbuXfWW1VpeifJQnoT/UIOvgFSAXbSMic+kb8vnakAcQuV9E8kUkv7q62oOSVKA4W9vGCWcLq3TWjldcNSOWCSF2ncWjhuVJ6FcAaQPupwKVw7UREQcQDdS576cCLwL3GmNODnUAY8zjxphcY0xufHz8pb0D5df6tw7Q8XzvCA+xc+3sOHYX6+pcNTRPQv9DYLaITBeRUOAuYNugNtvo+6AW4E5gtzHGiEgM8CrwfWPMe94qWgWO3cVOZsZHkh4baXUpAWNVVgLnGtopqWq2uhTlg0YMffcY/YPADqAI+JMxplBEfioiG93NngBiRaQU+A7QP63zQWAW8EMROej+p106BUBLZw/7ymr1sohe1r93kQ7xqKF4tH+tMWY7sH3QYz8acLsD2DzE1/0j8I+XWaMKUO+eqKa717BSN1jzqsRJ4cxPiWZ3sZMHVsyyuhzlY3RFrrLMriInk8Id5KZPtrqUgLMqO4EDZ+upbdHJcuqTNPSVJXpdhj3FTm7MTMBh129Db1uVlYgxsKdEZ8OpT9KfNmWJg+UN1LZ26aydMTIvZRKJk8LI01031SAa+soSeUVV2G3CjXM09MdC3+rcRN4+Xk1nj67OVf9NQ19ZIq/IyZUZk4mO0FW4Y2V1dgKtXb3sL6uzuhTlQzT01bgrr2ujpKqZ1TpVc0xdMyuO8BCbDvGoT9DQV+OuP4R0fv7YCg+xc+2sOPJ0da4aQENfjbu8Yicz4iOZHqercMfaquxEKurbOV7VYnUpykdo6Ktx1dzRzb6yWh3aGSf9C9/02rmqn4a+GlfvnKihu9ewSlfhjov+1bk6rq/6aeircbWrqIqYiBCW6CrccbM6O5GPyhuo0dW5Cg19NY56el3sLnayUlfhjqvVOQkY03exGqX0J0+Nm/wz9TS0dbM6R8fzx1PO1EmkxEzgjWM6xKM09NU42nWsilC7jevn6IVyxpOIsDo7gXdLq2nv0tW5wU5DX40LYww7i6q4elYsE8M82tFbedGanCQ6ul28W1pjdSnKYhr6alyccLZwprZNp2paZOn0KUSFOdh57ILVpSiLaeircbHTPZ6soW+NUIeNG7MSyCty0uvS1bnBTENfjYudx6pYkBpNUnS41aUErdXZCdS2dnGwvN7qUpSFNPTVmHM2dXCwvIE12su31I2ZCThsorN4gpyGvhpzecV988PXzNXQt1L0hBCWz4hll4Z+UNPQV2Nu57EqUidPIDMxyupSgt7q7AROVrdyslo3YAtWGvpqTDV3dPPuiRrW5iQhIlaXE/TWzE0CYEehzuIJVhr6aky9WVJNV6+L9fOSrC5FASkxE1iQGs2OQh3iCVYa+mpM7Si8QGxkqG6w5kPWzU3iUHkD5xvbrS5FWUBDX42Zju5e9hQ7WTs3EbtNh3Z8xTr3EM8b2tsPShr6aszsPVlDa1cva+fq0I4vmZUwkZnxkTquH6Q09NWY2XG0iolhDq6eGWt1KWqQdXOT2H+qjvrWLqtLUeNMQ1+NiV5X3wZrK7MSCHPYrS5HDbJ+XhK9LvPxGgoVPDT01Zj48HQdda1dH48fK98yPyWa5OhwXj+qQzzBRkNfjYkdhRf6NvnK1L3zfZGIsHZuEu+cqKatq8fqctQ40tBXXmeMYcfRC1w/O45I3TvfZ62bm0Rnj4s9xdVWl6LGkYa+8rqPyhuobOxgw7ypVpeiLmLp9CnETQxl+5HzVpeixpGGvvK67YfPE2q36bVwfZzdJqyfl8TuYqdeRjGIaOgrrzLG8NrRC1w3O47oCSFWl6NGcNP8qbR397KnRGfxBAsNfeVVB8sbONfQzk3zdWjHHyybHkvcxFBePaxDPMFCQ1951fYj5wmxiw7t+Am7TVg3V4d4gomGvvIaYwzbj1zgutnxOrTjR27WIZ6g4lHoi8h6ESkRkVIReWiI58NE5Hn38/tFJMP9eKyI7BGRFhH5jXdLV75Gh3b809LpU4iNDOVVncUTFEYMfRGxA48BG4Ac4G4RyRnU7D6g3hgzC3gUeMT9eAfwQ+DvvVax8ln9QztrdGjHrzjstr5ZPEU6xBMMPOnpLwVKjTFlxpgu4Dlg06A2m4An3be3AqtERIwxrcaYd+kLfxXAdGjHv/UP8ezWvXgCniehnwKUD7hf4X5syDbGmB6gEdCtFYNIwZl6zjW0c8sCHdrxR8tmxBIfFca2Q+esLkWNMU9Cf6irX5hRtBn+ACL3i0i+iORXV+uScH/08sFKwkNsune+n7LbhFsWTGVPcTWN7d1Wl6PGkCehXwGkDbifClQO10ZEHEA0UOdpEcaYx40xucaY3Ph43aDL33T3unj1yHlWZycyUffa8VubFqXQ1etih+68GdA8Cf0PgdkiMl1EQoG7gG2D2mwDvui+fSew2xjjcU9f+bd3T9RQ19rFpkWDR/2UP1mYGk1GbAQv6xBPQBsx9N1j9A8CO4Ai4E/GmEIR+amIbHQ3ewKIFZFS4DvAx9M6ReQ08AvgSyJSMcTMH+XnXj54jugJIdwwR/9K82ciwsZFKew9WYuzSedeBCqP/hY3xmwHtg967EcDbncAm4f52ozLqE/5uLauHt44VsWmRSmEOnStn7/btCiZX+edYNuhSr5y3Qyry1FjQH9K1WXZeayKtq5eNi1KtroU5QUz4ycyPyWabYcGf2ynAoWGvros2w5WkjQpnKUZU6wuRXnJpkXJHK5opKy6xepS1BjQ0FejVtvSyVvHq9m4KBmbbahZu8of3bIgGRF46aD29gORhr4atZcPVtLjMtyxONXqUpQXJUWHc+2sOP5cUIHLpZPwAo2Gvhq1LQUVLEiNJjMpyupSlJfduSSVcw3t7CurtboU5WUa+mpUjp5rpOh8E3cu0V5+IFo3N4mocAdbCiqsLkV5mYa+GpWtBRWE2m1sXKizdgJReIidjQuTee3oeZo6dFuGQKKhry5ZZ08vLx08x5q5icREhFpdjhojm3PT6Oh26aUUA4yGvrpku4ucNLR1s1mHdgLawtRoZiVMZEt++ciNld/Q0FeXbEtBBUmTwrlutm67EMhEhM1LUjlwtoFSp87ZDxQa+uqSVDV18Nbxam5fnIJd5+YHvNvc53lLgfb2A4WGvrokz31QTq/L8Nkr00ZurPxeQlQ4q7IS2JJfQWePXkoxEGjoK4/19Lp49oOzXD8nnvTYSKvLUePk88vTqWvt4nXdZz8gaOgrj+0qcnKhqYPPL5tmdSlqHF07K4702Aiefv+M1aUoL9DQVx57Zv8ZkqPDWZmVYHUpahzZbMLnl6WTf6ae4gtNVpejLpOGvvLIqZpW3jlRw91Lp+Gw67dNsLlzSSqhDht/2Ke9fX+nP73KI8/sO4PDJnx2qX6AG4wmR4Zy64JkXjxwjpbOHqvLUZdBQ1+NqKO7ly0FFaybl0RCVLjV5SiLfH75NFq7ennxI72Grj/T0FcjevGjczS2d/OF5elWl6IstCgthvkp0Ty597RuuezHNPTVRblcht++U8b8lGiWTderYwUzEeEr102n1NnCm8edVpejRklDX13U7mInZdWtfPX6GYjoCtxgd9P8qSRHh/P422VWl6JGSUNfXdTj75SREjOBm+YlWV2K8gEhdhtfvnY6+8rqOFzRYHU5ahQ09NWwDpY38MGpOr587XSdpqk+9tkr04gKc/Dbd05ZXYoaBf1JVsP67dtlRIU7dJ8d9QlR4SHcs2wa24+cp7yuzepy1CXS0FdDOlvbxmtHz/O5ZelMDHNYXY7yMV+6JgMBnnhXe/v+RkNfDelf3yzFYbfxP67JsLoU5YOmRk9g06IUnvvwLM7mDqvLUZdAQ199ypnaVrYUVHDP0mkkTtLFWGpof7NyFt29hn9/U2fy+BMNffUp/7K7FIdN+MaNM60uRfmwjLhI7licwh/2n6GqSXv7/kJDX31CWXULLxyo4AvL00nQXr4awd+snI3LZXhsT6nVpSgPaeirT/h13gnCHHa+doP28tXI0qZEsDk3jec+KOdcQ7vV5SgPaOirj5U6m3n5UCX3Xp1OfFSY1eUoP/HgylkA/Ga39vb9gYa++tj/3l5MZKiDr12vvXzluZSYCdy9NI0/5ZdzoqrZ6nLUCDT0FQBvljjJK3byNytnMSUy1OpylJ/529VziAy189NXjmGM7sDpyzT0Fd29Ln72yjEyYiP4ks7LV6MwJTKUb6+ZwzsnathVpDtw+jINfcVT75/hZHUr/+vmHMIcdqvLUX7q88vTmZUwkX989RidPb1Wl6OGoaEf5GpbOvnlruNcPyeeVdl6wXM1eiF2Gz+8JYcztW38/r3TVpejhqGhH+T+eXsx7V29/OiWbN0vX122G+bEszo7gX/JO0FFvW7G5os09INYXlEVfz5QwddumMGshCiry1EB4se3zgXgH7Ye1ssq+iCPQl9E1otIiYiUishDQzwfJiLPu5/fLyIZA577vvvxEhFZ573S1eVoaOvioReOkJUUxTdXzba6HBVA0qZE8IObc9h7spZn9p+xuhw1yIihLyJ24DFgA5AD3C0iOYOa3QfUG2NmAY8Cj7i/Nge4C5gLrAf+1f16ymI/3lZIfWsXP9+8UD+8VV5399I0rp8Tzz9vL+ZMbavV5agBPOnpLwVKjTFlxpgu4Dlg06A2m4An3be3Aqukb4B4E/CcMabTGHMKKHW/ntc1d3STV1TFkYpGqpo66Ol1jcVhAsLrR8/z8sFKHlw5i3kp0VaXowKQiPDIHfNx2IXvbjlMrw7zDMkYQ1NHN6XOFvaerOFIReOYH9OTq2OkAOUD7lcAy4ZrY4zpEZFGINb9+L5BX5sy+AAicj9wP8C0adM8rf0TTjhbuO/J/I/v26Rvz+9pUyKYNiWCmQmRzE6MIjMxiqnR4UH7oeWpmla+u/Uw81OieWDFLKvLUQFsavQEHr51Ln+35RA/f6OE763Psroky7R19XCiqoWSqmZKnS2crmnlbF0b5XVttHb99/TWm+dP5bHPLR7TWjwJ/aHScfCv7eHaePK1GGMeBx4HyM3NHVWXICspipceuAZnUwfO5k6cTR2U17dztq6NvGInz+d3ftx2ckQIC1JjWJgazeL0yeRmTAmKq0O1dPbw1afycdiEf/3cYkL0urdqjN2xJJWCs/X825snmZs8iVsWJFtd0phzuQwnnC18cLqOQ+UNHCpvoLS6hf6FymEOG+mxfZ3R5TNiSY4JJyEqnISoMNKmRIx5fZ4kXQUw8CKpqUDlMG0qRMQBRAN1Hn6tV0SEOliUFjPs8w1tXRyvaqHkQhNHzzVxqKKB3+ypxmXn4wbLAAAKpklEQVTAbhPmpURz9cxYbpgTz5L0yQEXiC6X4TvPH+RUTStPf3npuHxzKQXw8K1zKbnQzHe3HGZm/ESyp06yuiSvO9fQzpslTt45XsMHp+uoa+0CIDYylIVpMdw0fyrZUyeRmRTFtCkR2G3WjTTISPtkuEP8OLAKOAd8CNxjjCkc0OYBYL4x5usichdwuzHmMyIyF/gjfeP4yUAeMNsYM+xyvdzcXJOfnz/c017V1tXDR2cb2FdWy76yWj4620CPyxAV5uC6OXGsm5vEiqwEJoWHjEs9Y+nRncf5Vd4JfnhLDvddO93qclSQcTZ1cOtv3iXUYePFb1xD3ET/3sXVGMOhikZ2FF5g17EqTjhbgL7N55bPiGX5jCksmx5L2pQJ4zaULCIFxpjcEdt5sjmSiNwE/BKwA78zxvyTiPwUyDfGbBORcOBp4Ar6evh3GWPK3F/7A+DLQA/wLWPMaxc71niG/mDNHd28V1rLW8ed5BU5cTZ3EmIXrp4Zx60Lk1k3N5EoP/wF8PjbJ/nn7cXcsTiVn29eELSfZyhrfXS2nrt/u4+M2Ej++NXlfrexnzGGg+UNbDtUyetHL3C+sQOHTVg+I5YbM+O5MTOemfETLfv58mrojycrQ38gl8twsKKBHUcv8OqR81TUtxPqsLEyM4HbFqewIjOBUIfvDwE98e4pfvbKMW6eP5Vf3bUIR4ANWyn/8l5pDV/+rw+ZET+RZ7+6jJgI3w/+suoWXvzoHC8dPEd5XTuhdhs3ZMazYV4Sq7ISiY7wjY6ghr4XGWM4cLaBvxyq5JXDldS0dDE5IoSNC5O5c0ka81Im+WTv+ffvneInfznG+rlJ/Ms9VwTc5xTKP719vJqvPJXPnMSJPP3lZUz2wR5/Y3s3fzlUyZ8PVPDR2QZsAtfMimPjwmTWzUvyySFfDf0x0tPr4p0TNWw9UMHOY1V09bjISoriziWp3HZFCrE+MFbZ1ePiJ38p5Jn9Z1mTk8hj9yz2i79KVPDYU+Lka08XkBAVxn98YQlzk61fL+JyGd47WcOW/Ap2FF6gs8fFnMSJ3LE4lb+6IoVEH79mtIb+OGhs62bb4Uq25pdzqKKRELuwMiuBz+SmccOceEuGUpxNHfz1MwcoOFPP12+YyXfXZVo6U0Cp4Rwsb+DrTxfQ0N7FI3csYNOiTy3hGRdna9vYWlDO1oIKKhs7mBTuYNOiFDbnpjI/Jdon/4ofiob+ODte1cyW/HJeOHCO2tYu4iaGsnFhCrcvTmFu8tgP/xhjeOngOf7p1WJaO3v4v5sXBMWcaOXfqps7eeCZA3xwuo7bF6fw0IYsEqLGvkfd2N7N9iPneeFABR+erkcErpsdz+YlqazJSSQ8xP+2JtHQt0h3r4s9xU5eOHCOvOIqunsNM+MjuXlBMrcumMrsRO/vZllY2cjD2wr58HQ9C9NieOSO+WQlBd5caBWYuntd/HLXcR5/u4xwh51vrZnDvVele/0zqJbOHvKKqnjl8HneOl5NV4+LmfGR3L64b2g2OWaCV4833jT0fUB9axevHDnPK4cq+eB0HcbAjPhIVmQmsDIrgSszpox6rL2710VeURV/2HeWd0trmBIZyvfWZ7J5SRo2Hc5RfqisuoWH/3KMt49XkxAVxl1Lp3H30jSmRo8+jM/WtrGnxMmeEid7T9bS1eMicVIYG+ZN5bYrUliQ6j/DNyPR0PcxzqYOXjt6gV1FVewvq6Or10WYw8aC1GgWT5vM/NRoMmIjSY+NGHItQHtXL+X1beSfrueDU7W8W1pLTUsnydHh3L10GvdeleEzU8eUGi1jDG8er+bJvad563g1AlyZMYVl06ewdHos2VOjmBwR+qmOTU+vi/ONHZyubeV4VQsHztZz4Ew95xs7AJgeF8mNmfFsmDeV3PTJAdkx0tD3Ya2dPew9Wcv+sloKztZTeK6JrgG7gkaFO5gQYicsxIYg1LZ0fmJTpvioMJZOn8Jti1JYkZWgH9SqgFRe18ZzH57l7eM1FFY20r9Rp90mxEaGEhnmoKO7l84eF80d3XT3/neWpcRMYHH6ZJZMi+GGzASmx0Va9C7Gj4a+H+no7qWsupUzta2crm2jqqmDzp5eOrpd9LoMsRNDiY8KI2lSOFdMm0xGbETA/EmqlCeaO7o5cLaBU9UtVLd0Ut3cSXu3i3CHjfAQOxPDHWTERpAeG8mMuEgSfHx65VjQ0FdKqSDiaejrih2llAoiGvpKKRVENPSVUiqIaOgrpVQQ0dBXSqkgoqGvlFJBRENfKaWCiIa+UkoFEZ9bnCUi1cCZy3iJOKDGS+X4E33fwUXfd3Dx5H2nG2PiR3ohnwv9yyUi+Z6sSgs0+r6Di77v4OLN963DO0opFUQ09JVSKogEYug/bnUBFtH3HVz0fQcXr73vgBvTV0opNbxA7OkrpZQaRsCEvoisF5ESESkVkYesrmesiEiaiOwRkSIRKRSRv3U/PkVEdorICfd/J1td61gQEbuIfCQir7jvTxeR/e73/byIhFpdo7eJSIyIbBWRYvd5vyoYzreIfNv9PX5URJ4VkfBAPd8i8jsRcYrI0QGPDXmOpc+v3Vl3WEQWX8qxAiL0RcQOPAZsAHKAu0Ukx9qqxkwP8HfGmGxgOfCA+70+BOQZY2YDee77gehvgaIB9x8BHnW/73rgPkuqGlu/Al43xmQBC+l7/wF9vkUkBfgmkGuMmQfYgbsI3PP9X8D6QY8Nd443ALPd/+4H/u1SDhQQoQ8sBUqNMWXGmC7gOWCTxTWNCWPMeWPMAfftZvoCIIW+9/uku9mTwF9ZU+HYEZFU4GbgP933BVgJbHU3Cbj3LSKTgOuBJwCMMV3GmAaC4HwDDmCCiDiACOA8AXq+jTFvA3WDHh7uHG8CnjJ99gExIjLV02MFSuinAOUD7le4HwtoIpIBXAHsBxKNMeeh7xcDkGBdZWPml8A/AP1XkY8FGowxPe77gXjeZwDVwO/dw1r/KSKRBPj5NsacA34OnKUv7BuBAgL/fA803Dm+rLwLlNAf6irhAT0tSUQmAn8GvmWMabK6nrEmIrcATmNMwcCHh2gaaOfdASwG/s0YcwXQSoAN5QzFPX69CZgOJAOR9A1rDBZo59sTl/V9HyihXwGkDbifClRaVMuYE5EQ+gL/GWPMC+6Hq/r/xHP/12lVfWPkGmCjiJymb/huJX09/xj3n/8QmOe9Aqgwxux3399K3y+BQD/fq4FTxphqY0w38AJwNYF/vgca7hxfVt4FSuh/CMx2f7IfSt8HPtssrmlMuMexnwCKjDG/GPDUNuCL7ttfBF4e79rGkjHm+8aYVGNMBn3nd7cx5nPAHuBOd7NAfN8XgHIRyXQ/tAo4RoCfb/qGdZaLSIT7e77/fQf0+R5kuHO8DbjXPYtnOdDYPwzkEWNMQPwDbgKOAyeBH1hdzxi+z2vp+1PuMHDQ/e8m+sa384AT7v9OsbrWMfx/cCPwivv2DOADoBTYAoRZXd8YvN9FQL77nL8ETA6G8w38BCgGjgJPA2GBer6BZ+n77KKbvp78fcOdY/qGdx5zZ90R+mY4eXwsXZGrlFJBJFCGd5RSSnlAQ18ppYKIhr5SSgURDX2llAoiGvpKKRVENPSVUiqIaOgrpVQQ0dBXSqkg8v8BKMJapSASqEQAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(taps)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "taps2 = sps.firwin2(99, freq=[0, 0.2, 0.5, 1.0], gain=[0, 0.1, -50, -100], nyq=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 8.14655296e-04, -4.88496571e-04, 2.47779380e-04, -6.97162361e-04,\n", + " -2.32774642e-04, -1.70497700e-03, 3.62563309e-04, 8.25168359e-05,\n", + " 1.99279698e-03, -2.00925634e-04, 2.72560013e-03, 2.00171435e-04,\n", + " 8.92520500e-04, -5.58570542e-03, -1.19015530e-03, -4.07222950e-03,\n", + " 1.51424738e-03, -4.09568224e-03, 8.82481077e-03, 5.53343473e-03,\n", + " 1.16809072e-02, -6.95661341e-03, 3.41798666e-03, -1.24754116e-02,\n", + " -5.31625820e-03, -2.98922022e-02, 5.68526557e-03, 2.13981829e-03,\n", + " 3.47979706e-02, -8.35061312e-04, 4.62549002e-02, 3.96166432e-03,\n", + " 1.30966319e-02, -9.37730238e-02, -2.38806794e-02, -7.21394330e-02,\n", + " 2.48170724e-02, -7.17521764e-02, 1.75363781e-01, 1.22870189e-01,\n", + " 2.72272349e-01, -1.73284321e-01, 9.48255174e-02, -4.59548774e-01,\n", + " -2.68274135e-01, -1.89051302e+00, 5.33500777e-01, 4.60504162e-01,\n", + " 2.37892232e+01, -4.49762268e+01, 2.37892232e+01, 4.60504162e-01,\n", + " 5.33500777e-01, -1.89051302e+00, -2.68274135e-01, -4.59548774e-01,\n", + " 9.48255174e-02, -1.73284321e-01, 2.72272349e-01, 1.22870189e-01,\n", + " 1.75363781e-01, -7.17521764e-02, 2.48170724e-02, -7.21394330e-02,\n", + " -2.38806794e-02, -9.37730238e-02, 1.30966319e-02, 3.96166432e-03,\n", + " 4.62549002e-02, -8.35061312e-04, 3.47979706e-02, 2.13981829e-03,\n", + " 5.68526557e-03, -2.98922022e-02, -5.31625820e-03, -1.24754116e-02,\n", + " 3.41798666e-03, -6.95661341e-03, 1.16809072e-02, 5.53343473e-03,\n", + " 8.82481077e-03, -4.09568224e-03, 1.51424738e-03, -4.07222950e-03,\n", + " -1.19015530e-03, -5.58570542e-03, 8.92520500e-04, 2.00171435e-04,\n", + " 2.72560013e-03, -2.00925634e-04, 1.99279698e-03, 8.25168359e-05,\n", + " 3.62563309e-04, -1.70497700e-03, -2.32774642e-04, -6.97162361e-04,\n", + " 2.47779380e-04, -4.88496571e-04, 8.14655296e-04])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taps2" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c228a46d8>]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHRlJREFUeJzt3X2QHPV95/H3t3t2Z7Ur9CyB0AMSRpiAgw3ZYMBPsYEzcDayfb47nDsjP6RUviNlO5c7G46qS/muyPniqyTnis+JyhDjK2KfY3BQ8FOAkIudMg8C2zzLkgGBkIRWSKCHlXZ2Zr73R3fP9o7mQWh2NOqez6tKtds9vdM96p7PfOc33+k2d0dERPIv6PUGiIjIiaHAFxHpEwp8EZE+ocAXEekTCnwRkT6hwBcR6RMKfBGRPqHAFxHpEwp8EZE+Uej1BqQtWrTIV61a1evNEBHJlEceeWSPuy9ut9xJFfirVq1i06ZNvd4MEZFMMbNtx7KchnRERPqEAl9EpE8o8EVE+oQCX0SkTyjwRUT6hAJfRKRPKPBFRPqEAl+kgXKlyrcffpFK9ehLgP7g8Z28cnCiB1sl0hkFvkgDDz23l8/d8RiPbNs3bf54qcy/u/1RvvPI9h5tmcjxU+CLNLD/SBmAUrk6bf5kOar4D06UT/g2iXRKgS/SwHgpCvRydXrgJ9OHJionfJtEOqXAF2ngUCkK9Pox/GQ6eUEQyRIFvkgDh2sV/vTAL9cCXxW+ZI8CX6SBZMhGFb7kiQJfpIHxNhW+xvAlizoOfDNbYWb3m9nTZvakmX0mnr/AzO4xsy3xz/mdb67IiTE1hj/9Q9tkWhW+ZNFMVPhl4Pfd/deAi4Hrzexc4AbgPndfA9wXT4tkwnjcdlmuNKnwNYYvGdRx4Lv7Tnd/NP79APA0sAxYC9wWL3Yb8IFO1yVyojTr0kleAMbVhy8ZNKNj+Ga2CrgAeBA41d13QvSiACyZyXWJdFOzMfyKKnzJsBkLfDObDdwBfNbd97+Ov1tvZpvMbNPY2NhMbY5IR8abVfjx9GEFvmTQjAS+mQ0Qhf3t7n5nPPtlM1sa374U2N3ob919g7uPuvvo4sVtL7ouckKMx104zSr8UqV61GkXRE52M9GlY8AtwNPu/sepmzYC6+Lf1wF3dboukRPlUDykU9+lkz7Vgqp8yZqZqPDfBnwUeI+Z/Tz+dzXwReAKM9sCXBFPi2RCMqTTrMKHqRcFkawodHoH7v4TwJrcfFmn9y/SC4fiLpxKk7ZMUC++ZI++aStSp1ypMhGPzx9V4adeAPRtW8kaBb5InfHJqSBv1qUDGtKR7FHgi9RJfxjbagxfH9pK1ijwReocSn2LtlWXjr58JVmjwBepM36MFb5OryBZo8AXqTO9wm81hq8KX7JFgS9SRxW+5JUCX6ROuvumVR++KnzJGgW+SJ3kPDpmjfrwq7Xb9MUryRoFvkidJMhPKRYadOl47TZdyFyyRoEvUicZqpkza6DpGP6cWQOq8CVzFPgidcZLZQqBMWsgbNqlM2doQKdWkMxR4IvUOTRRYXgwpBAGLSr8gip8yRwFvkid8VKZ4cEChcAaVvhmMLtYUIUvmaPAF6lzqFRhuBgSBtagwq9SCIzhQVX4kj0KfJE64xNlRmoV/tFdOmFgjBRD9eFL5nR8ARSRvBkvRWP4AOXK0efDLwQBw4MFnS1TMkcVvkid8VKFkWKBQth4DD8MjJHBkEOlMu7e5F5ETj4KfJE6h0plhgdDwqBxl04hMIaLBdzhyGS1yb2InHwU+CJ1xicqqTH85hU+6KpXki0zEvhmdquZ7TazJ1LzFpjZPWa2Jf45fybWJdJth0rlY+rSganz7ohkwUxV+F8HrqybdwNwn7uvAe6Lp0VOau5e+9C2aZdOaLUPdVXhS5bMSOC7+z8Ce+tmrwVui3+/DfjATKxLpJsmylUqVWd4sNCkwo+7dIpxha/Alwzp5hj+qe6+EyD+uaSL6xKZEUmr5Uitwm89hq8zZkqW9PxDWzNbb2abzGzT2NhYrzdH+lwyRDNcLERdOg378KfG8HV6BcmSbgb+y2a2FCD+ubvRQu6+wd1H3X108eLFXdwckfbGaxV+my6dYlLha0hHsqObgb8RWBf/vg64q4vrEpkRyQXMh4shYdi+S0enV5Asmam2zG8CPwXeaGbbzeyTwBeBK8xsC3BFPC1yUquv8MstzqUDupC5ZMuMnEvH3T/S5KbLZuL+RU6UWoU/GPXhH3UR8/hcOkOFpC1TFb5kR88/tBU5mSQVftKH36gtMwyMIIh68VXhS5Yo8EVSakM6cZfO0R/aVimEBhCdE39SFb5khwJfJCXpupmq8KeP4ScVPsBIURW+ZIsCXyQl6atPvmlbdaimqvxyfLbMZBmN4UuWKPBFUsZLZYYGAsLAasFeSZ3zflqFPxiqD18yRYEvknKoFF3eECCMx+orR1X40dNmWBcyl4xR4IukjE9UmBWfJyep8NOdOukKf3hAFb5kiwJfJGVahR9X8ule/HL8TVuIvo2rCl+yRIEvkjJeqjBcrK/wpzp1KpX0GH6Bw2rLlAxR4IukjJcqqQq/yRh+mK7wNaQj2aHAF0k5NFGuXc2q3Rj+yGCBiXKVckUXMpdsUOCLpIyXKowU21T4SZdOchEUDetIRijwRVLGS6kKP2xT4Rd1IXPJFgW+SMqhiakKP6nk0xcyn9alowuZS8Yo8EVi1apzeLLCrIFj7MMfVIUv2aLAF4klLZbJxU2SYC9XGp9LZ+pC5qrwJRsU+CKx2gXM48q9UHdqhWrVcZ/6QtZwMoavE6hJRijwRWLJ0MxUhR89PZIhneRn8kIwojF8yRgFvkjsqAq/ri0z+Vkbw1eXjmSMAl8klr6AOaTG8OMuneRn/Ri+KnzJiq4HvpldaWabzWyrmd3Q7fWJHK/aBczrzqXTtMIf1Bi+ZEuhm3duZiHwFeAKYDvwsJltdPenurlekWP11I79fO0nzzK7WGDswAQw1V8f1rVl1sbw4/mDhYBCYNz/zG7GDkyw/8gkV79pKZefe+qJfhgix6SrgQ9cBGx192cBzOxbwFpgRgN/vFTmlYOlafPMXv/9uLdf5vUyAzMjsOj+61eRbGbVvbb+5G8g6gypVJ1qfKOZYUT3k/xNIbDoCk2h4R5Vou7R/RRCqwUXDlWHIICBIGCgEL3BOzJZmXZOGMOoulOqVJmYrDJZrVIsBBQLIYNhwJFyhfFShSOTFQYLAUOFkFmDIUZ0dSh3Z87QAAtnF6fWDZTKVaruFAtB7fEdmiiz5+AERyarLJw9yPzhQaruPL1zP5ue38cvXz7AYCFgpFhgIAzY+ephtr0yzs79h7l49UI+eskZnL98HgB7Dk7w6LZ9rF40wppTTzmm/fPff/A0Dz67l1mDIfuPTDK7WOC0OUNA6otXlfoKf+qN8VlLZrNp2z427zpA1Z2fbNnDO89ezGCh/Zvn3fuP8PDz+zh/+VyWz5+FmfHCK+Pc/tA2fvTELuYOD7Jq4TAr5g/jOIcmKhwuVVi5cJgLV87nLSvmMTQQsP9wmbGDE5jBopEic2YVMDM83ofuTPs/d3f2jU+y91AJMwji+RPlCkcmq7X9OjwYMmsgpFJ1jkxWmShXCANjMD4WQjM8PqIDM4YGQooDAaEZ5Uq07krV4+OZ+HiOhsaq1WheEFi0fLVKueKUk+Xj+/R4eyE69kOz2oVpvMFzJnlupFl8u/v059lMmom8mTM0wNzhgZnZoCa6HfjLgBdT09uBt870Su5/Zozr/+rRmb5b6VBgsHB2kcDgtcOTHJms1ubPGgipOkedXjgwKIQBpXK07MKRQSrujE9UKFWqLDmlyBkLhzl36Ry+9/hO/vqR7Zx3+hxK5Spbdh8Eoiff+88/nc9evoYzF89mz8EJntl5gCVzipydeiHYvOsAP96yh//03jdy/bvPil5c3RkIo7BuV+EDfO/T78DdKYQB/7B5Nx/7y4e5+7EdfOjC5bVlXt5/hKd27GfNqbNZNm8Wew+V+PP/9yu+8dNtTMSP8/S5QyybP4tN2/YRmPH2sxZRrlZ5ZNs+/vYXOzAzRgZDigNh7Z1IGIdlqe7kbYNhQLEQMD5Zqb1IDYYBc2YNMBAaew5OMFnpQupJRz71rjdww1XndHUd3Q78Rq970440M1sPrAdYuXLlca3k/OVz+dKHz2+8gmPh1La0foOTm9LVUaP5yW1edx9JhVL1qUrD4iWS6sg9rrJs6o/SlVMYWK0Kc7y2fK1qcmeyEr0TMKKqKYgrvErVmawm9zVVvU9WoorKcYYGQoYK4bRq3AyKhZBiISAMjYm4wiuVq8waDBkejP6mVIkqwiS4o+0yXjs8ye79R9i9PwqnucMDzBmKKs/Dpegdghksml1k0exBhgZC9h4qsefgBBPlKucvn8tvnDGfpXNn1bYp/S1XgP1HJvnuoy9x589eYtHsIh+6cDm/ccZ87t+8m6//0/Pc/dgOFowMsid+93fKUIF7fu9dnDY3quBv+cmzDA0E/PZF0XEXBEaQ2nv1ffhJpZ/Mh+RFIZp+19mLWbNkNl/78XN88IJlmBmlcpV1tz7EM7sORNtQLFCuOhPlCh+4YBn/enQFm18+wIPP7uVXYwf59HvW8JGLVta2MVl/kHrX9+p4iZ+98CqPvrCPyYqzaPYgi08p4h69yxk7OMHEZJXheD+ZGQeOlHnt8CSlcpXFpxQ5dU6RBSODteOv6tFxMGsg2ucTlWptPxUCY2ggquqr7kyUo2MhOeOEGfFjqjIRv8gMhNE7yORdQPLuNnk3mhyf1fi5EZpNezeabFPyfDGLpivVqVNdGEc/Z5J3tunnWLLu5P+w/vmZTKef483m1/9NMt3whmOQXvyc0+a8vj8+Dt0O/O3AitT0cmBHegF33wBsABgdHT2usmPFgmFWLBg+3m2UjEiHPURvgddduop1l66aNv+i1Qv4xNtWc+s/PceeAxOcs3QOS+cO8R++/XNuvPMxbv3Yb7LnYIm/+dkO/tVvLmd+HHzN1lffpVO/HQkz43fesZrP3/E4P332FS59wyL+7O+38MyuA3zhmvMohMbmXQeYrDiffPtqzloyG4C3nrmQ6y5Z1fA+G61v3vAg7z5nCe8+Z0nTvxFppNuB/zCwxsxWAy8B1wK/3eV1irD4lCKfv3L62+Ndrx3hv979FHc8+hIv7B1nslrlE29b3fQ+mnXpFILm4/Nr37KMP/rhZm758XPMGRrgK//wKz504bKjXpREeqGrge/uZTP7XeBHQAjc6u5PdnOdIs187NJV/PCJXXzhb5+kEBiXnXMqZy6e3XT5ZmP4zSp8gKGBkI9ecgZ/eu8Wtuw+yMKRQf7gfefN4KMQOX5d78N39++7+9nu/gZ3v7nb6xNpJgiMP/rw+UxWquwbn+R33tG8uof06ZHrK/zWA7X/9uIzGCwEvLB3nD/84K93vfNC5Fh1e0hH5KSyatEIX/rwm3n4+b28dfWClss2rfDD1oG/aHaRG686hwNHyurJl5OKAl/6zvvffDrvf/PpbZerjeHHbY+VulMrtPLxFp8NiPSKzqUj0kRYd4nD5Lz4rcbwRU5mCnyRJo6nS0fkZKYjV6SJ4+nSETmZKfBFmjjeLh2Rk5UCX6SJJNdV4UteKPBFmjAzCoHVunNqXTpt2jJFTlYKfJEWwsBani1TJEsU+CItFAJreT58kSzRkSvSwrQKv6IKX7JNgS/SQiEMml7TViRrFPgiLWgMX/JEgS/SQqMuHVX4klUKfJEWGlf4etpINunIFWmhEFjtw9raydPUhy8ZpcAXaSEMrPZhrcbwJesU+CItFIKgdvFyjeFL1inwRVpoVOGHpsCXbFLgi7RQCKc+tK1UncCia+OKZFFHgW9m/9LMnjSzqpmN1t12o5ltNbPNZvbezjZTpDfqK3x16EiWdXpN2yeADwF/kZ5pZucC1wLnAacD95rZ2e5e6XB9IidUukunUnWN30umdVSuuPvT7r65wU1rgW+5+4S7PwdsBS7qZF0ivTCtwq+4OnQk07r1/nQZ8GJqens87yhmtt7MNpnZprGxsS5tjsjxqe/SUQ++ZFnbIR0zuxc4rcFNN7n7Xc3+rME8b7Sgu28ANgCMjo42XEakV44ew1fgS3a1DXx3v/w47nc7sCI1vRzYcRz3I9JThWB6l47G8CXLujWksxG41syKZrYaWAM81KV1iXSNunQkTzpty/ygmW0HLgG+Z2Y/AnD3J4FvA08BPwSuV4eOZNFAGKjCl9zoqC3T3b8LfLfJbTcDN3dy/yK9pjF8yRO9PxVpIRrDT3XpKPAlwxT4Ii2EqYuYlysa0pFsU+CLtFB/Lp2C+vAlwxT4Ii3Uj+GH6tKRDNPRK9JC9E3bVIWvIR3JMAW+SAvTK3x9aCvZpsAXaWF6l44qfMk2Bb5IC0eP4SvwJbsU+CIt1J9LRxW+ZJkCX6SFMAhwh2rV4z58PWUku3T0irSQ9N2Xq64KXzJPgS/SQjJmX6l61KWjL15JhinwRVpIKvpytaoKXzJPgS/SwvQKX106km0KfJEWpip8jeFL9inwRVpIunKmKnw9ZSS7dPSKtKAKX/JEgS/SQm0Mv+KUKzqXjmSbAl+khak+fHXpSPZ1ehHzL5nZM2b2mJl918zmpW670cy2mtlmM3tv55sqcuId1aWjPnzJsE4r/HuAN7n7+cAvgRsBzOxc4FrgPOBK4H+bWdjhukROOI3hS550FPju/nfuXo4nHwCWx7+vBb7l7hPu/hywFbiok3WJ9ELSlVOuqEtHsm8mj95PAD+If18GvJi6bXs8TyRTkoq+VInOiT+gCl8yrNBuATO7FzitwU03uftd8TI3AWXg9uTPGizvTe5/PbAeYOXKlcewySInTjKGP1GuRNMaw5cMaxv47n55q9vNbB3wPuAyd09CfTuwIrXYcmBHk/vfAGwAGB0dbfiiINIrhVrgV6dNi2RRp106VwKfB65x9/HUTRuBa82saGargTXAQ52sS6QXahX+ZDWe1hi+ZFfbCr+NPwOKwD1mBvCAu3/K3Z80s28DTxEN9Vzv7pUO1yVywiV9+MmQjip8ybKOAt/dz2px283AzZ3cv0ivJRV9MqSjb9pKlun9qUgLGsOXPFHgi7QwNYZfmTYtkkUKfJEWjqrw1ZYpGabAF2khrAt8delIlunoFWmhUPvQVl06kn0KfJEWkm/WTvXhK/AluxT4Ii0kFf2RSVX4kn0KfJEWjh7DV+BLdinwRVooBPXftNVTRrJLR69IC0efS0cVvmSXAl+khULdqRXUhy9ZpsAXaeGo8+GrwpcMU+CLtKBz6UieKPBFWggCIzCN4Us+KPBF2igEgbp0JBd09Iq0EQamPnzJBQW+SBuFVOBrDF+yTIEv0kYYms6HL7mgwBdpY1qFrz58yTAFvkgbYWCUq177XSSrOgp8M/tvZvaYmf3czP7OzE6P55uZfdnMtsa3Xzgzmyty4qU7c9SlI1nW6dH7JXc/393fAtwN/Jd4/lXAmvjfeuCrHa5HpGfSVb0qfMmyjgLf3fenJkcAj39fC3zDIw8A88xsaSfrEumVdGeOunQkywqd3oGZ3QxcB7wGvDuevQx4MbXY9njezk7XJ3KiqcKXvGhb4ZvZvWb2RIN/awHc/SZ3XwHcDvxu8mcN7sobzMPM1pvZJjPbNDY2dryPQ6RrQlX4khNtK3x3v/wY7+uvgO8Bf0BU0a9I3bYc2NHk/jcAGwBGR0cbviiI9FK6FVMVvmRZp106a1KT1wDPxL9vBK6Lu3UuBl5zdw3nSCaFcWdOGBhmCnzJrk7H8L9oZm8EqsA24FPx/O8DVwNbgXHg4x2uR6RnkmEcVfeSdR0Fvrv/iybzHbi+k/sWOVkkQa/xe8k6fYtEpA1V+JIXCnyRNlThS14o8EXamKrw9XSRbNMRLNJGEvSq8CXrFPgibWgMX/JCgS/SRhh/8UrnwpesU+CLtKEKX/JCgS/Shrp0JC8U+CJtqEtH8kJHsEgb6tKRvFDgi7ShMXzJCwW+SBsaw5e8UOCLtKEKX/JCgS/ShvrwJS8U+CJtqEtH8kJHsEgb6tKRvFDgi7ShMXzJCwW+SBvq0pG8UOCLtKEKX/JCgS/Ship8yYsZCXwz+49m5ma2KJ42M/uymW01s8fM7MKZWI9IL6hLR/Ki4yPYzFYAVwAvpGZfBayJ/60HvtrpekR6JQzVpSP5MBMly58AnwM8NW8t8A2PPADMM7OlM7AukRMuCXp98UqyrqPAN7NrgJfc/Rd1Ny0DXkxNb4/niWSOxvAlLwrtFjCze4HTGtx0E/CfgX/W6M8azPMG8zCz9UTDPqxcubLd5oiccBrDl7xoG/jufnmj+Wb268Bq4BdmBrAceNTMLiKq6FekFl8O7Ghy/xuADQCjo6MNXxREeinUkI7kxHGXLO7+uLsvcfdV7r6KKOQvdPddwEbgurhb52LgNXffOTObLHJiDcQf2qoPX7KubYV/nL4PXA1sBcaBj3dpPSJdpzF8yYsZC/y4yk9+d+D6mbpvkV7SN20lL/QplEgbqvAlLxT4Im0UgmQMX08XyTYdwSJtqMKXvFDgi7SRtGNqDF+yToEv0ob68CUvFPgibahLR/JCgS/ShsbwJS8U+CJtqEtH8kJHsEgbYW1Ip8cbItIhHcIibaxeNMK//6038M41i3u9KSId6da5dERyIwyMz115Tq83Q6RjqvBFRPqEAl9EpE8o8EVE+oQCX0SkTyjwRUT6hAJfRKRPKPBFRPqEAl9EpE9YdPnZk4OZjQHbjvPPFwF7ZnBzsqRfH7sed3/R427uDHdv+1XwkyrwO2Fmm9x9tNfb0Qv9+tj1uPuLHnfnNKQjItInFPgiIn0iT4G/odcb0EP9+tj1uPuLHneHcjOGLyIireWpwhcRkRZyEfhmdqWZbTazrWZ2Q6+3p1vMbIWZ3W9mT5vZk2b2mXj+AjO7x8y2xD/n93pbu8HMQjP7mZndHU+vNrMH48f9f81ssNfbONPMbJ6ZfcfMnon3+yX9sL/N7PfiY/wJM/ummQ3ldX+b2a1mttvMnkjNa7iPLfLlOOseM7MLX8+6Mh/4ZhYCXwGuAs4FPmJm5/Z2q7qmDPy+u/8acDFwffxYbwDuc/c1wH3xdB59Bng6Nf0/gD+JH/c+4JM92aru+l/AD939HODNRI8/1/vbzJYBnwZG3f1NQAhcS37399eBK+vmNdvHVwFr4n/rga++nhVlPvCBi4Ct7v6su5eAbwFre7xNXeHuO9390fj3A0RP/mVEj/e2eLHbgA/0Zgu7x8yWA/8c+Fo8bcB7gO/Ei+TucZvZHOCdwC0A7l5y91fpg/1NdDW+WWZWAIaBneR0f7v7PwJ762Y328drgW945AFgnpktPdZ15SHwlwEvpqa3x/NyzcxWARcADwKnuvtOiF4UgCW927Ku+VPgc0A1nl4IvOru5Xg6j/v9TGAM+Mt4KOtrZjZCzve3u78E/E/gBaKgfw14hPzv77Rm+7ijvMtD4FuDebluPTKz2cAdwGfdfX+vt6fbzOx9wG53fyQ9u8GiedvvBeBC4KvufgFwiJwN3zQSj1evBVYDpwMjREMZ9fK2v49FR8d9HgJ/O7AiNb0c2NGjbek6MxsgCvvb3f3OePbLydu6+OfuXm1fl7wNuMbMnicasnsPUcU/L37LD/nc79uB7e7+YDz9HaIXgLzv78uB59x9zN0ngTuBS8n//k5rto87yrs8BP7DwJr4E/xBog93NvZ4m7oiHre+BXja3f84ddNGYF38+zrgrhO9bd3k7je6+3J3X0W0f//e3f8NcD/w4XixPD7uXcCLZvbGeNZlwFPkfH8TDeVcbGbD8TGfPO5c7+86zfbxRuC6uFvnYuC1ZOjnmLh75v8BVwO/BH4F3NTr7eni43w70du3x4Cfx/+uJhrPvg/YEv9c0Ott7eL/wW8Bd8e/nwk8BGwF/hoo9nr7uvB43wJsivf53wDz+2F/A18AngGeAP4PUMzr/ga+SfRZxSRRBf/JZvuYaEjnK3HWPU7UyXTM69I3bUVE+kQehnREROQYKPBFRPqEAl9EpE8o8EVE+oQCX0SkTyjwRUT6hAJfRKRPKPBFRPrE/wcO4EOiMqZXqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(taps2)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "w, h = sps.freqz(taps2)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aclaycomb/anaconda3/envs/geomagenv36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.\n", + " warnings.warn(message, mplDeprecation, stacklevel=1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEWCAYAAAD7HukTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4VNXWh9+VHgIJHem9iCCKFAsdVGxgx45YuCqoeP0EpA2hg6JXRVGsiIWrXgsiiqBGUKl2ujSlIyAJNSHJ+v7YM5OZNCb1TJL9Ps95Zs465+y9zplkfrP3XnttUVUsFovFYimNhDjtgMVisVgsRYUVOYvFYrGUWqzIWSwWi6XUYkXOYrFYLKUWK3IWi8ViKbVYkbNYLBZLqcWKnCUgRORFERld2OfmcL2KSJMcjtUQkSUickREpovICBF5xX2sgfvasPzWHYBvfvUXVT0Wi6VwKLIvA0vJQUS2AzWAVCANWAe8CcxS1XQAVb0v0PJ8zxWRbsBbqlqnkNwdCBwAYvU0kzxFJMFd9yuFVHee6rdYLM5jW3IWD1epagWgPjAFGAa86qxL2VIfWFccAiMioXmtvyhbkcFIWbtfSwlEVe1WxjdgO9Ark60DkA60cu+/AUzwOT4U2APsBu4BFGjiey4QA5xwl3PUvdVyl70MOOwuYwYQ4VO2t6xMPr0BnAJS3GX1AsZiWmsADdzXhgETMa3Sk+5zZ7jPaQEsAg4BG4EbM5U/E1gAHMvmmeRU/wfAW0CS+1mEAMOBLcBB4D2gsk85twN/uo+N9H3+2TznbsBOn/1awP+Av4FtwEM+x8a663oTOAKsBdr5HK8LfOi+9qD7uUe6n0Vrn/Oquz+3atl8BncC3wNPu6+b4LbfBawH/gEWAvXddnGfux9IBH7D/2/qRffncQT41nOd+/iFwCr3dauAC32OJQDj3b4cAb4EqrqPRbk/j4OYv7FVQA33sTjMj7c9wC7M32mo0/+Ddiu6zbbkLNmiqiuBnUDnzMdEpDfwb8yXfBOgaw5lHAMuA3arann3thsjPo8AVYELgJ7AAwH4dCfwNjDNXdbiXM4dCSwFBrvPHSwiMZgv1HcwX+Q3Ay+IyFk+l96CEcgKwHcB1t8XI3QV3ccfAq52P5damC/+5wFEpCVGSG93H6sCBNSVKyIhwKfAr0BtzHMbIiKX+pzWB5jr9mUeRsg8rdL5GHFt4L5+rqomu8+/zaeMm4HFqvp3Dq50BLZinuFEEbkaGAFcC1TDPPd33edeAnQBmrl96ocRHw+3YsSqKvAL5vkhIpWBz4BnMc/oKeAzEanic+0twAC3HxHA/7nt/TFiVtd97X0Y0QaYjemWbwKc6/bvnhzu01IKsCJnyY3dQOVs7DcCr6vqWlU9DsTnpVBV/VFVl6tqqqpuB14iB6EsZK4Etqvq6+66f8K0iq73OecTVf1eVdNV9WSA5S5T1Y/d15wA/gWMVNWdbhEZC1zv7tq7Hpivqkvcx0ZjWrqB0B7TuhqnqimquhV4GbjJ55zvVHWBqqYBc4A2bnsHjKg+pqrHVPWkqnpEfDZwi1tEwQjwnFz82K2qz7mfoed+J6vqelVNBSYB54hIfUzLtwKmBS3uc/b4lPWZz7MYCVwgInWBK4A/VHWOu553gQ3AVT7Xvq6qm9w+vAec47afwohbE1VNc/+9JYlIDcyPriHuZ7Af08r0fX6WUobtT7fkRm1Ml1RmagGrffZ35KVQEWmG+WXeDiiH+Tv8MZ8+5oX6QEcROexjC8P/Cz1P95LDNfWBj0TEV7zSMME9tXzPV9VjInKQwKgP1Mrkfyim5eRhr8/740CUW1zrAn+6RcgPVV0hIseAriKyB9PKmZeLH9nd7zOZok0FqK2qX4vIDExLtp6IfAT8n6omZS5LVY+KyCHMM6qFaXX68ifmbzKney3vfj/Hfb9zRaQiputypNvPcGCPiHiuC8nmfiylCNuSs2SLiLTHfKF8l83hPfh3sdXNpajsAjRmYn6VN1XVWExXl2RzXkHJXPcO4FtVreizlVfV+0/jb37quSxTPVGqugvz7LzPS0TKYVodHo5hhN/DGZnK3Zap3AqqenkAPu7AiExOP2xnY7osbwc+OE0rNrv7/Vcmv6JV9QcAVX1WVc8DzsJ0Wz7mc63vsyiP6TnY7d7qZ6qnHmYcLVdU9ZSqxqtqS8y43pXAHW4/kzFjdx4/Y1X1rNzKs5RsrMhZ/BCRWBG5EjNO85aq/p7Nae8BA0TkTPeX9JhcitwHVBGROB9bBUyQxlERaQHcn+2VBWcf0Mhnfz7QTERuF5Fw99ZeRM4s5HpfxIxV1QcQkWoi0td97APgShHpJCIRwDj8/w9/AS4XkcoicgYwxOfYSiBJRIaJSLSIhIpIK/cPktOxEiOwU0QkRkSiROQin+NzgGswQvdmPu73cc/YpojEicgN7vftRaSjiIRjBPwkplXr4XKfZzEeWKGqOzDBP81E5BYRCRORfkBLzGeYKyLSXURau8chkzDdl2nubtIvgenuv/MQEWksIsXRVW5xCCtyFg+fisgRzK/dkZjuxAHZnaiqn2MCAr4BNmMiJcH8Ss587gZMEMJWETksIrUwAQK3YKLiXgb+W7i34uUZzFjYPyLyrKoewQQa3IRpKewFpmIiDAu73nnAl+5nuhwTrIGqrgUGYYJf9mCCUnb6XDsHE1iyHfOF7H027nG2qzBjT9sw8/VewQRZ5IrPtU2Av9x19vM5vhP4CdNKW5pdGbmU/RHmOc4VkSRgDWbsCyAW8xn/Q0ZE6ZM+l78DuDDd4udhAlFQ1YOYFtij7muGAleq6oEAXDoD82MiCRPx+S2myxJMiy4CMxf0H/d5NfNyv5aShaja+ayWguFuCa0BIrMb87Hkjnsy/j25RYsWkx+vYYJKRhVTfW9gpkcUS32WsoltyVnyhYhcIyIRIlIJ8yv+UytwJRcRaYCZAhCMCQAslnxjRc6SX/6FmVS8BTPGUlTjapYiRkTGY1riT6jqNqf9sVgKE9tdabFYLJZSi23JWSwWi6XUUiYmg4eEhGh0dLTTblgsFkuJ4vjx46qqJboxVCZELjo6mmPHjjnthsVisZQoROTE6c8Kbkq0QlssFovFkhtW5CwWi8VSarEiZ7FYLJZSixU5i8VisZRarMhZLBaLpdRSIkXOnUV9toi8LCK3Ou2PxWKxlFVEpLeIbBSRzSIy3Gl/MhM0Iicir4nIfhFZk8me3QO8FrPm1b1An2J31mKxWCy4lzN6HrPqREvgZhFp6axX/gTTPLk3gBn4rGXl8wAvxiwNskpE5mEW7PSsc5ZGEbH+zwPc9dpkLtRhlJfqbp/Mlt37ojgeyDUhIRAdDRUqmK18eYiLg5o1oWLFjPMsFoulkOkAbFbVrQAiMhfoi1nKKCgIGpFT1SXuTOi+5PQAd2KE7hdyaI2KyEBgIEDt2rVJSEjIs0+b//mLlSH/ISx8G1dHPpTn6/OCJ4VoflOJHjsGB7JZaSskBMLDITLSCGF0NJQrZ14tFovlNISJyGqf/VmqOstnvzZmDUoPO3GvnRgsBI3I5UBOD/BZYIaIXAF8mt2F7g9iFkBMTIx269Ytz5V3A1aH/8BrP7/GGwOeoHHlxn5ilFmYMtsKejzQa9LT4fhxOHoUjhwxW2Ii7N4NO3fCrl2weTOsWwcn3PkLKlWCrl3h0kvhmmugRo08Px6LxVL6SVXVdrkcz66fKKiy/ge7yGX7AFX1GDmsWl3YuLq6mPPbHEZ9M4p3r3s3S1dhSSItDbZuheXLISEBvvkGPv4YBg2Cbt1g4EC49lrT8rNYLJYA2AnU9dmvA+x2yJdsCZrAkxxw/AHWrFCTR85/hLlr5vLj7h+Ls+pCJzQUmjaF22+HV1+FLVvg999h5EjYtg1uugnq1YMnnjAtQ4vFYjkNq4CmItJQRCKAm4B5DvvkR7CLXFA8wMcufIwq0VUY/lXQRccWCBFo1QrGjYM//oD5883+0KHQqBG88IJp/VksFkt2qGoqMBhYCKwH3lPVtc565U/QiJyIvAssA5qLyE4RuTtYHmBcVByjuoxi8dbFLNqyqLirLxZCQ+GKK2DRIli6FFq0MN2YHTvC6tWnv95isZRNVHWBqjZT1caqOtFpfzJTJlYGj4mJ0YIutZOcmkzzGc2pHF2Z1QNXEyJB8/ugSFCF996DIUNg/37TpTlmDIQF+yiuxWIpNETkuKrGOO1HQSjd39SFSGRYJBN6TODnvT/z3zX/ddqdIkcE+vWDDRvMGN748dC9O+zYcfprLRaLJViwLbk8kK7ptH2pLUnJSWwYvIGI0IhC8K5k8NZbcP/9EBMDn34K7ds77ZHFYilqbEuujBEiIUzpNYVth7fx0uqXnHanWLntNlixwkwi79oVPvrIaY8sFovl9FiRyyOXNr6U7g26M27JOJKSk5x2p1hp2dLMsTv7bLj+epgzx2mPLBaLJXesyOUREWFqr6kcOH6A6T9Md9qdYqdGDfj6azN5vH9/mD3baY8sFoslZ6zI5YP2tdtz41k3Mn3ZdPYe3eu0O8VOuXJmXK5nTxgwAN55x2mPLBaLJXusyOWTCd0nkJyWzPhvxzvtiiOUKwfz5kGXLnDnnSZFmMVisQQbVuTySdMqTRnYdiCzfprFHwf/cNodR4iONrkvmzWDq682KcIsFoslmLAiVwBGdx1NZGgkI78e6bQrjlGxIixYYNawu/JKOHjQaY8sFoslAytyBeCM8mfw6AWP8v6691m5a6XT7jhGvXrwySewdy/ceqvNd2mxWIIHK3IF5NELH6VauWoMWzyMsjCxPifatYPnnoOFC012FIvFYgkGrMgVkNjIWEZ3GU3C9gQWblnotDuOcu+9ZlrBuHE2EMVisQQHNq1XIZCSlkKLGS2oEFmBn//1c6lP3pwbx4/DuefCyZMmECU21mmPLBZLfrFpvSwARIRGMLHHRH7b9xvv/F62J42VK2cmiO/caVYwsFgsFiexLblCIl3TaTerHYdOHGLj4I1EhkUWaX3BzqhRMHGimUt31VVOe2OxWPKDbclZvIRICFN7TeXPxD+ZuXqm0+44zpgx0Lq1WXj16FGnvbFYLGUVK3KFyMWNL6ZXo15MWDKBxJOJTrvjKBERMHOmWX/ORltaLBansCJXyEzpOYWDJw7yxA9POO2K41x0Edx1Fzz1FKxb57Q3FoulLFIix+RE5GrgCqA68Lyqfpnb+cUxJufLLf+7hY83fMyWh7ZQs0LNYqs3GPn7b2jeHNq0MasXiDjtkcViCRQ7JpcPROQ1EdkvImsy2XuLyEYR2Swiw3MrQ1U/VtV7gTuBfkXobr6Y0GMCqempxH8b77QrjlOtmglASUiA+fOd9sZisZQ1ir0lJyJdgKPAm6raym0LBTYBFwM7gVXAzUAoMDlTEXep6n73ddOBt1X1p9zqLO6WHMBDnz/EC6teYO0Da2letXmx1h1snDoFrVpBWBj8+qt5tVgswY9tyeUDVV0CHMpk7gBsVtWtqpoCzAX6qurvqnplpm2/GKYCn+ckcCIyUERWi8jq1NTUor2pbBjVZRTR4dGM+HpEsdcdbISHw6RJZlzOLrJqsViKk2AJPKkN7PDZ3+m25cSDQC/gehG5L7sTVHWWqrZT1XZhDjQdqsdU57ELH+PD9R+yfOfyYq8/2Lj2Wjj/fHC5TFYUi8ViKQ6CReSyC0fIsR9VVZ9V1fNU9T5VfbEI/SoQ/77g31SPqc7QRUPLdPJmMAEn06bBrl3wYtB+YhaLpbQRLCK3E6jrs18H2O2QL4VG+YjyuLq6WPrXUhb8scBpdxync2fo3h2efNLktrRYLJaiJlhEbhXQVEQaikgEcBMwz2GfCoV7295Lk8pNGP7VcNLS7UJrI0fCnj3wxhtOe2KxWMoCTkwheBdYBjQXkZ0icreqpgKDgYXAeuA9VV1b3L4VBeGh4UzsMZE1+9fw1m9vOe2O4/ToYcbmpk41UZcWi8VSlJTIyeB5xYkpBL6kazodX+nIvqP72PTgJqLCohzzJRiYP98kbZ49G+64w2lvLBZLThRkCoGI3ACMBc4EOqjqap9jjwN3A2nAQ6paZItxBkt3ZanGk7x5R9IOnl/5vNPuOM4VV5gMKE88AWXgN5bFUlZZA1wLLPE1ikhLzJDUWUBv4AX3XOkiwYpcMdGjYQ8ubXwpE5dO5PDJw0674ygi8PDDsGaNyYRisVhKH6q6XlU3ZnOoLzBXVZNVdRuwGTNXukgoE7knKleuTEIQfJteX/F6Fm5ZyKB3BnFvo3uddsdRGjSA//wHtm61+SwtliAmTERW++zPUtVZBSyzNuA7efh086ILRJkQuUOHDtGtWzen3aAb3UhISeB/6//HtOunUTu2yD7XEsGiRfDvf8OWLUb0LBZL0JGqqu1yOigii4Ezsjk0UlU/yemybGxFNnBhuyuLmQk9JpCu6YxNGOu0K45z//2mFffCC057YrFY8oOq9lLVVtlsOQkcFPO8aCtyxUyDig14oN0DvPbLa6z/e73T7jhK3bom3dfLL9tUXxZLGWIecJOIRIpIQ6ApsLKoKrMi5wAju4wkJjyGx7963GlXHOf+++HwYfjoI6c9sVgshYmIXCMiO4ELgM9EZCGAew70e8A64AtgkKoWWaYMO0/OISYumciob0bx3YDvuKjeRU674xjp6dC4sdkWL3baG4vF4otdaseSb4acP4Qzyp/BsMXDynTy5pAQGDDArBq+fbvT3lgsltKGFTmHiImIYWzXsXy/43s+3fSp0+44Sv/+5tWuNWexWAob213pIKfSTtFqZivCQsL49b5fCQspEzM6sqVXLzOVYMsW07qzWCzOY7srLQUiPDScST0mse7vdbz565tOu+Mod91luiu//dZpTywWS2nCtuQcRlU5/9Xz2ZW0iz8e/IPo8GinXXKEEyegRg248UZ45RWnvbFYLGBbcpZCQESY1msau47s4rmVzzntjmNER0PfvvDhh5CS4rQ3FoultGBFLgjo2qArlze9nMnfTebQiUNOu+MY/frBP//YqQQWi6XwsCIXJEzuOZnEk4lM+W6K0644xiWXQMWKMHeu055YLJbSghW5IOHsGmdze5vbeXbFs+xI3OG0O44QEQHXXAMffwwnTzrtjcViKQ2UWJETkRgR+VFErnTal8JifPfxALgSXA574hz9+sGRI2aFAovFYikoxS5yIvKaiOwXkTWZ7L1FZKOIbBaR4QEUNQyT/6zUUC+uHoM7DGb2r7NZs3/N6S8ohXTvDrGx8EluOcwtFoslQIp9CoGIdAGOAm+qaiu3LRTYBFyMWYZhFXAzEApMzlTEXcDZQFUgCjigqvNzqzOYpxBk5uDxgzR+tjGd63fm05vLZiaUm26Cb76B3bshNNRpbyyWsoudQpAPVHUJkDmEsAOwWVW3qmoKMBfoq6q/q+qVmbb9QHfgfOAW4F4RyXIfIjJQRFaLyOrU1NQivqvCo0q5KgzvNJz5m+az5M8lTrvjCH36wP79sLLIFt+wWCxlhWAZk6sN+EZb5LocuqqOVNUhwDvAy6qans05s1S1naq2CwsrWemyHur4ELUq1CqzyZsvvxzCwmyXpcViKTjBInL5Wg5dVd84XVdlSaRceDniu8WzfOdyPt7wsdPuFDsVK0LXrlbkLBZLwQkWkSvW5dBLAneecyctqrbg8a8eJzW95HS3FhZ9+sCGDbB1q9OeWCyWkkywiNwqoKmINBSRCOAmzBLpZZawkDAm95zMxoMbef3n1512p9i59FLz+uWXzvphsVhKNk5MIXgXWAY0F5GdInK3qqYCg4GFwHrgPfcS6WWavs37ckGdC3AluDh+6rjT7hQrzZpB/fqwcKHTnlgslpKME9GVN6tqTVUNV9U6qvqq275AVZupamNVnVjcfgUjIsLUXlPZc3QPzyx/xml3ihURk+br66/h1CmnvbFYLCWVYOmutORA5/qduarZVUz5fgoHjx902p1i5dJLISkJVqxw2hOLxVJSKVmx9WWUST0n0ebFNkxaOonpl0532p1io2dPs0r4woXQqZPT3lgsluJG4uUC4DagM1ATOAGsAT4D3lKXJp62jNPNwxKhnbuCWj4VLFbNMqE7aClJGU9y4q5P7uLt399m0+BN1K9Y32l3io0LL4S0NNuas1icwMmMJxIvn2Oi7D8BVgP7MVmummESglwFPKUuzTVIMUeRE+FO4CFgG/BjpgouwojdaFX+KvjtFC2lQeR2JO6g2Yxm3HjWjcy+erbT7hQbo0bBlClmnbkKFZz2xmIpWzgsclXVpQcKfE4uIjcIeE2VEzkcPweoospXAfrsGKVB5ACGLRrGEz88wS/3/cLZNc522p1iYdEiE4DyxRcZ0wosFkvxEAy5KyVeYoAT6tJ0iZdmQAvgc3VpQCFpOQaeqPJ8TgLnPv5LSRC40sTwTsOJi4rj8a8ed9qVYuOCC0yS5iVlM42nxWKBJUCUxEtt4CtgAPBGoBfnKHIiRInQX4Q+IogIw0SYL8IzIlQtsNuWPFMpuhIjOo1gwR8LSNie4LQ7xUL58tCuHXz7rdOeWCwWhxB16XHgWuA5dek1QMtAL85tCsGbwCWYpW0SgHrADOAIeVBRS+EyuMNg6sTWYeiioWUmeXPXrmZFghM59itYLJZSjLijLG/FRFVCHmYG5CZyLVW5FbgeaK7KIFW+UGUU/nkmLcVIdHg047qNY9XuVfxv/f+cdqdY6NLFTAhfvtxpTywWiwM8DDwOfKQuXSvx0gj4JtCLcws8+UmVtpnfZ7cf7JSWwBMPaelptHmxDSlpKax9YC3hoeFOu1SkJCZC5cowejSMHeu0NxZL2aEggSci8gQmzD8F2AIMUNXD7mOPA3cDacBDqlpkCfxyE7n9mMVLBejnfo97/0ZVahSVU4VNaRM5gE83fkqfuX2YecVM7mt3n9PuFDnnnAM1athclhZLcVJAkbsE+FpVU0VkKoCqDhORlsC7mMWyawGLgWaqmpZtOSai8v+ABvh0U6pLewTiR279mo/5vF+d6VjmfUsxc2WzK+lUrxNjE8Zy29m3UT6ivNMuFSkdO8J770F6usmCYrFYghtV9V1DZDlm6AugLzBXVZOBbSKyGSN4y3Io6n3gReAVTMsvT+QocqqUmhnHlStXJiEhwWk3Cp1+lfvx4F8P8vC7D3N7/duddqdIueQSszLBokUQGem0NxZLmSFMRHwbNbNUdVY+yrkL+K/7fW2M6HnY6bblRKq6dGY+6gRyETkRPiWX1blV6ZPfSoubQ4cO0a1bN6fdKHS60Y2vTn7F+1vfZ8r1U6gWU81pl4qMNWvg+uth9my44w6nvbFYygypqtoup4Mishg4I5tDI1X1E/c5I4FU4G3PZdmcn1uo+KcSLw8AHwHJ3gtcGlBqydy6K590v16LuYm33Ps3A9sDKdxS9EzqMYlWG1sxcelE/tP7P067U2SceaaZM7dypRU5iyVYUNVeuR0Xkf7AlUBPzQgA2Yl/hH4dTI7KnOjvfvUdQlOgUSA+BpKgeYkqXU5nC2ZKY+CJL/fOu5fZv85m4+CNNKzU0Gl3iowePeDIEVi1ymlPLJayQQEDT3oDTwFdVfVvH/tZwDtkBJ58BTTNKfCkoAQicuuBK1TZ6t5vCCxQ5cyicKgoKO0itytpF02fa8q1Z17LW9e+dfoLSijDh8NTT5k15qKinPbGYin9FFDkNgORgGchzOWqep/72EjMOF0qMERVP8+1rHhphcly4v3PV5e+GYgfgcwafwRIEDEihwnjHBhI4ZbioXZsbYacP4TJ303m0Qse5dya5zrtUpHQsaOZFP7zzyanpcViCV5UtUkuxyYCEwMpR+LFBXTDiNwC4DLgO0xWrtNy2mBsVb4AmmJmnT+MyX7yZe5XFS0iEiIiE0XkOXefb5ln6EVDqRxduVQnb+7QwbyuthNYLJayxPVAT2CvunQA0AbTQgyI3BI0e9diViVZlV/dW7L7eKwIrfLqrYi8JiL7RWRNJntvEdkoIptFZPhpiumLCTk9hRnELPNUjKrIyM4jWbhlIV9tLZ2LQ9SqBVWrwq+/Ou2JxWIpRk6oS9OBVImXWMzapgEFnUDuLbnrRPhBhDEiXCFCBxG6iHCXCHOA+UB0Phx+A+jtaxCRUOB5TDO0JXCziLQUkdYiMj/TVh1oDixT1X8D9+fDh1LJA+0foF5cPYYtHka6pjvtTqEjAmefDb/95rQnFoulGFkt8VIReBmzgPdPwMpAL85tMvgjIlTCNBVvAGoCJ4D1wEuqfJcfb1V1iYg0yGTuAGxWVXdwi8wF+qrqZEz4qR8ishOTDw1ymAEvIgNxjx1GRETkx9USR1RYFOO7j6f/x/15f+379GvVz2mXCp02beDFFyEtzawzZ7FYSjfq0gfcb1+UePkCiFWXBvxT97TRlUWBW+Tmq2or9/71QG9Vvce9fzvQUVUH53B9OeA54DiwQVWfz62+0h5d6UtaehrnvnQux08dZ92gdUSEli6Bnz0b7rwTNmyA5s2d9sZiKd04uTK4xEsLdekGiZdsFwNQl/4USDkBr8lTxORpBryqHsdksLZkIjQklCm9pnDFO1fw8o8vM6jDIKddKlTOPtu8/vqrFTmLpZTzKHAvMD2bYwoUOEFzcZLXGfCWXLisyWV0rd+VcUvGcUebO6gQWcFplwqNli1NN+Vvv8GNNzrtjcViKSrUpfe6X7sXpJxgEblVQFMRaQjsAm4CbnHWpZKLiDC111TOf/V8nlr2FK5uLqddKjQiI6FFCxthabGUdiRers3tuLr0w0DKOe08ORHKiTBahJfd+01FsgaDBIqIvItZUqG5iOwUkbtVNRUYDCzEBLa8p6pr81uHBTrW6ch1Z17Hk8ueZN/RfU67U6i0aWMjLC2WMsBV7u1u4FXgVvf2CnBboIUEsjLX65jMz54cEzuBCXnx1BdVvVlVa6pquKrWUdVX3fYFqtpMVRu7Z8NbCsjEHhM5ceoEE5bk++MKStq0gb/+gn/+cdoTi8VSVKhLB7gnfyvQUl16nbr0OuCsvJQTiMg1VmUaZuI1qpwg+0ARS5DRvGpz7ml7Dy/++CJbDm1x2p1Co3Vr87rWtvUtlrJAA3XpHp8Pnq6pAAAgAElEQVT9fUCzQC8ORORSRIjGHe0oQmN81vSxBDeuri4iQiMY9c0op10pNDxRlRs3OuuHxWIpFhIkXhZKvNwp8dIf+Az4JtCLAxE5F/AFUFeEtzHLIgzNl6uWYqdmhZr8+/x/M3fNXH7c/aPT7hQK9eubABQrchZL6UddOhh4CZOz8hxglrr0wUCvD2gyuAhVgPMx3ZTLVTmQP3edoSxNBs+OpOQkGj3TiHNrnsui2xc57U6h0Lo1NGwI8+Y57YnFUnpxcjJ4YZHjFAIRMs8y9/SJ1hOhnioBzTa3OE9sZCyju4xmyMIhfLnlSy5pfInTLhWY5s3h99+d9sJisRQ1Ei/nYzJcnQlEAKHAMXVpbCDX59ZdOd29PQ+sAGZhEmSuAJ4tgM8WB7iv3X00qNig1CRvbtECtm4168tZLJZSzQzgZuAPzKIA92BELyByFDlVuqvSHfgTaKtKO1XOA84FNhfIZUuxExkWyYTuE/hl7y/MXTPXaXcKTPPmkJoKW0pP0KjFYskBdelmIFRdmqYufR0IOAtKIIEnLVTxdgypsgYz+GcpYdzc+mba1GjDyK9HkpxasgNkPRGWGzY464fFYilyjku8RAC/SLxMk3h5BAh4nDAQkVsvwisidBOhqzvzyfr8emtxjhAJYWqvqWw/vJ2XfnzJaXcKRNOm5tW25CyWUs/tGK0aDBzD5Dm+LtCLTxtdKUIUZmHSLm7TEmCmKifz460TlPXoSl9UlV5zevHbvt/Y8tAWYiMDGrsNSipWhNtugxkznPbEYimdOB1dKfESCsxWlwacxiszp23JqXJSladVuca9PV2SBM7ij4gwpecUDhw/wJM/POm0OwWiYUPYts1pLywWS1GhLk0Dqrm7K/PFaVchEGEb2aztpkqj/FZqcZb2tdtz41k3Mn3ZdB5o/wBnlD/DaZfyRcOGdkzOYikDbAe+l3iZh+muBEBd+lQgFwcyJtcOaO/eOmOmD7yVZzctQcWE7hNISUth3LfjnHYl3zRsCNu3gwOL21ssluJjNzAfo1cVfLaACCjjSZaLhO9U6ZTnCx3Cjsllz6DPBvHSjy+xbtA6mlUJON9p0DBjBjz4IOzZA2eUzMaoxRLUOD0mVxgEsp5cW5+tnQj3kQcVtQQvY7qOISosilFfl8zkzQ0bmlc7LmexlD4kXmZJvLTO4ViMxMtdEi+3nq6cQFYGn+7zPhXYBtwYmJuWYKZG+Rr834X/R/y38azctZIOtTs47VKe8BW5Cy7I/VyLxVLieAEY7Ra6NcDfQBTQFIgFXgPePl0hgUwhaKTK1ky2hqqUmN/PtrsyZ44kH6Hxs405q/pZfH3H14iUnKUCjx+HmBgYPx5GlczGqMUS1ARDd6XES3lMbEhN4ASwXl0a8BokgbTkPoAsyZo/AM4LtJLCRkTqYfKZHQA2qeoUp3wp6VSIrMCYrmN48PMH+WLzF1zW9DKnXQqYcuWgWjWzSrjFYgkuRGQ80BdIB/YDd6rqbjG/pJ8BLgeOu+05JvxXlx4FEvLrR45jciK0EOE6IE6Ea322OzFNxnwhIq+JyH4RWZPJ3ltENorIZhEZfppimgGfqepdQMv8+mIxDDxvII0qNWLY4mGkpac57U6eqF3bBJ5YLJag4wlVPVtVz8FER45x2y/DdDk2BQYCM4vSidwCT5oDVwIVgat8trbAvQWo8w2gt69BREIxqx1chhGtm0WkpYi0FpH5mbbqwM/ATSLyNXlYIdaSPRGhEUzsMZHf9//OO7+/47Q7eaJmTdi922kvLBZLZlQ1yWc3hoz51n2BN9WwHKgoIjWLyo8cuytV+QT4RIQLVFlWWBWq6hIRaZDJ3AHYrKpbAURkLtBXVSdjhNYPEfk/wOUu6wPg9dzqrFy5MgkJCYXgfemlulanafmmPPb5Y9Q4WIOIkHwnGChW+vWDxESwH6/FUiSEichqn/1Zqjor0ItFZCJwB5BIxsoBtYEdPqftdNty7ZOReIlRl+Y5uCK3RVOHqjINuEWEmzMfV+WhvFaWC9nddMdczv8CGCsit2Bmw2dBRAZimsJERETQrVu3QnG0NPNC/Re4eM7FrI1eyyMXPOK0OwExZgxMnAjJyRAWyAizxWLJC6mq2i6ngyKyGMhulupIVf1EVUcCI0XkcUyCZReQXXRbjhGQEi8XAq8A5YF6Ei9tgH+pSx8I5AZy+1rwrDSwOpdzCos83bSqrgGuz61A96+NWWCiKwvkXRmhV6NeXNzoYiYsncBd595FXFSc0y6dllq1ID0d9u837y0Wi+Fk6knW/b2OtjUzxw0WHqraK8BT3wE+w4jcTsxKAh7qYLKa5MTTwKXAPAB16a8SL11yOd+P3BZN/dT9Oju7LdAKAiSvN20pIqb0msKhE4eY9v00p10JiJrunnw7Lmex+DNz1UzOm3UeC/5Y4Ej9ItLUZ7cP4Mk0Ow+4QwznA4mqmmtXpbp0RyZTwBFyuXVXfkqurSn6BFpJAKwCmopIQ2AXcBNwSyGWbwmQtjXbcnOrm3l6+dMM6jCIWhWCu3nkab3ZCEuLxZ/E5EQA4r+N5/KmlzvhwhQRaY6ZQvAncJ/bvgAzfWAzZgrBgNOUs8PdZanu1QgeIg9rmubWXVkk67CIyLtAN6CqiOzEBJC8KiKDgYVAKPCaqq4tivotp2dCjwl8sO4D4hPieemq4F5c1SNytiVnKSucOHWC6PBoP1tqeirjvx3P/e3v964qkpKWAsD7N7xf7D4CqGq2C5uqyUAyKA9F3YeZV1cb0+v3ZV6uzy268lvPexEigBaYlt1GVVLy4GCmcjVLEIvbvgCj8BaHaVSpEfe1u48XVr3AIxc8QouqLZx2KUdq1AARK3KWksuxlGOUCy/nl21IVZmwZAK3tL6FxpUbe+2HThyi9lO1mXHZDO5ue7fXvmb/GsYtGcfWw1uZc80cAJKSk6gcXZl6cfWK72aKAHXpAeC0OSpzIpAEzVcAWzBL7MwANotQctJiWPLF6C6jKRdejpFfj3TalVwJCzNCZ7srLcHCsZRjpGt6FvuTPzzJL3t/8bOlpKVQ9+m6TFo6yc++5+gexiSM4f7P7vez70raxcnUk4z8eiRHU4567YdPHgbg7d/e9taRmJxIXGTwB4/lhMTLcxIvz+a0BVpOIOvJTQe6q9JNla6YuQ5P59dxS8mgWkw1HrvwMT5c/yHLdy532p1cqVkTdu1y2gtLaeXEqROcSjuVxf7i6hdZ8ueSLPbWM1vz8OcP+9lOpZ3isUWP0f/j/n4CePjkYf45+Q+Tv5vM3qN7vfbEk2Y8bdHWRSzasijD7h5n23dsH08vy/gaTkrOmHf9+FePe8soCRHSubAa+DGXLSACEbn9qmz22d+KyUNmKeU8csEj1IipwdBFQ8nPuoPFRY0aZgqBxRIIJ1NPcjL1ZBb7W7+9xbyN87LYu8/uzi0fZo2DG/HVCG778Da/stI1nW2HtzFz9Uw2HMhYtt4jQr/t+80vq5BHzI6dOsb4b8dnOV8Qhn813CuMHnvjSo2Z9sM09h/b71fOwPMG8sXmL/h629ckJScRGxkbyCMJStSls3PbAi0nEJFbK8ICEe4UoT/wKbDKk8sy33dgCXrKR5TH1dXF0r+W8tkfnzntTo5UqQIHDzrthcUpUtJSOJaSNRHGxxs+Zs6vc7LYb3j/Bi6ec3GWH24Tl07kjo/u4NCJQ372rf9s5YN1H/D9X997bapKUnISO5J28PzK5732I8lHAEjTNL+ufl/RGvX1KJJTk4GMllmTyk2Y9dMs/jj4h5/9X+f9i5/2/MR/1/zX2N1iNv2S6Zw4dYIJSyb4lT+i8wjqxtZl2OJhHD55uER3V3qQePlU4mVepm2OxMvDEi+nzaMciMhFAfuArpioyL+Bypg8lllSbllKF/e0vYcmlZswfPHwoE3eXLWqFbnSxKm0U94vc18Wb13MjJUzstjvn38/7V9un6VL8allT3H3vLvZ9o//qmDb/tnGd399x0cbPvKzJ55MJDE5kclLJ/vZPQIybPEwrzAeP3WcNE0jREKYuHSid0zMV7R8u/o99vva3cefiX8yc/VMv7In9phIZGgko74Z5fUF4P7299OmRhtGfj2SlLQU7/nta7fn7nPv5sXVL7Ll0BZv+dVjqjO++3hW717Nb/t+K9EtOR+2AkeBl91bEkaTmrn3c+W0IqfKgFy2uwrovCXICQ8NZ1KPSaz9ey1zfsv6qzgYqFIFkpLgVNZhE0sQkJqemqV1BLB853ImLJmQpUU15psxnPn8md5WkYeXfnyJBz9/kJ/2+K/Ksu3wNtYfWM8rP73iZ09KTuJU+inGJIzJYgczdpWanuq1JyYnEiIhPLfyOf5KNOs3Jacmk5yWTNPKTfl+x/fe7kzfltbhk4eZ+t1Uv7JHdBrh19XvEa3rzrzOZBVaMsGIqtverEozHr3gUd5b+x6rdq3yllMpqhJTek1h2+FtvLT6JW+9cZFxuLq5CAsJY/Q3o0k8mUhEaARRYVHcdvZttKreCkVLRUsOOFddeou69FP3dhvQQV06iKzLwGUhkOjKhiI8JcKHIszzbIXhuaVkcH3L62lfqz2jvxnNiVMnnHYnC1WqmNdDWb9HLUVAuqbz97G/s9jX7F/DsEVZl2t6dsWzNHymIbuP+M/zmPPrHEZ/M5qFWxb62bcnbmfP0T08+YP/VF3PF//wxcOztcd/G+8XcegRLd+IQ4+9WZVmbDq4idd+fg0wQnz81HHuOsf8bncluLznAgxqP4hmVZp5hdFTZ+d6nbn17Fv5z4r/sCtpl1e0alWo5e3qX/DHAu/5cVFxTOk1hYMnDvLED0/4idajFz5KtXLVGLZ4mNceGxnLpY0vpUfDHoxbMo6dSTsJlVDKhZejVoVaPHL+I7y75l2+/fNbr6CFhoQypecU7/WlgGoSL955EO73Vd27p53OFkh35ceYJMjPYSItPZuljCAiTO01lZ1JO3l+1fOnv6CY8YjcgQPO+lHa2H54Ow9//nCWHzbv/P4OdZ6uw7q/1/nZ/7fuf0z7YRpv/faWn/3Pw3+SlJzEuG/H+dmTUjK6AX0jDr3jTsumZ4k4DJXQbCMOm1Vplm3E4U2tbqJiVEVvxGG6pnMk+Qj9zurHRXUvYmzCWI6lHPOKUKvqrRjcYTCzf5nN7/t+99qrlKvC5J6TWX9gPbN/me31MS4qjvHdx5Ou6YxNGJshWlFxGV39Xw3nn5P/AEZ0PFmFnlr2FBsPbPTaYyNjGd1lNN9s/4b315kJ3BUiKyAiTOk5hQPHD/DKT68QGxnrnVM39KKhVI6uzIpdK/wE7fKml/P0pU/T/5z+WT/YksejwHcSL99IvCQAS4HHJF5i4PQpJgMRuZOqPKvKN6p869kK5rOlpNG9YXd6N+nNpKWT+OfEP06744dH5Oy4XP5RVb+uO4AvNn/Bsyuf5bmVz/nZ/0r8i5S0FEZ8NcLP7hGE0d+M9os49Hzxv/LTK94vdcgQrcwRh0nJSTSu1JjktGS/iMPE5ESuaHYF9ePq+wljUnIS3Rt059ozr/VGHHq6COvH1WdE5xHeiMOjKUe93XhTe01lz9E9PLPiGT/RGtF5BLGRsYz4eoTXHhsZyzUtrqFj7Y64Elxe8Y2NjKVBxQY80O4BXvvlNVbsXGHKiYzzdvWv2b+GF1a94LWDySqUmp7KMyue8ZYD8K92/6JRpUYs37mcChEVCBHzFd2+dntuPOtGTqSe8JsWEBcVx6jOo7zvPYgIQ84fEtSJHAJFXboAs8DqEPfWXF36mbr0mLr0P6e7PhCRe0YElwgXiNDWsxXQb0sJZErPKWb84fupTrvihxW5rKiqN62TLwnbE3h/bdY0T3d8fEeWiEPPF/zk7yb7jal57J9s/MQv4jAx2YhW5ojDpOQkaleoTXR4NCO+HuF3/oV1L6RtzbZZIg5b12jNwLYD/SIOk5KTqF6uOhN6TODnvT/7RRzGRcYxqcckb8ShJzAkLjKOwR0G+0UcghGVi+pdRN/mfZn6/VS2/rPVa68cXZnHOz3O/E3zmb9pPmDESUSYdvE0dh3ZxaTvJnntACO7jCQmPIZpP0zzlgMZXf0rdrnFzy1EnqxCJ1JPEB0WTXhoOJCxgLHvuR4mdJ9AWEhYli7IB9o/QIOKDagRUyPL51qKOA84CzgbuFHi5Y5ALwxE5FpjVgKfQkZXZZHktbQEN23OaMOtZ9/KMyueYWfSTqfd8VKpknk9fNhZP5xg5a6VvPrTq1nsj375KOfNOi9LxOHU76dy20e3sf3wdj/7hgMbSNie4BdxmJSchCAknvSPOExKTqJiVEVqlq/pF3GYlJxE0ypN6d2kd5aIw/oV6zP0wqF+EYeecqb2muoXcegRrdFdR2eJOIyNjOWW1rd4Iw6PphwlOS2Z2MhYmldt7o04/Hnvz4ARiqiwKMZ1H8fq3au9z8ojIJN6TuJoylFvd6ZHtB7q+BC1K9Rmyvf+Y1td6nfhymZXsnLXSr9yqparyrCLhnlbsB67p6sfIDwknMjQSO9zHNVlFOUjymcRsxvPupHzap7nzUHpoWmVpkzpOYVbW/tnuIoMi2TpgKW80sc/8Ka0IPEyB6M5nYD27i3HNe4yE4jIXQM0UqWrKt3dW498eWsp8fiOPwQLse4ftklJuZ9XGnl+1fPc8+k9WSIONx3cxJr9a3j5J/8I68STiaSkpTDmm9NHHCYmJ1IxqiL9z+nvF3GYmJxI1XJVGdttLN/v+J5PN33qtcdFxmW0+N0Rhx7RypxcwCNa3nUM3RGHSclJxEXGcUb5M7wRh8t3LufYqWPERcURIiHeiEPPklAeofBEHA75YgiQIU63n307raq38vZCeMSsZbWWDDhnAKt2r/I7Pzo8mvhu8VlEC2Byz8mIewlM31bVkPOHcEb5MwiREGLCY7z27g27c1mTy6hZoaZffsrqMdV57rLnvMEuHkIkhM9v/ZwPbviAzDx64aMMvWhoFnud2DpBv2JIAWgHXKQufUBd+qB7C3jR7kBE7legYr7ds5QqPOMPr//yepbAA6eoUMG8lhaRm7dxnt/YlYd2s9ox/Qf/mC9P12HmiEPfZVYyRxwKwlu/vcWve3/1K6d+XH2/iMPEZJMWKr5bPOAfcRgXGcdd595FsyrNGL54uDfiMDYy1tvi90QcJiUnERcV55dcYMEfC/xyK3oiDqd+P9UvU4cn4nDQApN03mO/tPGldG/QPUPk3OV4Ig5/3POjn90TcZicluxXDsDYbmOJCjNzin3FrP85/Tmz6pl+5YAJTrnznDspF16OChEVvPaYiBheuvIl7jvvPj8xA/jv9f/lqzu+IjN3nnMnE3tOzGKvFlON+hXrZ7GXUdaQ/erjARGIyNUANoiw0E4hsIAZfygfUT5L4IFThIdDdDQcOXL6c0sC/T/uz40f3OgXcXgq7RQ/7vkRV4KLfUf3ee0e0coccZiUnESDig3Yf2w/Ty17ys9+dYurqRhVkeFfDfez39DyBi6se6FfxGFcZBz14urxYIcH/SIOYyNjCQsJyxJx6BGJzBGHsRFGVHwjDj3iBxnrGE5fNt0EhrjtnohDT0vVIzaebsDsRMsTcQj+onV508vpUr9LFnud2DoM6TiEUAmlarmqXntYSBizrprFHW3uoFJ0Jb/PaOYVM/lx4I+EhoT62fs078PzV2SNQK4QWYEmlZtksVsCoiqwTuJloW/Wk0AvDkTkXJguy0nYKQQWMsYfMgceOEmFCiWvJbfl0BbOm3WeN7ACTIh74snELBGHR1KMgh87dcwvFD/xZCI9G/Wkflx9vxyHiScT6VyvM9edeR1P/PCEX47DzBGHp9JOeaP2MkccesTj8c6P+0UcekTCE3E4JmEMfx//2ytCvhGHB44f8J7vG3GYmp7qJ04TemRMDPe1/6vdv2hYsSHgL06eiMPM9rioOEZ3GQ3gN64lIsy4bAY3tbqJxpUylq/x1P37/b97xdFDp3qdmH31bG+Uo4fIsMhSEblYQhgLXE0+NSiQjCffZpo6kArcmD9fLaWFhzs+nCXwwEliY4Nb5A4cP+CN4PPwy95f+GnPT96gBzC5DxXzPP0iDt3dkjViamSNOIwxEYc/7fmJ99a+Z853dwVO7DHRG3GYlp7GkZQjxEX5Rxz6TjzuVK8TfZr3Yer3JhjEIx6+EYcbDmzwipAn4nD3kd0cOH7AT5w8EYfpmu7X3eeJOAT/bkBPxGFme0RoBJN7msCXzONOU3tNpd9Z/Tj3jHP97A93fJh1D6zL0npqXaM17173LpFhkX720JBQzqx2JpbgQ136re9GHjUokJYcIpwjwjQRtgMTyMPS45bSSUxEjDfwILvM7cVNsIvc0EVDaf9ye2/EIWSMm/1v/f/8Ig4B+p3VL9sch2O6jvGPOHR3BfpGHCanJnu7AptXbc49be/hxdUv8us+MwYXGxmbfcShW1gm95zM0ZSjbD+83U+0PBGHp9JP+YmQJ+LQtwzIaPF76vTgG3FYO7a233Ma03UMt7S+hU71OvnZ+7Xqx4ZBG+hYu6OfvUHFBsy9fm6WCEURsaJVipB4OUfiZZrEy3byqEE5ipwIzUQYI8J6zGKpOwBxR1dmzZJqKXN4Ag8y5wB0gtjY4BiTU1WGLRqWZQ2+vUf3cujEIW/EIWQIV8Woit4WsUf4rj3zWv8ch8nZ5zj0dB16Ig63/rOVp5Y9Rbqme4XF1dVFeGg4D39h1jjzCJEn4nD8EjPh2iMUnohD33MhI+IQsqaLmtxzMmEhYVlEa8j5QxhwzgAubnyxn717w+5sfnAzVzS9ws9etVxV3r727SzlADSv2jxLQIel9CLx0kziZYzEi78GubS7ujRgDcqtJbcB6AlcpUonVZ4Dij0NvYg0EpFXReQDH1uMiMwWkZdFJN/LolsKRubAAydxakzO053o4WTqSab9MI27593tJ/weQfNEHEJGF+S4buNY8ucS/xyHkZlyHHoycvjkOByycIhfq8oTcThh6QTvuQA1K9TkkfMf4bu/vgMyBMoTcXjs1DE/O5iIw5jwGOrE1vG7v/7n9GdQ+0H0bd7Xz96qeis2P7iZ/m3800jFRMTwWt/Xsh2/aly5cZbADYvFhwwNcmkndWm+NCg3kbsO2At8I8LLIvQE8vQzSkReE5H9IrImk723iGwUkc0iMjyn6wFUdauq3p3JfC3wgareC/TJi0+WwsU31dHxU8cd88OJ7sovt3xJpamVWLM/48/b0+Ja9/c6P+FPTE6kbc22fnMME5MTKR9Rnvva3ZeR4/BEDjkOD5opBXFRcd6Iwx92/OA9FzK6AT2fg69oPXbhY1SJruItw4NfxGGkf8ThxsEb+fcF//a757CQMGZcPoP2tdtneR71K9b3Zu6wWAqBDA2Kl5clXvKsQZCLyKnykSr9gBZAAvAIUEOEmSJcEmD5bwC9fQ0iEgo8D1wGtARuFpGWItJaROZn2qrnUG4dTNMVHGhdWjLwfLHuOrKL51Y8d/oLiggnRO6Pg39wIvWEX+CIpyUWFhLmJ/xJyUm0rt7aG3G47u913lD88NBwJvaYyJr9a5ixyvTCeITIk+Nw0lKTRso3x2FOEYc3tLwhiz0uKo5RXcw4XvWYjH8rEeHZ3s9ySeNLaFalmd/91Y6t7Z0/ZrEUN+rSj9SlWTUoXmZKvASqQQFFVx5T5W1VrsSIyy9Arq2vjGt1CZB5AZQOwGZ3Cy0FmAv0VdXfVfXKTNv+HIre6fYlx3sQkYEislpEVqemOjteVNrp2qArVzS9IkuOw+KkOMbkPv/jc7+M/J5W2/xN81ny5xJjc3crDuk4xE/4PVk/PBGHI74a4TcZ+vqW19OuVju+2PwFkNGq8kQcerLYe+y+OQ4z5yyc0msKlza+lLY1/VPMPtTxIX646wfa1GjjZ29zRhsW3raQCpEVsFiCDXci5rfVpXnWIAgwutJbmXJIlZcKmNarNhmtMDCClXWU2Y2IVBGRF4FzRcTzk/lD4DoRmQl8mr2vOktV26lqu7CwsAK4awmEyT0nk5SclGVV5eIiNhaSk81WFGw/vJ3L37mckV+P9NqSkpMIDwmnVoVaWQJHrmp+lVf4Dx4/6I129J1j+N1f33lbZiES4o04BP+uRk+Ow/CQcL+W1U2tbmLFPSvo0dD/37FRpUZ8cdsXWXIfhkgIF9S9wAZvWEos6tJD6tKX1KUBa1CeRK6QyO4/LMeJVqp6UFXvU9XGqjrZbTumqgNU9X5VfbvIPLUETOsarbmjzR1+OQ6LE09qr6JqzR08bpY4eH7V897kxoknTW7H+G7xLN+5nI83fJwlcCQpOYmRX49EUa9wDTl/CDXL12Tv0b1+XYo9Gvagd5PeRIZGUj6ivNdePaY6U3tN5bKml/kJlIjQoXYHG7xhseSCEyK3E6jrs18H2J3DuZYSxLjuJhOHJ8dhcVLYSZqf+P4JPv/jc+++p4Xmm9zYk9vxznPupEXVFjz+1eNeMYyNjKVV9Vb0P6c/s36cBWR0NXrmGHrO8+XNq9/k81s/z9LaeqD9A3xy0yeFc3MWSxnCCZFbBTQVkYYiEgHcBDYXZmmgXlw9v1WVixOPyBVWS27K91MY8MkAb3Jjz1jbJY0v8SY39s3hOKXnFDYe3JglcCS+WzwRoRHGRx9Bu+vcu+hYuyNtz/AfN6sWU43uDbsXzk1YLJaiFTkReRdYBjQXkZ0icreqpgKDgYWYWevvqeraovTDUnz4rqpcnBRmS86zDMy+Y/t4etnTplx3N+SkHpO8yY19A0f6NO/DhXUv5Ld9vxl/3ILmSW4M/tGOYSFhLLt7GY93zojMtFgshU+Ripyq3qyqNVU1XFXrqOqrbvsCVW3mHmfLus6EpcTim+PQE3FYHBTmcjsnUk+QpmmEhYQx7Ydp/H3sb293Zf2KGcmNf9rzU5Y5agDlwssRFpIR7DSqyyhGdR5F53qd/eqxAZh6p50AACAASURBVCCWsoCI/J+IqIhUde+LiDzrnif9m4i0PV0ZBcGJ7kpLKceT47A4kzcXZkvO0zU5qP0gb3Jj34wjnuTGx08d92uddarXiWtaXEPd2Lp+5cVFxTG+x3hiImKwWMoSIlIXuBjwjUa7DGjq3gYCM4vSBytylkLHk+Nw+c7lfLTho2Kps6Bjcst2LOOOj+4gJS3F22rrULsDd597NzNXz+SXfb8QHRZNeGi4N7kx4F0nzcM7173DkgHF14K1WIKcp4Gh+EfQ9wXeVMNyoKKI1CwqB8rEBLLKlSuTkJDgtBtligbagPrl6jPk0yHE7Y0jVIo2zD09HZ58EuLiID8f9evbX2fOn3OodLwSLSqYPIt/bvqTi8tfzGxm8+H6D6kUXsn7d1RX63JxjYupc6JOtn9b6wiOVdMtlgISJiKrffZnqeqsQC4UkT7ALlX9NVPXfE5zpfcU1NnsKBMid+jQIbp16+a0G2WOZ2o+w9X/vZotsVsYeN7AIq1LFXr1glGjoF8//2NLl0LLllClSs7Xf/zFx/AnvLv7XV688kX4GTq160Tn+p35OexnJn03iWqx1fz+jnp271k0N2OxBA+pqtoup4Mishg4I5tDI4ERkG0KyDzNlS4otrvSUmR4Ig7HJozlWMqxIq1LxLTi/vnH375+PXTpAq1bm9ZeTiQmJxIZGsnfx/8m/luznIxnvG3oRUOpHF2ZilEVi8p9i6VEoqq9VLVV5g3YCjQEfhWR7Zj50D+JyBkU81zpMtGSsziDJ+Kw8+udeWbFM4zoXLTTCqpVgwMHzPvp0834nGeMbs8eI3ibNsG778Lrr0OMTxxIUnISTSo3oWW1lry/7n0gY/J2XFQcn9z0Cemas0pu2QK1akF0dIYtPd2Irw2itJQ1VPV3wJsJ3C107VT1gIjMAwaLyFygI5CoqkXSVQm2JWcpYjrV60Sf5n2Y+v1UDhw/UKR1Va0Kc+fCnDnwf/8H8fEwf37G8WXL4Npr4f334T/PpNH7rd58tukzwERUxkbGMrHHRO/4YWxkLGlpRqw61etEl/pdSEgwXZ+jR2eU+9xz0KQJnH8+HHevNvTHH9CgATRtagTQw+LFMHgwbNjg7/upU2azWMoACzAtvc3Ay8ADRVqbqpb6rVy5cmpxjjX71mhIfIg+8sUjRVpPnz6qZnTOf+vRQzUsTLVLlwxb+277lLForakNdNPWk9puVjvt/VZvVVUd/NlgrTCpgm7dlqq1aqnWq6eamKialmbee8pYsUL1yBHVSpVUw8ON7aWXjC99+5p9EdVbbjG2P/9UjYoy9vr1VVNSjH3pUtXYWNXatVW3bMm4n717VWf9f3tnHidFde3x75kBZljHERSGVUEWRYZFZBMVFBV5ohJccEvIU0xiYlRM4q64xIAajUZFEXmuccMFNBBcUFBQVlFk0YfgwhLkgWEQkGU4749Tl6ru6R4Gh57uGe738+lPd9++VXWqeqZ/dc4999wxqt9+m9LL5vEkBdisGfAbXp6H9+Q8Kaf9we0Z2nFoTHHjVNCgQeL2Qw81T2t6kNk/aBAs/tIm1K3e+hXtf/4IG7cWwY95tG8PzZfcx+LfLmbUyGxWr4ZvvoGHHoL58+31ww9DtWrw6qu2z++/h0mT4MgjLRS6ZQtMngzDh5vXNn68zd979FHz1h56CL7+Gl5+2eRy+HAoLoa1a+Gaa8zGH3+EE0+ESy+FY46BjTargV274Pbb4bzzYj1ECGXd4/GEeJHzVAgj+owgS7J2FzdOBcVJls9t0sSSUsAyLE89FTbvDFRjW1129Lqd1UXf8b+f1WPxYrjmj9Woq0156y0Lb3bpYmHGN9+0TQYPhu7dYepUmDkTsrOhZ084/niYNw+mTYPt2+GUU2DAAHs9f77to3t3+PWv4cAD4a23bIxwzhz4y19MEF9/HTZvtudFi+A3vzFhfeYZO/azz8LNN1tY9oILwmSaBQugeXPo2NH6O1Thk08qfkFZjydT8CLnqRCa5TXj991+v7u4cSpINhG8SRPIDZZhy8+Hdu2AXBO5/E9GQK31bC7+DyuX5dGhgwnDE0/A8uUmSt27mxB9/rnt6+CDTdQWLIBZsyxzs3Zt6NrVbHjhBTtWz55w1FH2evp0mDsXTjgBsrLMO5sxw0QSbPrDwIG2Ht7UqfDii1BQYON9HTuahwhw//1QWAiPPGLHnj3b2i+5xJJuli6F6yLlMK+4Ajp1MhvXrQvbv/7a9vX11+W96h5PZuNFzlNhXNv7Wg7IPYDr3klNUeKePWPfu3lxRx0FOTlA9/tZc9LJ1KlXDDnm2nQ5sC953w4BYFtRPYYONc/s2WCVwqOPhm7dTLzeew+aBYnPzZqZh7ZggYVCwcQHLHTZoIHV0zzoIPOwJk40r6udzTOne3cTzbffNuFt29YSV8A8r7lzzTPMzoa+fc0TXLfOngcPhnPOsc9ef92Ebd48GDkSLr/cRHb9egtnPvgg9OoFq1bZZHmAH36wa3XlldC7d6yXN2YMDBliNng8VQEvcp4KI79mPtcfez2Tl03m3RXv7vP9Dx9u4T/He+/Zj/9RRwWeXPMZbG74Fu989yzkmCd3eMt69N52B2yvDd+3tDG55vDxx7aPZs3MewMLAzZtaq9d2//9nwkZhM/r1llmpaNJE7MDbN9uvwAffACHH27eXa1a1nfBAvjqK2jf3vocfTRs3Wrem6qJXn6+tX/wAfzrX9bvZz+DM8+0sO2MGfCPf1j7Sy9Z2PTpp01ox4yxKRUjR8LKlTB2rPV7+2341a9MJAcOtHFBMFE85RRo1com1kfZsAG++66MX5DHkwa8yHkqFFfcOBXFm7OyLGX/nXfgjjssEaRLUN88J4fd3tv9n94Ete2XufnBeTSu2QruWQMLz6dtW0tU2bnTtqtf3wTFES9yYOFLsHE2R1TkopVWnLg1bmzP33wDDRuGn7dubV4fmP1g4UaA116z5w4d7Pnww03UFy0yz7FZMxO+GjVMjD76yKY7NG4MZ5xhwvbll+ZpFhZakkvHjpYAA+b1NW5s0y6+/TYMu952m41Hrl0LP/95ONVh1qzwJuD118NzULX37+77+xiPZ6/xIuepUFxx4zmr5zB+8fiUHOOEE+CGG+KOmwvkbKT6jgas/OEb6P4AAA0PqGfL9GyvCwhNm5rIgYlmXt6eRc55cLVqBWJKuA8IRU4k3K4gUo42KnKHHRaKSKtW9twoKJr08cc29ueSaNq0gX//28TmiCPC82zf3oRv1iwLi0I4Njhzpnl5JwYVyQYOtPmDGzaYkA0aZF5fo0YmhsXF8NRT5iU+95x5mP+0qYVcfTXUqWPX5IorwsSfUaPg9NPte3AJM2DHuOIKm6jvs0A9FYUXOU+Fc1HhRbQ/qD3XT72eHcWpnQHtvEXnydXfdDyntDoF8lbCjlzqH1Bj91p0tWrZ1AAnUPn5JnSJRK5RpFqf8+REQm8u6sm5toICqF7dXjtPLrp9fLuz64ADbPxN1UTSVVBp29aeFy40ry5q4yef2LicGyc84gjz8F56ycKQXYNqhIWFtt/x4y0keuKJtv9TTjGPeN488+DOPtvaatWy9mXLTCyvvhruvhtWrLCEmS1bTOT69jVhveWWUPwuuAAeeMAm6v/976G9779vHuVFF9k4Z5QNG5JnzXo8ZcGLnKfCyc7KZmS/kSzbsIyx88em7DirilaRPyqfKcummCeXu5FcybPFTVVgWx55eeaNgAkchCLnxCkvXDJut8g5sYLQk4PQa0sUrnTbggmXIypy0VJjtWrZc1ZWOAcw6kG68T0Iw6Cuz+qgEqDzEmvUgBYtTJii2zoPcMIEe3bCWVhoIjltmr13YdBjj7UwpNvPaaeZ+GVnWwbpm2/Cf/5jhbL/8AfLUP3wQ/jsMxs7vPNOqyV67702Prh9u835W7rUvL677grPY+RIu3adO8cmx2zbZt7kmpQVgvJUJbzIedLCf7X+L45tfiy3TruVH7b/kJJjLP9+ORu3bWT4m8OpkbsTcorIlXp0bNQR5l0K3x3JAQeEHlN2sBpQvMhlZ4dCFxWTY4OFvqOeXiJPzolcVAyj9Syj4UonbBBbB9OJXFQo3bQICMOk8X2iE+Tr1zcBglDkWrc2cZ80yWxq2dLaXcbohAlmh7smHTtaybJ588zWtm3t+nXubB7ZrFm2v169wpDozJlhcswvf2kT3L/+2jJIJ0ywzM8JE0wsx4wxz+2bb6x02uGHW+j1zjtte1UbXzztNLNl1arw/FassG3ctAyPByqJyIlISxF5XETGR9rOFJHHRGSCiCRazsGTwbjizWs3r+W+D+9LyTHc4qeL1y1mae7/QM4mamYFavXGaHjqLfLyQpHLCv4b3A96NGEkP99EIDqW9vLLNonbJYJEt2nRImxzghYVOYBf/MKeo15dMpFzHl7Ue6tRI3wdFbmotxcVOSfAWVlhWLRGjdDm5s1D4XQiN2NGmP3pzmv7dqvoUlgY3hh06mRTIubMMfHJzbXzbd3aRGfmTBtjbNTIpkaACeLUqXb9TzoJLrzQEl4+/dSmcOzcaeJ42mnw5JP2/t13YcoU8/42brRQKVgI9vjjLeGoX7/Y2qBTptjYo8s29exfpFzkRGSciHwnIp/FtfcXkc9FZJmIXFvaPlR1uapeHNf2mqoOA4YC5ybc0JPR9GzWk0HtBnHXzLtYt3ndnjfYS4q2WYyrSd0mvFfNVkDIxcUeBZCYcKX7IW/Y0AQmmi2Zn28/0PFhymuvDbcD86KaNYsNOzov0GV6OkaPhsces/ErR3S7apE1Qj7/3J6d9wixwpbMk0sUSi0oiN13IgFt2TIU5+j+nHgvWxZ6fa7P2rUmUFHR79jRBGf27HAeYNOmJrKzZtkUiF69wqoxYEI5bRq7p3OcfbYl2CxebDcWderAuHHm0TkxfOopE8innza7//Y329eaNTat4o03bMxvzpzQtnvvNTEfOZISlLYsk6dyURGe3BNA/2iDiGQDDwGnAkcA54nIESLSQUTeiHscXHKXMdwY7MtTCbnzxDvZsmMLd0y/Y5/ve+OP5sn99eS/sgVbAaGG1ovpU6dOyXCliP3wXXJJ2K9x4zDbsTRuvbXkyuTnnmvhuN/+Nra9Zk07hjsuxHpyUZzQ9O4dtiUTOTe/DmK90UReZvSY9SKXJjc3FP+oTdEwbDRM26SJhRLXrYsNvxYUWEhxzZrYjNPCQhOtJUvCzM+WLe3GYtYs8yCdoHfrZs/z5tm17d3b7Bs4MKzyMmmSbX/BBTZZ/vnnLew5erRlq7rM1IeCX4oFCyxpZtUqqxDjxh5V4bLL7LsZPpwSbE7tsoieFJBykVPV6cCGuOZuwLLAQ9sOPA+coaoLVfW0uEfCqaZijAImq+r8BJ9fKiJzRWTuTjfpyZNxtGvQjos7X8zouaNZ/v3yfbpvF648ve3pHFFtAAA5mhfTJyurZLgS4Pe/D8NqYBOxo+nwycjPj/VwwETz9NNj95+MqCcXZfJkC+1FP08mctGQanTcznmm8fa5fcYf272PilxUIKNh1mTjgAUFNpl8165Y8WvY0MbaiovD0KmIJcJ89JFt4zJGDzvMBHjqVBNGJ/QuQ9R5fn372j769bNQ5tKllgjTvbuFU88+2zzB4mIrsl2njo3j5edb8WyweqKjR1sy0H332QR5sG0GD7ZtLrus5BSI+KxQT+aQrjG5JsC3kfcrg7aEiEh9EXkE6CwiribU5UA/4CwR+XX8Nqo6RlW7qmrXatHYjCfjuOX4W6iWVY2b3r1pz533gqJtRVTPqk5utVzOrH0XbGjFgTuPLNEvkcjF07RpSQ8oFSTz5Jo1iw1rQnKRS4YLtcaPDToxc55bfHtU/KJ9oiIXHQeMeo/J5gM2bBgKQ7TPwQebkEX3mZVlcwJdtRUn0m3amD2vvWYJNS4c6sRv2jRLbunTx94ff7yJ5+efm2CecIKFoM8+2yavFxdb4kujRmZD/fr2HkwcX3nFRHj0aJtGARYqHTzYbiauLXXQxZMu0iVyidZKTjo9VFXXq+qvVbWVqv4laHtAVY8K2h9JmaWelNOkXhOu7HEl/1j4Dz5e83G59/fEgifo/0x/1m9ZT72ceogIBdXawwPLyC+24pGffhpm/Lkf/2jYMF0kE7lElCZyixaFITiHWzU9fkkid8xkIhdvk7teUZGLZp3Ge3KOeJFL1Cc6nSI+gcYVk3ZeY3a2hU8//NDeuzHFtm3N5hdfNOFy4VD3PHGiVX5x4terl4nf0qV2zU4+2W58Bg+2pJVdu2wMsFUr8xoPPNDGUsGqwrzyinmbo0aFtuzaZRPfW7SwVeg96SNdIrcSiPxb0BRYnSZbPBnANcdcw4E1D+Tad8p/O/z+1+8z5cspPL/oefJyY8OTLpmiQwdLWYfwR/aOfT8suNckC1cmIup5RjMtwTyO446LbbvsMisVNnRo4mPGi5wLdcaLnBPUqMhFX0dFLjppPipsUTGLilzUy4xOjI+2x4ufW10hKn6NG4f1Ql17u3Zm+yuv2HuXIOM8v2eesRsBF6bu0cPm5y1ebAky/fvbtTjzTAtjqlrdz7ZtzWOsUyf0/F591Sa+f/89DBtmiTqOSZPgqqtKrgfoSQ3pErk5QGsROVREagBDgIlpssWTAeTl5nHjsTfy5pdv8vbyt8u1LzcWV7StiLwcE7nSykjVrGmfX3hhuQ67T9gbTy5KWcKVLVtadZSoeEDowcaLnLshiBdeJ6hRYYsSFblosklU2KKCFxXCqJhFxS+6z6j90fb4ccEffohtz842G6LFt8HELzs7LFcWLYwNJmSbN4eJMD16WCWWJUts/HDAABszHDjQxvTAxvxatQpDr078Zs+2KRF/+5t5jFu3EoOv7rLvqYgpBM8BHwJtRWSliFysqjuB3wFTgCXAi6q6KNW2eDKby46+jBZ5Lbj27WvZpT89h3vjto3k51rqX72c2GxKSRQozyBSKXLJcDcA8WLmrlW8TclEzolSdEyuXj3LUiwoiO0fFbZockxUCKPTNZyY1akT298dq27d2OxQ1z87O1ZQGzQIi287jzA729oXLoxtd9VfnHC5gtmuHugjj9j8vKj4rVplVV5mzrRko6ZNLRFm0iTrc889dh3Gj7d+L71k7Zs2Wfi0Vi14/HE8+5CKyK48T1ULVLW6qjZV1ceD9kmq2iYYZ/tzqu3wZD451XK4ve/tzFszjxcXvfiT91O0rYjuTbtzebfLGdB6wD60MPWkU+SSeXLJwpUuYccxfbpNzo7OLwQryLxqVewNRvv2Nk/t229j+zobWreObXceXlRAIRSzeO802h4da3X7ic6PjLZnZYUCXL26nYvzxtwx3ER5l3npwp7x4ueyQI85xvaxYYON8Z1zjhW8PuywcDHcBx+08cCCAlsNfrUfvNlnVIqKJ579h/M7nE9hw0JumHoD24t/Wl72xh83Ui+nHg+c+gB/OuZPQHh3Hp8+n2lEvZe9YV+IXNRDihLv4Z19tj3Hi9lhh1m9ykTEe9BZWTYuFQ0xgo2P5eeHiR0OZ1t0DiCEYhaf+eraowkx0fYmcbncTuQaNYqdKO/ac3NDT7RWLRPIJUvsvfNgnfi5hCY3+b9nT7vGTz5pY3y9e9v16NvXwp27dllItF8/8xp37AiTVdavN0+xYcNQVD17hxc5T0aRnZXNyBNHsvz75YyZN+Yn7WPjto27x+IcgwZZyOjKK/eFlZnHvhC5eCFK5sm5xVbjpyLsCxo2NI8nOkcRQs9u2LDYdrcsUfzNixOk6OoMENocL4quPV78XPi0cePY6+Pa69YNbwLy8+0mxYU9nfi1aWPP44OihM7j69nTpj68956FLgcMsPPs1s08PrCC1R98YNMtLrggXMjWU3a8yHkyjv6H9afPIX24bdptbNq2aa+3L9pWlHAs7tRTyzYhO938859WBHlvqEiRy84uKQappkcPy3w888zYdufZ/exnse1utfL4KjXOS4svseZELlraDGJFLoob54smx2Rlhe35+eF34triV4d3i+GOG2fPvXqFz3PnmrCNG2dTGV56yc5pYiQ9b+tWW5HBUzqV4F/es7/hijev27KOv374173adkfxDrbs2FLCk6tMDBgQhr7KSipEzpEJ8weh5Hgc2LVavdoKPEc57zx7Pjeuqq1bhSFaXxPMe4SS0y7cMZN5eFGRg1DQook1OTkW2t22zTxM91054XQrqLu1/3r0MAF7+WUT9lNPDSeuu9XhZ82y982a2dqBnuR4kfNkJN2adOOsI87inpn3sPaHtWXe7oVFLwAlsyqrOvHz5PaGP/3JfoRPOCG23Ylepq/iHS80YEKhWjKMeeutVrNy0KDY9s6d7fnUU2Pb1wZ/eqefHtvuim7HH9uJW1Tkov2imZ4HHWQ3EKtXW2aoW3XChWZdUkqvXuYl9uplUxDAMlZ37TIxvPxyPKXgRc6Tsfz5hD/z484fuX367WXe5qJXLwJAkxfQqZKUx5M7+mhLcIgfY3OeRXyCSWWmSRNL44+/KRg+3DI947M6b7oJLr44TLZxuHG2eLF0IhZfVcaJXlTkopmciVaHnzbNwqtuKkO3bjaBfNEim6Jw440wYoSVO4tONvfE4kXOk7G0qd+GYV2G8ei8R1m2Ye/+i3s3773nTlWIn5qVWRr33ms1Ho8sWe6zypGdXTLTE6wU2NixJa/vVVeZ2JxzTmy7Wyi2XbvYdufJRcUsWbvz8IqK7LUbR3Y3HWPH2nPfvjZeB+HK7p6SeJHzZDQ3H38zNbJrcOPUG8vUv1GdRgzrMoyujbum2LLMIhWT3HNyShaF9hi1alnptHjOP99qbF53XWy7mzO3YkVsu/PaoiKXnZ3Yw3OC+MYb9t106WK1O1u2DMOYnpJ4kfNkNAV1CxjeYzgvLHqBuavn7rG/myPn8aSL5s1jV3UHWwW+deuS8wjdFIf4cLMTv2gI2QnfsmWx8/kKC63gONiYY9OmYZWWdCIiI0RklYgsCB4DIp9dFyyY/bmInJJKO7zIeTKePx7zRxrUasA1b1+DlpIFsaN4B1t3bq3UmZWeqkluLnzxBQwZEts+cKA9r1wZ2+6yOePDmC50GU1sKSy0fS9ZYmN0q1bZfMIMqYN5n6p2Ch6TAETkCKxecXtsQe2Hg4W0U4IXOU/GUy+nHjcddxNTV0zlreXJb1GLthXt7r+/cPnlibMLPZWDHj1sdYj7749td8sCRauvuALTEJvA0q6dZVrefbe9v/tuC5lOnZo6u8vJGcDzqrpNVVcAy7CFtFOClHZnXFVo1qyZPv300+k2w1MOtu/aztA5Q6ldrTaPdnmULCl5f7Z662oumH0B17S9hv6N+qfBSo9n31BUZAUB6tQJsyvBvLUtWyx701Vt2bTJPDmXMdq+va20UFBQchL73tK3b9/twMJI0xhVLVMpIhEZAQwFioC5wNWq+r2IPAh8pKrPBP0eByar6vjyWZsEVa3yj1q1aqmn8vPsp88qI9BnPnkm4ecfr/lYGYG+sviVCrbM49m3bNmi2r+/6ocfxrYPHKgKqtdfH7bNm2dtoNqnj7V16qR60knltwPYrKX8tgJvA58leJwBNASysYjhn4FxwTYPARdG9vE4MLi045Tn4cOVnkrDkCOH0KlRJ25890a27SxZz+iTf1vph/0pXOmpmtSsCZMnWzgzipusvmVL2BatBHPIIfbctWu4bl4qUdV+qnpkgscEVV2rqsWqugt4jDAkWaGLZnuR81QasiSLUf1G8dV/vuKRuY+U+HzohKEAJVYD93iqChdfbBVqhg8P26KT9V0Is0ULKwmWzoLOIhIdLR6EeXhgC2QPEZEcETkUaA2kbBKEFzlPpeKklidx4qEncvv029n448bd7TuKd+x+fVCtFJTH93gygBo1YNSo2CWEouviOZFzY3Fr1lScbQm4S0QWisinQF/gKgC1BbJfBBYD/wJ+q6opywX1IuepVIgII/uNZP3W9dwz857d7S6z8rwjz6PFAS2Sbe7xVDmihQBcVRQ3BeH55ysmbJkIVb1IVTuoaqGqnq6qayKf/Vltwey2qjo5lXZkvMiJSEsReVxExse11xaReSJyWrps86SHro27cm77c7n3o3tZs8n+bzZuM6/ulFYpnVfq8WQ0HTvasxO566+HW25Jnz2ZQEpFTkTGich3IvJZXHv/YKb7MhG5trR9qOpyVb04wUfXYC6vZz/kjhPuYHvxdm6bdhuwf86R83gcnTtb0Wg3ry46dSAVi9tWJlLtyT2BzWjfTTCz/SHgVOAI4DwROUJEOojIG3GPg0vuEkSkHxbPLfsaLJ4qxWEHHsavjvoVj81/jC/Wf7F7fM4nnXj2R+bNg8WLw/f5+VZlBUquiLC/kVKRU9XpwIa45m7AssBD2w48D5yhqgtV9bS4x3dJdt0X6AGcDwwTSTAz2FPluem4m8itlssNU2/YHa70npxnf0QkdnFbEahb117v755ctT132ec0Ab6NvF8JdE/WWUTqYxMJO4vIdar6F1W9IfhsKPB/wTyM+O0uBS4FqFGeFSU9GUvDOg35Q68/cOu0W2lU24r5+bqVHo/hfvb2d08uHSKXaFGQpLXFVHU98Osknz1RynZjgDEAtWvXrvq1y/ZTru55NaPnjubhuQ8D3pPzeBxO5PZ3Ty4dYb4Kne3uqdrUzanLzcfdzK7Amfdjch6P4UQuWhFlfyQdIjcHaC0ih4pIDWzJhYlpsMNTRRh21DBa5beielZ1cqvlptscjycjcCsWxK9tt7+R0nCliDwH9AEaiMhK4BZVfVxEfgdMwYp3jgtmwHs8P4ka2TV4atBTzPx2ZrpN8XgyhmefhUcfhQ4d0m1JetkvltqpXbu2bt68Od1meDweT6VCRLaoau1021EefOq9x+PxeKosXuQ8Ho/HU2XxIufxeDyeKosXOY/H4/FUWbzIeTwej6fK4kXO6hAoXwAACWJJREFU4/F4PFUWL3Iej8fjqbJ4kfN4PB5PlWW/mAwuIruAreXYRTVg5z4yJx1Udvuh8p9DZbcfKv85VHb7oeLPoaaqVmpnaL8QufIiInNVtWu67fipVHb7ofKfQ2W3Hyr/OVR2+6FqnENFU6kV2uPxeDye0vAi5/F4PJ4qixe5sjEm3QaUk8puP1T+c6js9kPlP4fKbj9UjXOoUPyYnMfj8XiqLN6T83g8Hk+VxYucx+PxeKosXuQCRKS/iHwuIstE5NoEn+eIyAvB57NE5JCKt7J0ynAOQ0VknYgsCB6XpMPOZIjIOBH5TkQ+S/K5iMgDwfl9KiJdKtrG0iiD/X1EZGPk+t9c0TbuCRFpJiLvisgSEVkkIlck6JOx30MZ7c/o70FEckVktoh8EpzDrQn6ZPzvUcagqvv9A8gGvgRaAjWAT4Aj4vpcBjwSvB4CvJBuu3/COQwFHky3raWcw3FAF+CzJJ8PACYDAvQAZqXb5r20vw/wRrrt3MM5FABdgtd1gS8S/B1l7PdQRvsz+nsIrmud4HV1YBbQI65PRv8eZdLDe3JGN2CZqi5X1e3A88AZcX3OAJ4MXo8HThQRqUAb90RZziGjUdXpwIZSupwBPKXGR8ABIlJQMdbtmTLYn/Go6hpVnR+83gQsAZrEdcvY76GM9mc0wXX9IXhbPXjEZwhm+u9RxuBFzmgCfBt5v5KS/xi7+6jqTmAjUL9CrCsbZTkHgMFBiGm8iDSrGNP2GWU9x0ymZxCGmiwi7dNtTGkEIbDOmCcRpVJ8D6XYDxn+PYhItogsAL4D3lLVpN9Bhv4eZQxe5IxEd0Dxd05l6ZNOymLf68AhqloIvE14J1hZyPTvYE/MB1qoakfg78BrabYnKSJSB3gZuFJVi+I/TrBJRn0Pe7A/478HVS1W1U5AU6CbiBwZ1yXjv4NMwYucsRKIejVNgdXJ+ohINSCPzApN7fEcVHW9qm4L3j4GHFVBtu0ryvI9ZSyqWuTCUKo6CaguIg3SbFYJRKQ6JhDPquorCbpk9PewJ/sry/cAoKr/Ad4D+sd9lOm/RxmDFzljDtBaRA4VkRrYQO7EuD4TgV8Er88Cpmow6psh7PEc4sZNTsfGKyoTE4GfB9l9PYCNqrom3UaVFRFp5MZNRKQb9v+3Pr1WxRLY9ziwRFXvTdItY7+Hstif6d+DiBwkIgcEr2sC/YClcd0y/fcoY6iWbgMyAVXdKSK/A6ZgWYrjVHWRiNwGzFXVidg/ztMisgy7YxqSPotLUsZz+L2InI4t1bEBy7bMGETkOSzzrYGIrARuwQbdUdVHgElYZt8yYAvwy/RYmpgy2H8W8BsR2Ykt/TQkA3+YjgEuAhYGY0IA1wPNoVJ8D2WxP9O/hwLgSRHJxgT4RVV9ozL9HmUSvqyXx+PxeKosPlzp8Xg8niqLFzmPx+PxVFm8yHk8Ho+nyuJFzuPxeDxVFi9yHo/H46myeJHzZCQiUhypEr+gqlVZF5HOIjK2nPt4QkTOirw/T0RuKL91e2XDIZJk1YVIn4NE5F8VZZPHE8XPk/NkKluDskYJEZFqQc2+ysr1wB3xjeU8r/7AA+WyKgWo6joRWSMix6jqjHTb49m/8J6cp9Igth7eSyLyOvBm0PZHEZkTFJ2+NdL3BrG19d4WkedE5A9B+3si0jV43UBEvgpeZ4vI3ZF9/Spo7xNsM15ElorIs5FqGUeLyMyg0O9sEakrIu+LSKeIHTNEpDDuPOoChar6SfB+hIiMEZE3gacC7+h9EZkfPHoF/UREHhSRxSLyT+DgyD4F6ATMF5HjIx7wx4FddUTknWB/C0XkjGC7Q4LzGisinwXn1y+w+3+DiiDOxqdFZGrQPizB95PwGga8BlzwE752j6dceE/Ok6nUjFSsWKGqg4LXPTGB2CAiJwOtsWWGBJgoIscBm7EKEJ2xv/H5wLw9HO9irDzV0SKSA8wIRIdgP+2x+owzgGNEZDbwAnCuqs4RkXpY9YyxWCWZK0WkDZCjqp/GHasrEB/iOwrorapbRaQWcJKq/igirYHngm0GAW2BDkBDYDEwLmLjJ6qqgaD/VlVniBUq/jHoM0hVi8TqNH4kIq7s22HA2cClWHm484HeWOm364Ezg36F2PpxtYGPA6Hd4zVU1RXAXBJ4rh5PqvEi58lUkoUr31JVV4j25ODxcfC+DiZ6dYFXVXULQOTHvDROBgojY1x5wb62A7NVdWWwrwXAIdjSJmtUdQ5Y0d/g85eAm0Tkj8B/A08kOFYBsC6ubaKqbg1eVwceDDzCYqBN0H4c8JyqFgOrRWRqZPv+2EKmYEJ8r4g8C7yiqivFihbfGdwE7MKWamkY9F+hqgsD+xcB7wRiuTA4V8eEwMatIvIudnOxIPJ5smu4AlsypnGCa+HxpBQvcp7KxubIawH+oqqPRjuIyJUkX3ZkJ2GYPjduX5er6pS4ffUBtkWairH/G0l0DFXdIiJvYYtanoN5YPFsjTs2xJ7XVcBaoGNg64+Rz5Kd18nA4MCGkYGXNQDz2PphHthBwFGquiMI0zoboue3K/J+F7G/EfHHTrQcVYlrGJCLnbfHU6H4MTlPZWYK8N9BSA4RaSIiBwPTgUEiUjMY/xoY2eYrwiWGzorb128CjwcRaSMitUs59lKgsYgcHfSvK7bkCVjI8gFgTsTrjLIECxEmIw/zEndhxYazg/bpwJBg7KsA6BscOw+opqrrg/etVHWhqo7CwoTtgn1+FwhcX6BFKcdPxhkikisi9bFC1HPiPi/tGrahZIjW40k53pPzVFpU9U0RORz4MMgF+QG4UFXni8gLWCjta+D9yGb3AC+KyEVANNw3FgvNzQ+SONYRjkUlOvZ2ETkX+LvYcihbsSVRflDVeSJSBPxPkm2XikieiNRV1U0JujwMvCwiZwPvEnp5rwInAAuBL4BpQftJ2CK4jisDISvGxu0mYyHc10VkbnBd4pduKQuzgX9iFf1vV9XVEju1o7Rr2DfY1uOpUPwqBJ4qj4iMwMTnngo6XmNsoct2gTeWqM9VwCZVLddcuWBfY4GxqvpRefdVyjFGUI5rKCLTgTNU9ft9apjHswd8uNLj2YeIyM+BWcANyQQuYDSxY2E/GVW9JJUCV15E5CDgXi9wnnTgPTmPx+PxVFm8J+fxeDyeKosXOY/H4/FUWbzIeTwej6fK4kXO4/F4PFUWL3Iej8fjqbL8P7yBv71OPBjUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = pl.figure()\n", + "pl.title('Digital filter frequency response')\n", + "ax1 = fig.add_subplot(111)\n", + "pl.semilogy(w, np.abs(h), 'b')\n", + "pl.ylabel('Amplitude (dB)', color='b')\n", + "pl.xlabel('Frequency (rad/sample)')\n", + "ax2 = ax1.twinx()\n", + "angles = np.unwrap(np.angle(h))\n", + "pl.plot(w, angles, 'g')\n", + "pl.ylabel('Angle (radians)', color='g')\n", + "pl.grid()\n", + "pl.axis('tight')\n", + "pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'linspace' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-11-aa5ebe4e8c59>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlinspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m512\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mgd_samples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnumtaps\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mones_like\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mgd_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnumtaps\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mgd_\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'linspace' is not defined" + ] + } + ], + "source": [ + "w = linspace(0.0,np.pi,512)\n", + "gd_samples = (numtaps/2 - 1)*ones_like(w)\n", + "gd_time = (numtaps/2 - 1)\n", + "gd_" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "a,b = sps.iirdesign(cutoff, cutoff+width, gpass=3.0, gstop=50.0, analog=False, ftype='butter')" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2.94794932e-09, 2.06356452e-08, 6.19069356e-08, 1.03178226e-07,\n", + " 1.03178226e-07, 6.19069356e-08, 2.06356452e-08, 2.94794932e-09])" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1. , -6.43513372, 17.7687487 , -27.28864598,\n", + " 25.17318559, -13.94787923, 4.29785921, -0.56813419])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "ts = np.asarray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y = np.asarray([0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "tout, yout = sps.dimpulse((a,b,0.1), t=np.arange(0,99,0.1))" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ,\n", + " 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1,\n", + " 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2,\n", + " 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4. , 4.1, 4.2, 4.3,\n", + " 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2, 5.3, 5.4,\n", + " 5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2, 6.3, 6.4, 6.5,\n", + " 6.6, 6.7, 6.8, 6.9, 7. , 7.1, 7.2, 7.3, 7.4, 7.5, 7.6,\n", + " 7.7, 7.8, 7.9, 8. , 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7,\n", + " 8.8, 8.9, 9. , 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8,\n", + " 9.9, 10. , 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9,\n", + " 11. , 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. ,\n", + " 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13. , 13.1,\n", + " 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14. , 14.1, 14.2,\n", + " 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 15. , 15.1, 15.2, 15.3,\n", + " 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 16. , 16.1, 16.2, 16.3, 16.4,\n", + " 16.5, 16.6, 16.7, 16.8, 16.9, 17. , 17.1, 17.2, 17.3, 17.4, 17.5,\n", + " 17.6, 17.7, 17.8, 17.9, 18. , 18.1, 18.2, 18.3, 18.4, 18.5, 18.6,\n", + " 18.7, 18.8, 18.9, 19. , 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7,\n", + " 19.8, 19.9, 20. , 20.1, 20.2, 20.3, 20.4, 20.5, 20.6, 20.7, 20.8,\n", + " 20.9, 21. , 21.1, 21.2, 21.3, 21.4, 21.5, 21.6, 21.7, 21.8, 21.9,\n", + " 22. , 22.1, 22.2, 22.3, 22.4, 22.5, 22.6, 22.7, 22.8, 22.9, 23. ,\n", + " 23.1, 23.2, 23.3, 23.4, 23.5, 23.6, 23.7, 23.8, 23.9, 24. , 24.1,\n", + " 24.2, 24.3, 24.4, 24.5, 24.6, 24.7, 24.8, 24.9, 25. , 25.1, 25.2,\n", + " 25.3, 25.4, 25.5, 25.6, 25.7, 25.8, 25.9, 26. , 26.1, 26.2, 26.3,\n", + " 26.4, 26.5, 26.6, 26.7, 26.8, 26.9, 27. , 27.1, 27.2, 27.3, 27.4,\n", + " 27.5, 27.6, 27.7, 27.8, 27.9, 28. , 28.1, 28.2, 28.3, 28.4, 28.5,\n", + " 28.6, 28.7, 28.8, 28.9, 29. , 29.1, 29.2, 29.3, 29.4, 29.5, 29.6,\n", + " 29.7, 29.8, 29.9, 30. , 30.1, 30.2, 30.3, 30.4, 30.5, 30.6, 30.7,\n", + " 30.8, 30.9, 31. , 31.1, 31.2, 31.3, 31.4, 31.5, 31.6, 31.7, 31.8,\n", + " 31.9, 32. , 32.1, 32.2, 32.3, 32.4, 32.5, 32.6, 32.7, 32.8, 32.9,\n", + " 33. , 33.1, 33.2, 33.3, 33.4, 33.5, 33.6, 33.7, 33.8, 33.9, 34. ,\n", + " 34.1, 34.2, 34.3, 34.4, 34.5, 34.6, 34.7, 34.8, 34.9, 35. , 35.1,\n", + " 35.2, 35.3, 35.4, 35.5, 35.6, 35.7, 35.8, 35.9, 36. , 36.1, 36.2,\n", + " 36.3, 36.4, 36.5, 36.6, 36.7, 36.8, 36.9, 37. , 37.1, 37.2, 37.3,\n", + " 37.4, 37.5, 37.6, 37.7, 37.8, 37.9, 38. , 38.1, 38.2, 38.3, 38.4,\n", + " 38.5, 38.6, 38.7, 38.8, 38.9, 39. , 39.1, 39.2, 39.3, 39.4, 39.5,\n", + " 39.6, 39.7, 39.8, 39.9, 40. , 40.1, 40.2, 40.3, 40.4, 40.5, 40.6,\n", + " 40.7, 40.8, 40.9, 41. , 41.1, 41.2, 41.3, 41.4, 41.5, 41.6, 41.7,\n", + " 41.8, 41.9, 42. , 42.1, 42.2, 42.3, 42.4, 42.5, 42.6, 42.7, 42.8,\n", + " 42.9, 43. , 43.1, 43.2, 43.3, 43.4, 43.5, 43.6, 43.7, 43.8, 43.9,\n", + " 44. , 44.1, 44.2, 44.3, 44.4, 44.5, 44.6, 44.7, 44.8, 44.9, 45. ,\n", + " 45.1, 45.2, 45.3, 45.4, 45.5, 45.6, 45.7, 45.8, 45.9, 46. , 46.1,\n", + " 46.2, 46.3, 46.4, 46.5, 46.6, 46.7, 46.8, 46.9, 47. , 47.1, 47.2,\n", + " 47.3, 47.4, 47.5, 47.6, 47.7, 47.8, 47.9, 48. , 48.1, 48.2, 48.3,\n", + " 48.4, 48.5, 48.6, 48.7, 48.8, 48.9, 49. , 49.1, 49.2, 49.3, 49.4,\n", + " 49.5, 49.6, 49.7, 49.8, 49.9, 50. , 50.1, 50.2, 50.3, 50.4, 50.5,\n", + " 50.6, 50.7, 50.8, 50.9, 51. , 51.1, 51.2, 51.3, 51.4, 51.5, 51.6,\n", + " 51.7, 51.8, 51.9, 52. , 52.1, 52.2, 52.3, 52.4, 52.5, 52.6, 52.7,\n", + " 52.8, 52.9, 53. , 53.1, 53.2, 53.3, 53.4, 53.5, 53.6, 53.7, 53.8,\n", + " 53.9, 54. , 54.1, 54.2, 54.3, 54.4, 54.5, 54.6, 54.7, 54.8, 54.9,\n", + " 55. , 55.1, 55.2, 55.3, 55.4, 55.5, 55.6, 55.7, 55.8, 55.9, 56. ,\n", + " 56.1, 56.2, 56.3, 56.4, 56.5, 56.6, 56.7, 56.8, 56.9, 57. , 57.1,\n", + " 57.2, 57.3, 57.4, 57.5, 57.6, 57.7, 57.8, 57.9, 58. , 58.1, 58.2,\n", + " 58.3, 58.4, 58.5, 58.6, 58.7, 58.8, 58.9, 59. , 59.1, 59.2, 59.3,\n", + " 59.4, 59.5, 59.6, 59.7, 59.8, 59.9, 60. , 60.1, 60.2, 60.3, 60.4,\n", + " 60.5, 60.6, 60.7, 60.8, 60.9, 61. , 61.1, 61.2, 61.3, 61.4, 61.5,\n", + " 61.6, 61.7, 61.8, 61.9, 62. , 62.1, 62.2, 62.3, 62.4, 62.5, 62.6,\n", + " 62.7, 62.8, 62.9, 63. , 63.1, 63.2, 63.3, 63.4, 63.5, 63.6, 63.7,\n", + " 63.8, 63.9, 64. , 64.1, 64.2, 64.3, 64.4, 64.5, 64.6, 64.7, 64.8,\n", + " 64.9, 65. , 65.1, 65.2, 65.3, 65.4, 65.5, 65.6, 65.7, 65.8, 65.9,\n", + " 66. , 66.1, 66.2, 66.3, 66.4, 66.5, 66.6, 66.7, 66.8, 66.9, 67. ,\n", + " 67.1, 67.2, 67.3, 67.4, 67.5, 67.6, 67.7, 67.8, 67.9, 68. , 68.1,\n", + " 68.2, 68.3, 68.4, 68.5, 68.6, 68.7, 68.8, 68.9, 69. , 69.1, 69.2,\n", + " 69.3, 69.4, 69.5, 69.6, 69.7, 69.8, 69.9, 70. , 70.1, 70.2, 70.3,\n", + " 70.4, 70.5, 70.6, 70.7, 70.8, 70.9, 71. , 71.1, 71.2, 71.3, 71.4,\n", + " 71.5, 71.6, 71.7, 71.8, 71.9, 72. , 72.1, 72.2, 72.3, 72.4, 72.5,\n", + " 72.6, 72.7, 72.8, 72.9, 73. , 73.1, 73.2, 73.3, 73.4, 73.5, 73.6,\n", + " 73.7, 73.8, 73.9, 74. , 74.1, 74.2, 74.3, 74.4, 74.5, 74.6, 74.7,\n", + " 74.8, 74.9, 75. , 75.1, 75.2, 75.3, 75.4, 75.5, 75.6, 75.7, 75.8,\n", + " 75.9, 76. , 76.1, 76.2, 76.3, 76.4, 76.5, 76.6, 76.7, 76.8, 76.9,\n", + " 77. , 77.1, 77.2, 77.3, 77.4, 77.5, 77.6, 77.7, 77.8, 77.9, 78. ,\n", + " 78.1, 78.2, 78.3, 78.4, 78.5, 78.6, 78.7, 78.8, 78.9, 79. , 79.1,\n", + " 79.2, 79.3, 79.4, 79.5, 79.6, 79.7, 79.8, 79.9, 80. , 80.1, 80.2,\n", + " 80.3, 80.4, 80.5, 80.6, 80.7, 80.8, 80.9, 81. , 81.1, 81.2, 81.3,\n", + " 81.4, 81.5, 81.6, 81.7, 81.8, 81.9, 82. , 82.1, 82.2, 82.3, 82.4,\n", + " 82.5, 82.6, 82.7, 82.8, 82.9, 83. , 83.1, 83.2, 83.3, 83.4, 83.5,\n", + " 83.6, 83.7, 83.8, 83.9, 84. , 84.1, 84.2, 84.3, 84.4, 84.5, 84.6,\n", + " 84.7, 84.8, 84.9, 85. , 85.1, 85.2, 85.3, 85.4, 85.5, 85.6, 85.7,\n", + " 85.8, 85.9, 86. , 86.1, 86.2, 86.3, 86.4, 86.5, 86.6, 86.7, 86.8,\n", + " 86.9, 87. , 87.1, 87.2, 87.3, 87.4, 87.5, 87.6, 87.7, 87.8, 87.9,\n", + " 88. , 88.1, 88.2, 88.3, 88.4, 88.5, 88.6, 88.7, 88.8, 88.9, 89. ,\n", + " 89.1, 89.2, 89.3, 89.4, 89.5, 89.6, 89.7, 89.8, 89.9, 90. , 90.1,\n", + " 90.2, 90.3, 90.4, 90.5, 90.6, 90.7, 90.8, 90.9, 91. , 91.1, 91.2,\n", + " 91.3, 91.4, 91.5, 91.6, 91.7, 91.8, 91.9, 92. , 92.1, 92.2, 92.3,\n", + " 92.4, 92.5, 92.6, 92.7, 92.8, 92.9, 93. , 93.1, 93.2, 93.3, 93.4,\n", + " 93.5, 93.6, 93.7, 93.8, 93.9, 94. , 94.1, 94.2, 94.3, 94.4, 94.5,\n", + " 94.6, 94.7, 94.8, 94.9, 95. , 95.1, 95.2, 95.3, 95.4, 95.5, 95.6,\n", + " 95.7, 95.8, 95.9, 96. , 96.1, 96.2, 96.3, 96.4, 96.5, 96.6, 96.7,\n", + " 96.8, 96.9, 97. , 97.1, 97.2, 97.3, 97.4, 97.5, 97.6, 97.7, 97.8,\n", + " 97.9, 98. , 98.1, 98.2, 98.3, 98.4, 98.5, 98.6, 98.7, 98.8, 98.9])" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tout" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([[ 2.94794932e-09],\n", + " [ 3.96060933e-08],\n", + " [ 2.64396071e-07],\n", + " [ 1.18129713e-06],\n", + " [ 4.01358323e-06],\n", + " [ 1.11587968e-05],\n", + " [ 2.66326925e-05],\n", + " [ 5.64174864e-05],\n", + " [ 1.08660984e-04],\n", + " [ 1.93701617e-04],\n", + " [ 3.23916056e-04],\n", + " [ 5.13401949e-04],\n", + " [ 7.77519340e-04],\n", + " [ 1.13232135e-03],\n", + " [ 1.59390845e-03],\n", + " [ 2.17774164e-03],\n", + " [ 2.89794922e-03],\n", + " [ 3.76665894e-03],\n", + " [ 4.79338394e-03],\n", + " [ 5.98448654e-03],\n", + " [ 7.34273901e-03],\n", + " [ 8.86699534e-03],\n", + " [ 1.05519834e-02],\n", + " [ 1.23882219e-02],\n", + " [ 1.43620611e-02],\n", + " [ 1.64558455e-02],\n", + " [ 1.86481877e-02],\n", + " [ 2.09143458e-02],\n", + " [ 2.32266888e-02],\n", + " [ 2.55552376e-02],\n", + " [ 2.78682631e-02],\n", + " [ 3.01329264e-02],\n", + " [ 3.23159424e-02],\n", + " [ 3.43842520e-02],\n", + " [ 3.63056839e-02],\n", + " [ 3.80495940e-02],\n", + " [ 3.95874653e-02],\n", + " [ 4.08934583e-02],\n", + " [ 4.19448999e-02],\n", + " [ 4.27227032e-02],\n", + " [ 4.32117095e-02],\n", + " [ 4.34009496e-02],\n", + " [ 4.32838207e-02],\n", + " [ 4.28581775e-02],\n", + " [ 4.21263386e-02],\n", + " [ 4.10950117e-02],\n", + " [ 3.97751397e-02],\n", + " [ 3.81816753e-02],\n", + " [ 3.63332887e-02],\n", + " [ 3.42520177e-02],\n", + " [ 3.19628675e-02],\n", + " [ 2.94933702e-02],\n", + " [ 2.68731118e-02],\n", + " [ 2.41332378e-02],\n", + " [ 2.13059465e-02],\n", + " [ 1.84239784e-02],\n", + " [ 1.55201124e-02],\n", + " [ 1.26266753e-02],\n", + " [ 9.77507452e-03],\n", + " [ 6.99535909e-03],\n", + " [ 4.31581716e-03],\n", + " [ 1.76261390e-03],\n", + " [-6.40524902e-04],\n", + " [-2.87258037e-03],\n", + " [-4.91545668e-03],\n", + " [-6.75414426e-03],\n", + " [-8.37682960e-03],\n", + " [-9.77495188e-03],\n", + " [-1.09432079e-02],\n", + " [-1.18795071e-02],\n", + " [-1.25848796e-02],\n", + " [-1.30633409e-02],\n", + " [-1.33217163e-02],\n", + " [-1.33694309e-02],\n", + " [-1.32182690e-02],\n", + " [-1.28821076e-02],\n", + " [-1.23766312e-02],\n", + " [-1.17190299e-02],\n", + " [-1.09276904e-02],\n", + " [-1.00218806e-02],\n", + " [-9.02143675e-03],\n", + " [-7.94645498e-03],\n", + " [-6.81699371e-03],\n", + " [-5.65278982e-03],\n", + " [-4.47299281e-03],\n", + " [-3.29591998e-03],\n", + " [-2.13883545e-03],\n", + " [-1.01775527e-03],\n", + " [ 5.27197842e-05],\n", + " [ 1.05954238e-03],\n", + " [ 1.99132712e-03],\n", + " [ 2.83842920e-03],\n", + " [ 3.59299339e-03],\n", + " [ 4.24897413e-03],\n", + " [ 4.80212789e-03],\n", + " [ 5.24997915e-03],\n", + " [ 5.59176197e-03],\n", + " [ 5.82833918e-03],\n", + " [ 5.96210153e-03],\n", + " [ 5.99684934e-03],\n", + " [ 5.93765939e-03],\n", + " [ 5.79073967e-03],\n", + " [ 5.56327494e-03],\n", + " [ 5.26326581e-03],\n", + " [ 4.89936414e-03],\n", + " [ 4.48070743e-03],\n", + " [ 4.01675474e-03],\n", + " [ 3.51712656e-03],\n", + " [ 2.99145080e-03],\n", + " [ 2.44921696e-03],\n", + " [ 1.89964019e-03],\n", + " [ 1.35153682e-03],\n", + " [ 8.13212675e-04],\n", + " [ 2.92365040e-04],\n", + " [-2.04000784e-04],\n", + " [-6.69639970e-04],\n", + " [-1.09912141e-03],\n", + " [-1.48786574e-03],\n", + " [-1.83216834e-03],\n", + " [-2.12920787e-03],\n", + " [-2.37704084e-03],\n", + " [-2.57458314e-03],\n", + " [-2.72157956e-03],\n", + " [-2.81856229e-03],\n", + " [-2.86679964e-03],\n", + " [-2.86823646e-03],\n", + " [-2.82542733e-03],\n", + " [-2.74146424e-03],\n", + " [-2.61989987e-03],\n", + " [-2.46466810e-03],\n", + " [-2.28000299e-03],\n", + " [-2.07035760e-03],\n", + " [-1.84032386e-03],\n", + " [-1.59455473e-03],\n", + " [-1.33768959e-03],\n", + " [-1.07428400e-03],\n", + " [-8.08744442e-04],\n", + " [-5.45269013e-04],\n", + " [-2.87794472e-04],\n", + " [-3.99501844e-05],\n", + " [ 1.94980718e-04],\n", + " [ 4.14092759e-04],\n", + " [ 6.14882052e-04],\n", + " [ 7.95262775e-04],\n", + " [ 9.53576344e-04],\n", + " [ 1.08859355e-03],\n", + " [ 1.19950998e-03],\n", + " [ 1.28593520e-03],\n", + " [ 1.34787619e-03],\n", + " [ 1.38571553e-03],\n", + " [ 1.40018510e-03],\n", + " [ 1.39233579e-03],\n", + " [ 1.36350398e-03],\n", + " [ 1.31527553e-03],\n", + " [ 1.24944779e-03],\n", + " [ 1.16799051e-03],\n", + " [ 1.07300624e-03],\n", + " [ 9.66690824e-04],\n", + " [ 8.51294582e-04],\n", + " [ 7.29084826e-04],\n", + " [ 6.02310123e-04],\n", + " [ 4.73166790e-04],\n", + " [ 3.43768025e-04],\n", + " [ 2.16115980e-04],\n", + " [ 9.20770665e-05],\n", + " [-2.66393191e-05],\n", + " [-1.38498498e-04],\n", + " [-2.42154573e-04],\n", + " [-3.36460825e-04],\n", + " [-4.20476491e-04],\n", + " [-4.93470008e-04],\n", + " [-5.54918875e-04],\n", + " [-6.04506311e-04],\n", + " [-6.42114930e-04],\n", + " [-6.67817713e-04],\n", + " [-6.81866533e-04],\n", + " [-6.84678570e-04],\n", + " [-6.76820917e-04],\n", + " [-6.58993729e-04],\n", + " [-6.32012236e-04],\n", + " [-5.96787978e-04],\n", + " [-5.54309568e-04],\n", + " [-5.05623331e-04],\n", + " [-4.51814094e-04],\n", + " [-3.93986441e-04],\n", + " [-3.33246677e-04],\n", + " [-2.70685746e-04],\n", + " [-2.07363313e-04],\n", + " [-1.44293193e-04],\n", + " [-8.24302691e-05],\n", + " [-2.26590366e-05],\n", + " [ 3.42161603e-05],\n", + " [ 8.74791253e-05],\n", + " [ 1.36508020e-04],\n", + " [ 1.80779789e-04],\n", + " [ 2.19872827e-04],\n", + " [ 2.53467942e-04],\n", + " [ 2.81347699e-04],\n", + " [ 3.03394228e-04],\n", + " [ 3.19585634e-04],\n", + " [ 3.29991116e-04],\n", + " [ 3.34764961e-04],\n", + " [ 3.34139556e-04],\n", + " [ 3.28417578e-04],\n", + " [ 3.17963528e-04],\n", + " [ 3.03194783e-04],\n", + " [ 2.84572312e-04],\n", + " [ 2.62591231e-04],\n", + " [ 2.37771353e-04],\n", + " [ 2.10647857e-04],\n", + " [ 1.81762242e-04],\n", + " [ 1.51653671e-04],\n", + " [ 1.20850814e-04],\n", + " [ 8.98643029e-05],\n", + " [ 5.91798730e-05],\n", + " [ 2.92522523e-05],\n", + " [ 4.99865603e-07],\n", + " [-2.66996204e-05],\n", + " [-5.20128826e-05],\n", + " [-7.51536523e-05],\n", + " [-9.58845564e-05],\n", + " [-1.14018107e-04],\n", + " [-1.29416873e-04],\n", + " [-1.41992872e-04],\n", + " [-1.51706237e-04],\n", + " [-1.58563217e-04],\n", + " [-1.62613577e-04],\n", + " [-1.63947474e-04],\n", + " [-1.62691876e-04],\n", + " [-1.59006617e-04],\n", + " [-1.53080161e-04],\n", + " [-1.45125149e-04],\n", + " [-1.35373825e-04],\n", + " [-1.24073408e-04],\n", + " [-1.11481480e-04],\n", + " [-9.78614699e-05],\n", + " [-8.34782912e-05],\n", + " [-6.85941958e-05],\n", + " [-5.34648902e-05],\n", + " [-3.83359659e-05],\n", + " [-2.34396771e-05],\n", + " [-8.99209963e-06],\n", + " [ 4.80930904e-06],\n", + " [ 1.77877303e-05],\n", + " [ 2.97885790e-05],\n", + " [ 4.06806698e-05],\n", + " [ 5.03569613e-05],\n", + " [ 5.87348886e-05],\n", + " [ 6.57563025e-05],\n", + " [ 7.13870369e-05],\n", + " [ 7.56161314e-05],\n", + " [ 7.84547400e-05],\n", + " [ 7.99347593e-05],\n", + " [ 8.01072132e-05],\n", + " [ 7.90404306e-05],\n", + " [ 7.68180578e-05],\n", + " [ 7.35369422e-05],\n", + " [ 6.93049288e-05],\n", + " [ 6.42386081e-05],\n", + " [ 5.84610506e-05],\n", + " [ 5.20995659e-05],\n", + " [ 4.52835182e-05],\n", + " [ 3.81422283e-05],\n", + " [ 3.08029906e-05],\n", + " [ 2.33892288e-05],\n", + " [ 1.60188110e-05],\n", + " [ 8.80254179e-06],\n", + " [ 1.84284433e-06],\n", + " [-4.76735708e-06],\n", + " [-1.09455481e-05],\n", + " [-1.66203260e-05],\n", + " [-2.17318930e-05],\n", + " [-2.62323441e-05],\n", + " [-3.00857571e-05],\n", + " [-3.32680938e-05],\n", + " [-3.57669238e-05],\n", + " [-3.75809851e-05],\n", + " [-3.87195976e-05],\n", + " [-3.92019455e-05],\n", + " [-3.90562469e-05],\n", + " [-3.83188308e-05],\n", + " [-3.70331386e-05],\n", + " [-3.52486713e-05],\n", + " [-3.30199005e-05],\n", + " [-3.04051623e-05],\n", + " [-2.74655518e-05],\n", + " [-2.42638356e-05],\n", + " [-2.08633971e-05],\n", + " [-1.73272301e-05],\n", + " [-1.37169929e-05],\n", + " [-1.00921337e-05],\n", + " [-6.50909854e-06],\n", + " [-3.02062703e-06],\n", + " [ 3.24855777e-07],\n", + " [ 3.48374880e-06],\n", + " [ 6.41768244e-06],\n", + " [ 9.09382368e-06],\n", + " [ 1.14850796e-05],\n", + " [ 1.35702019e-05],\n", + " [ 1.53337956e-05],\n", + " [ 1.67662380e-05],\n", + " [ 1.78635125e-05],\n", + " [ 1.86269668e-05],\n", + " [ 1.90630003e-05],\n", + " [ 1.91826920e-05],\n", + " [ 1.90013761e-05],\n", + " [ 1.85381759e-05],\n", + " [ 1.78155045e-05],\n", + " [ 1.68585417e-05],\n", + " [ 1.56946977e-05],\n", + " [ 1.43530711e-05],\n", + " [ 1.28639102e-05],\n", + " [ 1.12580867e-05],\n", + " [ 9.56658741e-06],\n", + " [ 7.82003250e-06],\n", + " [ 6.04822530e-06],\n", + " [ 4.27973898e-06],\n", + " [ 2.54154472e-06],\n", + " [ 8.58684540e-07],\n", + " [-7.46008419e-07],\n", + " [-2.25214057e-06],\n", + " [-3.64193854e-06],\n", + " [-4.90037983e-06],\n", + " [-6.01527408e-06],\n", + " [-6.97729657e-06],\n", + " [-7.77997575e-06],\n", + " [-8.41963776e-06],\n", + " [-8.89531097e-06],\n", + " [-9.20859417e-06],\n", + " [-9.36349256e-06],\n", + " [-9.36622558e-06],\n", + " [-9.22501125e-06],\n", + " [-8.94983149e-06],\n", + " [-8.55218315e-06],\n", + " [-8.04481926e-06],\n", + " [-7.44148501e-06],\n", + " [-6.75665289e-06],\n", + " [-6.00526103e-06],\n", + " [-5.20245855e-06],\n", + " [-4.36336154e-06],\n", + " [-3.50282276e-06],\n", + " [-2.63521793e-06],\n", + " [-1.77425090e-06],\n", + " [-9.32779697e-07],\n", + " [-1.22665095e-07],\n", + " [ 6.45357404e-07],\n", + " [ 1.36178129e-06],\n", + " [ 2.01840827e-06],\n", + " [ 2.60840314e-06],\n", + " [ 3.12632476e-06],\n", + " [ 3.56813383e-06],\n", + " [ 3.93117892e-06],\n", + " [ 4.21416174e-06],\n", + " [ 4.41708370e-06],\n", + " [ 4.54117528e-06],\n", + " [ 4.58881047e-06],\n", + " [ 4.56340818e-06],\n", + " [ 4.46932311e-06],\n", + " [ 4.31172804e-06],\n", + " [ 4.09649002e-06],\n", + " [ 3.83004261e-06],\n", + " [ 3.51925636e-06],\n", + " [ 3.17130959e-06],\n", + " [ 2.79356147e-06],\n", + " [ 2.39342926e-06],\n", + " [ 1.97827123e-06],\n", + " [ 1.55527692e-06],\n", + " [ 1.13136590e-06],\n", + " [ 7.13096217e-07],\n", + " [ 3.06583307e-07],\n", + " [-8.25698570e-08],\n", + " [-4.49330971e-07],\n", + " [-7.89284681e-07],\n", + " [-1.09866689e-06],\n", + " [-1.37438717e-06],\n", + " [-1.61403969e-06],\n", + " [-1.81590293e-06],\n", + " [-1.97892902e-06],\n", + " [-2.10272322e-06],\n", + " [-2.18751454e-06],\n", + " [-2.23411839e-06],\n", + " [-2.24389217e-06],\n", + " [-2.21868508e-06],\n", + " [-2.16078299e-06],\n", + " [-2.07284963e-06],\n", + " [-1.95786524e-06],\n", + " [-1.81906355e-06],\n", + " [-1.65986847e-06],\n", + " [-1.48383111e-06],\n", + " [-1.29456841e-06],\n", + " [-1.09570401e-06],\n", + " [-8.90812280e-07],\n", + " [-6.83366086e-07],\n", + " [-4.76688999e-07],\n", + " [-2.73912369e-07],\n", + " [-7.79376827e-08],\n", + " [ 1.08595502e-07],\n", + " [ 2.83335867e-07],\n", + " [ 4.44240783e-07],\n", + " [ 5.89590916e-07],\n", + " [ 7.17999074e-07],\n", + " [ 8.28413475e-07],\n", + " [ 9.20115687e-07],\n", + " [ 9.92713565e-07],\n", + " [ 1.04612956e-06],\n", + " [ 1.08058482e-06],\n", + " [ 1.09657960e-06],\n", + " [ 1.09487043e-06],\n", + " [ 1.07644457e-06],\n", + " [ 1.04249234e-06],\n", + " [ 9.94377814e-07],\n", + " [ 9.33608474e-07],\n", + " [ 8.61804241e-07],\n", + " [ 7.80666529e-07],\n", + " [ 6.91947686e-07],\n", + " [ 5.97421333e-07],\n", + " [ 4.98853975e-07],\n", + " [ 3.97978268e-07],\n", + " [ 2.96468252e-07],\n", + " [ 1.95916837e-07],\n", + " [ 9.78157464e-08],\n", + " [ 3.53810784e-09],\n", + " [-8.56761880e-08],\n", + " [-1.68732293e-07],\n", + " [-2.44689337e-07],\n", + " [-3.12766515e-07],\n", + " [-3.72346383e-07],\n", + " [-4.22975475e-07],\n", + " [-4.64362360e-07],\n", + " [-4.96373321e-07],\n", + " [-5.19025849e-07],\n", + " [-5.32480164e-07],\n", + " [-5.37029008e-07],\n", + " [-5.33085958e-07],\n", + " [-5.21172516e-07],\n", + " [-5.01904244e-07],\n", + " [-4.75976208e-07],\n", + " [-4.44147990e-07],\n", + " [-4.07228527e-07],\n", + " [-3.66061006e-07],\n", + " [-3.21508069e-07],\n", + " [-2.74437502e-07],\n", + " [-2.25708642e-07],\n", + " [-1.76159635e-07],\n", + " [-1.26595725e-07],\n", + " [-7.77786725e-08],\n", + " [-3.04174198e-08],\n", + " [ 1.48399237e-08],\n", + " [ 5.74127314e-08],\n", + " [ 9.67931101e-08],\n", + " [ 1.32549750e-07],\n", + " [ 1.64330389e-07],\n", + " [ 1.91862929e-07],\n", + " [ 2.14955266e-07],\n", + " [ 2.33493889e-07],\n", + " [ 2.47441367e-07],\n", + " [ 2.56832786e-07],\n", + " [ 2.61771274e-07],\n", + " [ 2.62422731e-07],\n", + " [ 2.59009866e-07],\n", + " [ 2.51805701e-07],\n", + " [ 2.41126643e-07],\n", + " [ 2.27325274e-07],\n", + " [ 2.10782975e-07],\n", + " [ 1.91902502e-07],\n", + " [ 1.71100650e-07],\n", + " [ 1.48801086e-07],\n", + " [ 1.25427474e-07],\n", + " [ 1.01396970e-07],\n", + " [ 7.71141707e-08],\n", + " [ 5.29655831e-08],\n", + " [ 2.93146738e-08],\n", + " [ 6.49753809e-09],\n", + " [-1.51807738e-08],\n", + " [-3.54492548e-08],\n", + " [-5.40732540e-08],\n", + " [-7.08561057e-08],\n", + " [-8.56400866e-08],\n", + " [-9.83067240e-08],\n", + " [-1.08776483e-07],\n", + " [-1.17007876e-07],\n", + " [-1.22996030e-07],\n", + " [-1.26770781e-07],\n", + " [-1.28394324e-07],\n", + " [-1.27958507e-07],\n", + " [-1.25581810e-07],\n", + " [-1.21406077e-07],\n", + " [-1.15593076e-07],\n", + " [-1.08320929e-07],\n", + " [-9.97804917e-08],\n", + " [-9.01717306e-08],\n", + " [-7.97001605e-08],\n", + " [-6.85733863e-08],\n", + " [-5.69978031e-08],\n", + " [-4.51754926e-08],\n", + " [-3.33013551e-08],\n", + " [-2.15605067e-08],\n", + " [-1.01259685e-08],\n", + " [ 8.43333233e-10],\n", + " [ 1.12042419e-08],\n", + " [ 2.08307125e-08],\n", + " [ 2.96148179e-08],\n", + " [ 3.74674224e-08],\n", + " [ 4.43185300e-08],\n", + " [ 5.01173204e-08],\n", + " [ 5.48318878e-08],\n", + " [ 5.84487046e-08],\n", + " [ 6.09718312e-08],\n", + " [ 6.24218989e-08],\n", + " [ 6.28348935e-08],\n", + " [ 6.22607698e-08],\n", + " [ 6.07619258e-08],\n", + " [ 5.84115697e-08],\n", + " [ 5.52920089e-08],\n", + " [ 5.14928924e-08],\n", + " [ 4.71094361e-08],\n", + " [ 4.22406586e-08],\n", + " [ 3.69876544e-08],\n", + " [ 3.14519296e-08],\n", + " [ 2.57338206e-08],\n", + " [ 1.99310175e-08],\n", + " [ 1.41372078e-08],\n", + " [ 8.44085527e-09],\n", + " [ 2.92412535e-09],\n", + " [-2.33803440e-09],\n", + " [-7.27865322e-09],\n", + " [-1.18393323e-08],\n", + " [-1.59706760e-08],\n", + " [-1.96325618e-08],\n", + " [-2.27942524e-08],\n", + " [-2.54343588e-08],\n", + " [-2.75406605e-08],\n", + " [-2.91097962e-08],\n", + " [-3.01468340e-08],\n", + " [-3.06647360e-08],\n", + " [-3.06837313e-08],\n", + " [-3.02306102e-08],\n", + " [-2.93379573e-08],\n", + " [-2.80433366e-08],\n", + " [-2.63884442e-08],\n", + " [-2.44182441e-08],\n", + " [-2.21801006e-08],\n", + " [-1.97229204e-08],\n", + " [-1.70963184e-08],\n", + " [-1.43498173e-08],\n", + " [-1.15320925e-08],\n", + " [-8.69027055e-09],\n", + " [-5.86928976e-09],\n", + " [-3.11132917e-09],\n", + " [-4.55310624e-10],\n", + " [ 2.06352190e-09],\n", + " [ 4.41394380e-09],\n", + " [ 6.56901103e-09],\n", + " [ 8.50624139e-09],\n", + " [ 1.02077175e-08],\n", + " [ 1.16601143e-08],\n", + " [ 1.28546537e-08],\n", + " [ 1.37869935e-08],\n", + " [ 1.44570525e-08],\n", + " [ 1.48687805e-08],\n", + " [ 1.50298794e-08],\n", + " [ 1.49514807e-08],\n", + " [ 1.46477886e-08],\n", + " [ 1.41356953e-08],\n", + " [ 1.34343756e-08],\n", + " [ 1.25648684e-08],\n", + " [ 1.15496531e-08],\n", + " [ 1.04122255e-08],\n", + " [ 9.17668264e-09],\n", + " [ 7.86731961e-09],\n", + " [ 6.50824618e-09],\n", + " [ 5.12302653e-09],\n", + " [ 3.73434713e-09],\n", + " [ 2.36371609e-09],\n", + " [ 1.03119689e-09],\n", + " [-2.44821202e-10],\n", + " [-1.44781462e-09],\n", + " [-2.56327788e-09],\n", + " [-3.57883673e-09],\n", + " [-4.48432247e-09],\n", + " [-5.27180834e-09],\n", + " [-5.93560947e-09],\n", + " [-6.47224856e-09],\n", + " [-6.88038933e-09],\n", + " [-7.16074089e-09],\n", + " [-7.31593579e-09],\n", + " [-7.35038521e-09],\n", + " [-7.27011464e-09],\n", + " [-7.08258382e-09],\n", + " [-6.79649429e-09],\n", + " [-6.42158841e-09],\n", + " [-5.96844330e-09],\n", + " [-5.44826311e-09],\n", + " [-4.87267300e-09],\n", + " [-4.25351776e-09],\n", + " [-3.60266810e-09],\n", + " [-2.93183692e-09],\n", + " [-2.25240810e-09],\n", + " [-1.57527958e-09],\n", + " [-9.10722392e-10],\n", + " [-2.68257031e-10],\n", + " [ 3.43451984e-10],\n", + " [ 9.16682670e-10],\n", + " [ 1.44472297e-09],\n", + " [ 1.92191898e-09],\n", + " [ 2.34370432e-09],\n", + " [ 2.70661121e-09],\n", + " [ 3.00826404e-09],\n", + " [ 3.24735661e-09],\n", + " [ 3.42361409e-09],\n", + " [ 3.53774130e-09],\n", + " [ 3.59135866e-09],\n", + " [ 3.58692762e-09],\n", + " [ 3.52766726e-09],\n", + " [ 3.41746369e-09],\n", + " [ 3.26077420e-09],\n", + " [ 3.06252783e-09],\n", + " [ 2.82802406e-09],\n", + " [ 2.56283137e-09],\n", + " [ 2.27268714e-09],\n", + " [ 1.96340036e-09],\n", + " [ 1.64075862e-09],\n", + " [ 1.31044034e-09],\n", + " [ 9.77933595e-10],\n", + " [ 6.48462130e-10],\n", + " [ 3.26919535e-10],\n", + " [ 1.78120277e-11],\n", + " [-2.74789697e-10],\n", + " [-5.47289326e-10],\n", + " [-7.96594391e-10],\n", + " [-1.02013640e-09],\n", + " [-1.21588181e-09],\n", + " [-1.38233425e-09],\n", + " [-1.51852829e-09],\n", + " [-1.62401545e-09],\n", + " [-1.69884307e-09],\n", + " [-1.74352661e-09],\n", + " [-1.75901636e-09],\n", + " [-1.74665921e-09],\n", + " [-1.70815651e-09],\n", + " [-1.64551864e-09],\n", + " [-1.56101740e-09],\n", + " [-1.45713693e-09],\n", + " [-1.33652408e-09],\n", + " [-1.20193887e-09],\n", + " [-1.05620606e-09],\n", + " [-9.02168180e-10],\n", + " [-7.42640999e-10],\n", + " [-5.80371699e-10],\n", + " [-4.18000438e-10],\n", + " [-2.58025627e-10],\n", + " [-1.02773262e-10],\n", + " [ 4.56294262e-11],\n", + " [ 1.85275842e-10],\n", + " [ 3.14497319e-10],\n", + " [ 4.31875824e-10],\n", + " [ 5.36252125e-10],\n", + " [ 6.26729536e-10],\n", + " [ 7.02673435e-10],\n", + " [ 7.63706783e-10],\n", + " [ 8.09701926e-10],\n", + " [ 8.40769021e-10],\n", + " [ 8.57241435e-10],\n", + " [ 8.59658509e-10],\n", + " [ 8.48746100e-10],\n", + " [ 8.25395306e-10],\n", + " [ 7.90639824e-10],\n", + " [ 7.45632330e-10],\n", + " [ 6.91620331e-10],\n", + " [ 6.29921860e-10],\n", + " [ 5.61901413e-10],\n", + " [ 4.88946479e-10],\n", + " [ 4.12444987e-10],\n", + " [ 3.33763978e-10],\n", + " [ 2.54229747e-10],\n", + " [ 1.75109692e-10],\n", + " [ 9.75960545e-11],\n", + " [ 2.27916963e-11],\n", + " [-4.83019842e-11],\n", + " [-1.14794917e-10],\n", + " [-1.75915983e-10],\n", + " [-2.31018394e-10],\n", + " [-2.79582877e-10],\n", + " [-3.21218723e-10],\n", + " [-3.55662806e-10],\n", + " [-3.82776697e-10],\n", + " [-4.02542024e-10],\n", + " [-4.15054231e-10],\n", + " [-4.20514940e-10],\n", + " [-4.19223089e-10],\n", + " [-4.11565059e-10],\n", + " [-3.98004000e-10],\n", + " [-3.79068546e-10],\n", + " [-3.55341149e-10],\n", + " [-3.27446216e-10],\n", + " [-2.96038242e-10],\n", + " [-2.61790127e-10],\n", + " [-2.25381854e-10],\n", + " [-1.87489655e-10],\n", + " [-1.48775838e-10],\n", + " [-1.09879374e-10],\n", + " [-7.14073523e-11],\n", + " [-3.39273907e-11],\n", + " [ 2.03893505e-12],\n", + " [ 3.60216010e-11],\n", + " [ 6.76065523e-11],\n", + " [ 9.64390223e-11],\n", + " [ 1.22225761e-10],\n", + " [ 1.44736197e-10],\n", + " [ 1.63802576e-10],\n", + " [ 1.79319127e-10],\n", + " [ 1.91240321e-10],\n", + " [ 1.99578298e-10],\n", + " [ 2.04399554e-10],\n", + " [ 2.05820966e-10],\n", + " [ 2.04005264e-10],\n", + " [ 1.99156045e-10],\n", + " [ 1.91512426e-10],\n", + " [ 1.81343448e-10],\n", + " [ 1.68942317e-10],\n", + " [ 1.54620596e-10],\n", + " [ 1.38702421e-10],\n", + " [ 1.21518840e-10],\n", + " [ 1.03402364e-10],\n", + " [ 8.46817735e-11],\n", + " [ 6.56772770e-11],\n", + " [ 4.66960608e-11],\n", + " [ 2.80282784e-11],\n", + " [ 9.94352108e-12],\n", + " [-7.31220555e-12],\n", + " [-2.35189776e-11],\n", + " [-3.84849140e-11],\n", + " [-5.20475998e-11],\n", + " [-6.40749805e-11],\n", + " [-7.44657415e-11],\n", + " [-8.31491944e-11],\n", + " [-9.00847005e-11],\n", + " [-9.52606630e-11],\n", + " [-9.86931288e-11],\n", + " [-1.00424042e-10],\n", + " [-1.00519192e-10],\n", + " [-9.90659131e-11],\n", + " [-9.61705702e-11],\n", + " [-9.19558946e-11],\n", + " [-8.65582113e-11],\n", + " [-8.01246075e-11],\n", + " [-7.28100908e-11],\n", + " [-6.47747788e-11],\n", + " [-5.61811640e-11],\n", + " [-4.71914900e-11],\n", + " [-3.79652737e-11],\n", + " [-2.86570049e-11],\n", + " [-1.94140468e-11],\n", + " [-1.03747606e-11],\n", + " [-1.66687011e-12],\n", + " [ 6.59392227e-12],\n", + " [ 1.43050589e-11],\n", + " [ 2.13779881e-11],\n", + " [ 2.77387635e-11],\n", + " [ 3.33283863e-11],\n", + " [ 3.81028997e-11],\n", + " [ 4.20332475e-11],\n", + " [ 4.51049111e-11],\n", + " [ 4.73173433e-11],\n", + " [ 4.86832183e-11],\n", + " [ 4.92275195e-11],\n", + " [ 4.89864878e-11],\n", + " [ 4.80064537e-11],\n", + " [ 4.63425790e-11],\n", + " [ 4.40575297e-11],\n", + " [ 4.12201072e-11],\n", + " [ 3.79038588e-11],\n", + " [ 3.41856906e-11],\n", + " [ 3.01445047e-11],\n", + " [ 2.58598795e-11],\n", + " [ 2.14108113e-11],\n", + " [ 1.68745326e-11],\n", + " [ 1.23254227e-11],\n", + " [ 7.83402024e-12],\n", + " [ 3.46614894e-12],\n", + " [-7.17837223e-13],\n", + " [-4.66368361e-12],\n", + " [-8.32373682e-12],\n", + " [-1.16573180e-11],\n", + " [-1.46309687e-11],\n", + " [-1.72185728e-11],\n", + " [-1.94013587e-11],\n", + " [-2.11677890e-11],\n", + " [-2.25133446e-11],\n", + " [-2.34402138e-11],\n", + " [-2.39568939e-11],\n", + " [-2.40777185e-11],\n", + " [-2.38223208e-11],\n", + " [-2.32150444e-11],\n", + " [-2.22843137e-11],\n", + " [-2.10619762e-11],\n", + " [-1.95826276e-11],\n", + " [-1.78829317e-11],\n", + " [-1.60009447e-11],\n", + " [-1.39754560e-11],\n", + " [-1.18453524e-11],\n", + " [-9.64901620e-12],\n", + " [-7.42376276e-12],\n", + " [-5.20532599e-12],\n", + " [-3.02739537e-12],\n", + " [-9.21209726e-13],\n", + " [ 1.08478934e-12],\n", + " [ 2.96524227e-12],\n", + " [ 4.69809361e-12],\n", + " [ 6.26475127e-12],\n", + " [ 7.65018391e-12],\n", + " [ 8.84295852e-12],\n", + " [ 9.83522052e-12],\n", + " [ 1.06226202e-11],\n", + " [ 1.12041892e-11],\n", + " [ 1.15821718e-11],\n", + " [ 1.17618161e-11],\n", + " [ 1.17511305e-11],\n", + " [ 1.15606105e-11],\n", + " [ 1.12029433e-11],\n", + " [ 1.06926933e-11],\n", + " [ 1.00459770e-11],\n", + " [ 9.28013104e-12],\n", + " [ 8.41338023e-12],\n", + " [ 7.46450911e-12],\n", + " [ 6.45254336e-12],\n", + " [ 5.39644458e-12],\n", + " [ 4.31482266e-12],\n", + " [ 3.22566912e-12],\n", + " [ 2.14611451e-12],\n", + " [ 1.09221210e-12],\n", + " [ 7.87499061e-14],\n", + " [-8.80907673e-13],\n", + " [-1.77494775e-12],\n", + " [-2.59320609e-12],\n", + " [-3.32723368e-12],\n", + " [-3.97033334e-12],\n", + " [-4.51756744e-12],\n", + " [-4.96573818e-12],\n", + " [-5.31334228e-12],\n", + " [-5.56050204e-12],\n", + " [-5.70887524e-12],\n", + " [-5.76154635e-12],\n", + " [-5.72290169e-12],\n", + " [-5.59849145e-12],\n", + " [-5.39488131e-12],\n", + " [-5.11949646e-12],\n", + " [-4.78046103e-12],\n", + " [-4.38643532e-12],\n", + " [-3.94645383e-12],\n", + " [-3.46976617e-12],\n", + " [-2.96568341e-12],\n", + " [-2.44343179e-12],\n", + " [-1.91201566e-12],\n", + " [-1.38009128e-12],\n", + " [-8.55852851e-13],\n", + " [-3.46931750e-13],\n", + " [ 1.39690062e-13],\n", + " [ 5.97751982e-13],\n", + " [ 1.02177173e-12],\n", + " [ 1.40708727e-12],\n", + " [ 1.74988385e-12],\n", + " [ 2.04720660e-12],\n", + " [ 2.29695918e-12],\n", + " [ 2.49788941e-12],\n", + " [ 2.64956265e-12],\n", + " [ 2.75232406e-12],\n", + " [ 2.80725105e-12],\n", + " [ 2.81609691e-12],\n", + " [ 2.78122724e-12],\n", + " [ 2.70555041e-12],\n", + " [ 2.59244341e-12],\n", + " [ 2.44567457e-12],\n", + " [ 2.26932450e-12],\n", + " [ 2.06770643e-12],\n", + " [ 1.84528742e-12],\n", + " [ 1.60661139e-12],\n", + " [ 1.35622519e-12],\n", + " [ 1.09860864e-12],\n", + " [ 8.38109399e-13],\n", + " [ 5.78883374e-13],\n", + " [ 3.24841331e-13],\n", + " [ 7.96021586e-14],\n", + " [-1.53546849e-13],\n", + " [-3.71682460e-13],\n", + " [-5.72270623e-13],\n", + " [-7.53184249e-13],\n", + " [-9.12713774e-13],\n", + " [-1.04957074e-12],\n", + " [-1.16288473e-12],\n", + " [-1.25219402e-12],\n", + " [-1.31743049e-12],\n", + " [-1.35889932e-12],\n", + " [-1.37725401e-12],\n", + " [-1.37346747e-12],\n", + " [-1.34879972e-12],\n", + " [-1.30476297e-12],\n", + " [-1.24308474e-12],\n", + " [-1.16566958e-12],\n", + " [-1.07456029e-12],\n", + " [-9.71899028e-13],\n", + " [-8.59889017e-13],\n", + " [-7.40757417e-13],\n", + " [-6.16719826e-13],\n", + " [-4.89946897e-13],\n", + " [-3.62533448e-13],\n", + " [-2.36470418e-13],\n", + " [-1.13619940e-13],\n", + " [ 4.30625813e-15],\n", + " [ 1.15764967e-13],\n", + " [ 2.19396044e-13],\n", + " [ 3.14033353e-13],\n", + " [ 3.98712143e-13],\n", + " [ 4.72672923e-13],\n", + " [ 5.35361983e-13],\n", + " [ 5.86428723e-13],\n", + " [ 6.25720013e-13],\n", + " [ 6.53271822e-13],\n", + " [ 6.69298401e-13],\n", + " [ 6.74179318e-13],\n", + " [ 6.68444656e-13],\n", + " [ 6.52758703e-13],\n", + " [ 6.27902469e-13],\n", + " [ 5.94755360e-13],\n", + " [ 5.54276333e-13],\n", + " [ 5.07484858e-13],\n", + " [ 4.55441980e-13],\n", + " [ 3.99231770e-13],\n", + " [ 3.39943434e-13],\n", + " [ 2.78654313e-13],\n", + " [ 2.16413982e-13],\n", + " [ 1.54229647e-13],\n", + " [ 9.30529803e-14],\n", + " [ 3.37685240e-14],\n", + " [-2.28162462e-14],\n", + " [-7.59791352e-14],\n", + " [-1.25089686e-13],\n", + " [-1.69613881e-13],\n", + " [-2.09117104e-13],\n", + " [-2.43265416e-13],\n", + " [-2.71825222e-13],\n", + " [-2.94661405e-13],\n", + " [-3.11734058e-13],\n", + " [-3.23093926e-13],\n", + " [-3.28876708e-13],\n", + " [-3.29296363e-13],\n", + " [-3.24637573e-13],\n", + " [-3.15247537e-13],\n", + " [-3.01527245e-13],\n", + " [-2.83922404e-13],\n", + " [-2.62914163e-13],\n", + " [-2.39009806e-13],\n", + " [-2.12733546e-13],\n", + " [-1.84617554e-13],\n", + " [-1.55193359e-13],\n", + " [-1.24983721e-13],\n", + " [-9.44950827e-14],\n", + " [-6.42106796e-14],\n", + " [-3.45843793e-14],\n", + " [-6.03530863e-15],\n", + " [ 2.10566956e-14],\n", + " [ 4.63547854e-14],\n", + " [ 6.95679398e-14],\n", + " [ 9.04529453e-14],\n", + " [ 1.08815534e-13],\n", + " [ 1.24510712e-13],\n", + " [ 1.37442305e-13],\n", + " [ 1.47561791e-13],\n", + " [ 1.54866456e-13],\n", + " [ 1.59396949e-13],\n", + " [ 1.61234303e-13],\n", + " [ 1.60496501e-13],\n", + " [ 1.57334658e-13],\n", + " [ 1.51928900e-13],\n", + " [ 1.44484028e-13],\n", + " [ 1.35225032e-13],\n", + " [ 1.24392540e-13],\n", + " [ 1.12238277e-13],\n", + " [ 9.90205960e-14],\n", + " [ 8.50001526e-14],\n", + " [ 7.04357778e-14],\n", + " [ 5.55806038e-14],\n", + " [ 4.06784863e-14],\n", + " [ 2.59607649e-14],\n", + " [ 1.16433900e-14],\n", + " [-2.07555641e-15],\n", + " [-1.50179329e-14],\n", + " [-2.70271905e-14],\n", + " [-3.79696042e-14],\n", + " [-4.77350873e-14]]),)" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yout" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c2def0828>]" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuUnHd93/H3d657011r2dbFkrBskA3IrrChAUowGDtQy0nsImiLTmKOT09xA2041JAGjAmncUhx0+Dk4GInxqfFBocEhYi4BrvlEjBeYzu+Cm/ki9a6a1fS7s7szM7Mt3/MM9LMaGZ3dmd2R/vM53WOzs7zzDM7v9nH3s/+ft/f73nM3RERESmJtLsBIiJyZlEwiIhIBQWDiIhUUDCIiEgFBYOIiFRQMIiISAUFg4iIVFAwiIhIBQWDiIhUiLW7AbOxcuVKX79+fbubISKyoDz++ONH3L1/uuMWZDCsX7+egYGBdjdDRGRBMbNXGjlOQ0kiIlJBwSAiIhUUDCIiUkHBICIiFRQMIiJSQcEgIiIVFAwiIlJBwTCFbK7AXz0+xFgm1+6miIjMGwXDFL71+F5+91tP8V93Pd/upoiIzBsFwxR+/tIwAM/sO9HmloiIzB8FwxR2HxgFYPDgKO7e5taIiMwPBcMUXjuWBmA8m+d4erLNrRERmR8KhjrGMjlGJ3K8ee1SAIZG0m1ukYjI/FAw1HHwxAQAF5+7GIDh8Ww7myMiMm8UDHWMBEHwuv6+4nZKwSAinUHBUMdIqlhT2NjfW9xWj0FEOkRLgsHMrjKz3WY2aGY313g+aWb3B88/ambrq55fZ2ZjZvbJVrSnFUo9hPUrgmBIqfgsIp2h6WAwsyhwB3A1sBn4kJltrjrsBmDE3c8Hbgduq3r+duB7zballUo9hJWLkizqinFMQ0ki0iFa0WO4DBh09z3ungXuA7ZVHbMNuCd4/ABwhZkZgJldC+wBnm1BW1pmJDVJPGr0JqIs702oxyAiHaMVwbAa2Fu2PRTsq3mMu+eA48AKM+sF/jPw+Ra0o6WOpbIs7UlgZiztSaj4LCIdoxXBYDX2VS8TrnfM54Hb3X1s2jcxu9HMBsxs4PDhw7No5syMpLIs70kAsKwnrmAQkY7RimAYAtaWba8B9tU7xsxiwBJgGLgc+CMzexn4BPAZM7up1pu4+53uvtXdt/b397eg2VM7lppkSU8cgMVdcUYndIVVEekMsRZ8j8eATWa2AXgN2A58uOqYncAO4KfAdcDDXrz40DtKB5jZLcCYu3+lBW1q2uhEjnOXdgHQm4wxrktvi0iHaDoY3D0X/JX/IBAF7nb3Z83sVmDA3XcCdwH3mtkgxZ7C9mbfd66NZXL0JYs/nr5kVPdkEJGO0YoeA+6+C9hVte+zZY8ngOun+R63tKItrTKeydHXVfzx9CZjTEwWyOULxKJaEygi4abfcnWMZnL0JYs1hlLPYTybb2eTRETmhYKhhkwuTzZXYFFXaSgpCAYNJ4lIB1Aw1DCeKfYMSoHQq2AQkQ6iYKhhLJia2pus7DGoAC0inUDBUEMpAKp7DAoGEekECoYaSgGgGoOIdCIFQw1jmeIF8/pOG0rSrCQRCT8FQw2jVTWG3mQUUI9BRDqDgqGGVLb2rKT0pHoMIhJ+CoYa0kEwdMeLPYVkLFKxX0QkzBQMNZR6Bl2J4o/HzOiKR5hQj0FEOoCCoYZ0Nk80YiTKrovUHY9qKElEOoKCoYb0ZJ7ueJTg7qNAEAwaShKRDqBgqCE9macrqC+UdCXUYxCRzqBgqGEim6c7Ufmj6Y5HVWMQkY6gYKghlc3TE6+8VYVqDCLSKRQMNaQn83QlKoeSuhOqMYhIZ1Aw1FAsPlf+aLriUdKThTa1SERk/igYakhn8ycXt5WoxiAinULBUEN6Mk9PokaNQUNJItIBFAw1pLM1pqvGIyo+i0hHUDDUkJ48fbqq1jGISKdQMNSQztYeSsrmCuQL3qZWiYjMDwVDFXevufK5VIxWAVpEwk7BUCWTK05JPW1WUkLBICKdQcFQJXXyXgynr2MA3axHRMKvJcFgZleZ2W4zGzSzm2s8nzSz+4PnHzWz9cH+y8zsyeDfU2b2661oTzNKv/hr1RhAPQYRCb+mg8HMosAdwNXAZuBDZra56rAbgBF3Px+4Hbgt2P8MsNXdtwBXAV81sxhtVFqrcNolMUo9hqxWP4tIuLWix3AZMOjue9w9C9wHbKs6ZhtwT/D4AeAKMzN3T7l7LtjfBbR9yk/1bT1LSjUGDSWJSNi1IhhWA3vLtoeCfTWPCYLgOLACwMwuN7NngaeBf1cWFG1xaiipeoGbgkFEOkMrgsFq7Kv+y7/uMe7+qLtfBLwF+LSZddV8E7MbzWzAzAYOHz7cVIOncvJ+z3Wmq+qyGCISdq0IhiFgbdn2GmBfvWOCGsISYLj8AHd/HhgHLq71Ju5+p7tvdfet/f39LWh2belsscNSPZTUFcxSSk+2tUMjIjLnWhEMjwGbzGyDmSWA7cDOqmN2AjuCx9cBD7u7B6+JAZjZecCFwMstaNOslXoM3XWGkrI5FZ9FJNyangHk7jkzuwl4EIgCd7v7s2Z2KzDg7juBu4B7zWyQYk9he/DytwM3m9kkUAD+vbsfabZNzSjNOqquMSRjxQyd0D0ZRCTkWjI11N13Abuq9n227PEEcH2N190L3NuKNrRKvRpDMtjO5FRjEJFw08rnKvVqDKUeQ0Y9BhEJOQVDlfRknljESMQqfzSxiBGxU9dSEhEJKwVDlXS2cFpvAcDMSMaiGkoSkdBTMFRJT+ZOuxxGSVc8oh6DiISegqFKOpuv2WMAij0G1RhEJOQUDFXSk/nTpqqWJOMRDSWJSOgpGKqksqffva0kGdNQkoiEn4KhysTkNENJCgYRCTkFQ5Uph5JiEd2oR0RCT8FQJZ3N152VlNSsJBHpAAqGKtPOSlLxWURCTsFQJT1ljSGi6aoiEnoKhirT1Rg0lCQiYadgKFMoOBOThbrTVbviGkoSkfBTMJSZyNW+SU+Jegwi0gkUDGVK93Ouv/JZl8QQkfBTMJRJZWvfpKek2GPI4+7z2SwRkXmlYChTWrw21aykgkOuoGAQkfBSMJRJTxsMxf1a/SwiYaZgKDN9jSG4vacK0CISYgqGMqmgJ1D3khgxBYOIhJ+CocxEtrGhpIyGkkQkxBQMZUo1hqlWPoN6DCISbgqGMqlpegylaawKBhEJMwVDmYlGawwaShKREFMwlElPV2PQrCQR6QAtCQYzu8rMdpvZoJndXOP5pJndHzz/qJmtD/a/18weN7Ong6/vbkV7Zis1mScWMeLR2j+Wk8VnBYOIhFjTwWBmUeAO4GpgM/AhM9tcddgNwIi7nw/cDtwW7D8C/Et3fyOwA7i32fY0I53N172AHpQXnzWUJCLh1Yoew2XAoLvvcfcscB+wreqYbcA9weMHgCvMzNz9CXffF+x/Fugys2QL2jQr6Wz9ezFA+cpn9RhEJLxaEQyrgb1l20PBvprHuHsOOA6sqDrmN4En3D3TgjbNSmqKu7dBeY1BPQYRCa9YC76H1dhXfZW5KY8xs4soDi9dWfdNzG4EbgRYt27dzFvZgOJQUv0fyalZSeoxiEh4taLHMASsLdteA+yrd4yZxYAlwHCwvQb4a+Aj7v5P9d7E3e90963uvrW/v78FzT5dejJHd7z+j0TFZxHpBK0IhseATWa2wcwSwHZgZ9UxOykWlwGuAx52dzezpcDfAZ9295+0oC1NKdYYGugxaChJREKs6WAIagY3AQ8CzwPfdPdnzexWM7smOOwuYIWZDQL/CShNab0JOB/4fTN7Mvh3VrNtmq3UNLOSIhEjEdXtPUUk3FpRY8DddwG7qvZ9tuzxBHB9jdf9AfAHrWhDK6SnKT5DcBc31RhEJMS08rnMdNNVoTgzSUNJIhJmCoYy0y1wg2IBWkNJIhJmCoYyDQ8lKRhEJMQUDIFsrkCu4NMOJSViEV1dVURCTcEQKF1ZtWu6HkM8yoR6DCISYgqGwKm7t009USupHoOIhJyCIZDK5oD6t/UsUY1BRMJOwRAo9RimHUrSrCQRCTkFQ6BUY9A6BhHpdAqGQKp0W89pgqErFtXKZxEJNQVDoDSUNO06BvUYRCTkFAyBhoeSVHwWkZBTMAQaHUpKaihJREJOwRA4uY4hPv06hmy+QKFQfZM6EZFwUDAE0sE6hq7E1D+S0nTWbF69BhEJJwVDID2ZJxrciGcquu+ziISdgiGQyubpiUcxsymPSwb3hJ7QzCQRCSkFQyCdzdM1TeEZisVnUI9BRMJLwRBIT05/9zYoG0pSj0FEQkrBEEhlp79JD5wqPmstg4iElYIhMDE5/W094VSPYUKX3haRkFIwBMYzuRkOJanHICLhpGAIjGfy9CWnXtwGxTu4gWoMIhJeCobAWCZHbwPB0BXXOgYRCTcFQ2Ask2NRIz2GmIrPIhJuCgbA3RvuMaj4LCJh15JgMLOrzGy3mQ2a2c01nk+a2f3B84+a2fpg/woze8TMxszsK61oy2xkcgXyBaevq/FgUI9BRMKq6WAwsyhwB3A1sBn4kJltrjrsBmDE3c8HbgduC/ZPAL8PfLLZdjRjdKJ4AT0Vn0VEWtNjuAwYdPc97p4F7gO2VR2zDbgnePwAcIWZmbuPu/uPKQZE24xnGg+GLl1ET0RCrhXBsBrYW7Y9FOyreYy754DjwIoWvHdLjAXB0EiNIRaNEI2YLqInIqHVimCodTnS6rvYNHLM1G9idqOZDZjZwOHDh2fy0mmVgqGRWUkQ3N5TPQYRCalWBMMQsLZsew2wr94xZhYDlgDDM3kTd7/T3be6+9b+/v4mmnu68Rn0GED3fRaRcGtFMDwGbDKzDWaWALYDO6uO2QnsCB5fBzzs7mfMvTFLPYZGZiVB8UJ6Kj6LSFg19ptwCu6eM7ObgAeBKHC3uz9rZrcCA+6+E7gLuNfMBin2FLaXXm9mLwOLgYSZXQtc6e7PNduumRibQfEZ1GMQkXBrOhgA3H0XsKtq32fLHk8A19d57fpWtKEZYzOYrgrF1c9a4CYiYaWVzxRrDGY0dHVVKN7eUz0GEQkrBQMwmsnRl4hNe7/nEs1KEpEwUzBQ7DE0OiMJVHwWkXBTMFC8F0NvsrFhJCj2GCbUYxCRkFIwAMfTkyzpjjd8fDKmHoOIhJeCATiWzrK0J9Hw8ZquKiJhpmBgFj2GeFTBICKhpWAAjqVmOpQUITODdQwTk3kGD41yBi32FhGpq+ODIV9wRidyLO2ZSY8hwkSDPQZ356P3DPCeL/+Qu3/y8ixbKSIyfzo+GE6kJwFmXHzO5goN9QCe23+CHw8eAeBrP9pDoaBeg4ic2To+GI4FwTCjHsMMbu/50386CsBnfu317D8+wRN7R2bRShGR+aNgSGUBWNrd+KykrpO395w+GH7x6ghrlnXzwbeswwx+Mnh0dg0VEZknCoagx7B4hsVnoKEC9JOvHuOSdctY0h3ngrMW8fgr6jGIyJmt44PhyGgGgP6+ZMOvaXQoKZXNse/4BBeu6gPg0vOW8YtXRzQ7SUTOaB0fDIfHisGwctEMFridHEqausfw8pEUABtWFoPh4tWLGZ3IMTSSnk1TRUTmRccHw5HRLH3JGD2JGVxEL+gxTHe9pJeOjAOwfmUPAK8/ezEALxwYnU1TRUTmRccHw+GxDP2LGh9Gghn0GI4GwbCiF4ALz14EwO4DJ2baTBGReaNgGJ2YUX0ByovPU/cYXjuWZnlv4uQlvfuSMdYu7+Z59RhE5AymYBidRY+hweLzoRMTrFrcVbHv9Wcv5oX96jGIyJmro4PB3TlwfGLGwdDV4FDSgRMTnL248ntfuGoRLx9N6bLdInLG6uhgGB7PMp7Nc96Knhm9rtEew4HjmdN6DBecvYh8wdlzeHxmjRURmScdHQyvDBenk65bPsNgCHoME1MscJvMFzg6XiMYgjUNvzyoOoOInJk6OhhePVoMhrnoMRwazeAOZy+pDIYNK3uJRowXD47NsLUiIvOjo4PhlSAY1iybWTCUagzpbP0ew8ETEwCcXdVjSMairF/RM6Mew9BIiuf2ndCKaRGZF42v6gqhp187zsb+3pO/6BvVyAK3g8eLwVA9lATF9QzP7WtsZtIdjwzypQd3A/C2jSv46kf+GYu7Gr+uk4jITHVsj8HdeXLvCFvWLp3xa2PRCIlohPQUNYZSj2HV4tNnPG06axGvDKemrFEAPPLCIb704G4+8KZz+C/vfwOPvTzMR+8ZYDKv24qKyNxpSTCY2VVmttvMBs3s5hrPJ83s/uD5R81sfdlznw727zaz97WiPY3Yc2ScI2NZLlm3bFav74pHpvzFfnQ8S8RgWc/p12C6YNUi3GHwUP06Q6Hg/OH3XmBjfy//7V+9mY++YyN/fP2b+flLw/zpD16cVZtFRBrR9FCSmUWBO4D3AkPAY2a2092fKzvsBmDE3c83s+3AbcAHzWwzsB24CDgX+L6ZXeDucz7J/4HHh4gYXLl51axe35OITVljGB7PsqwnQSRipz1XPjPp4tVLar7+oecPsvvgKH+yfQvJWHGo69pLVvPjwSN85ZFB3r6pn8s2LJ+yjWOZHA89d4DBQ2PEIhEuWLWIyzYsn/G6DRHpLK2oMVwGDLr7HgAzuw/YBpQHwzbgluDxA8BXzMyC/fe5ewZ4ycwGg+/30xa06zR//8x+Do1mODya4S9+8hJXbj67Zg2gEd2J6JRDSSOpLMt6a1+xdf3KXuJR45dTzEz61sAQqxYnef8bz6nYf8s1F/HYy8P8zjeeYNfH38HyGu+Ryxf46g/38GePDDKezRMxKL+j6BtXL+FdF/bzrgvPYsvapUSD8HJ3hsez7B1J8+pwir3Bv/RknqgZiViE7kSUnkSUnkQs+HrqcTRi5AvOZN7JF5xcoUAuH3wtOLm84+5EIoaZYUDEjIiBGSf31VK37B7SeryH9YNJ037z0jXEonNbBWhFMKwG9pZtDwGX1zvG3XNmdhxYEez/WdVrV9d6EzO7EbgRYN26dbNq6Jcf+uXJX8Zv3bicL1x78ay+DxRnJqWm6TEsrzGMBBCPRti4so8X68xMOpbK8v9+eYgdb1t/2n8AfckYd3z4Un7jz/6BT9z/JHft2Eq87JjdB0b55Lee4unXjvO+i1Zx4ztfx5a1S8kXnOf2n+Ang0d45IVD3PHIIH/68CCLumL09yWZLBQ4PJo5raC+si9JXzJK3p1srkAqmyeVzZPXvatF2mLbltXEZjZfZsZaEQy1/sir/q1R75hGXlvc6X4ncCfA1q1bZ/Vb6eu/fTmxqNGXjM14JlK17mlqDCPjkycvt13LplV9PDV0rOZz33vmAJN559pLamYkF69ewi3XXMRn/vppbvz6AJ+/5mJiUePen73C//zhHpZ0x7njw5fy/jed6m1EI8aWtUvZsnYpH/vV8zmemuRHg4f52Z6jHE/niBictSjJOUu6OW9FD2uX97BmWXfNy5G7O9l8gVQmT2oyTyqTI5XNkys48agRjRjxaKT4NRIhGjXikeJ+M8PdKXjx+zhQKN+e4sxane6E1XtigQvnp5JmldZRzaVWBMMQsLZsew2wr84xQ2YWA5YAww2+tmWqF5s1Y7qhpOFUlkt76894unDVIr77j/sZy+ToS1aehu88+Rob+3u56NzFdV//4cvXkS8U+MLfPc87v/TIyf2/cclqfu/9b2DFNFeMXdIT5wNvOpcPvOncKY+rxcxIxqIkY1FmV7oXkTNZK4LhMWCTmW0AXqNYTP5w1TE7gR0UawfXAQ+7u5vZTuB/m9mXKRafNwE/b0Gb5lx3PMrI+GTN59ydkaD4XM+bgmmyT+09xq+cv/Lk/v3H0zz60jCfuOKCaf8S/rdvW8+vvv4s/s+zB4kYvOOCfl7X3zeLTyMickrTwRDUDG4CHgSiwN3u/qyZ3QoMuPtO4C7g3qC4PEwxPAiO+ybFQnUO+Nh8zEhqha54tO5Q0mgmR67gNQvDJVvWLsUMHn9lpCIYvvvUftzhmi2N/SW/ZlkPv/32DTNrvIjIFFqy8tnddwG7qvZ9tuzxBHB9ndd+EfhiK9oxn3qmGEoaHssCtdcwlCzpjnPBWYsYeGWkYv/fPPkab16zhA0re1vXWBGRGejYlc/N6o5PEQypYjAs76sfDACXnreMJ14ZObmS+bl9J3h23wl+vU7RWURkPigYZqkrUX+66sh4EAxT9BgA/sUF/Yxmcjy6ZxiAbw7sJRGL1J2NJCIyHxQMs9Qdj5LNFWrO5x8uBcMUNQYoBkNPIsq3fzHE0bEM3xrYy9UXn83SaQJFRGQudfTVVZvRXXaznt6q6aYjwVBSvZXPJ79HIsr2t6zjL//hJV46Ok56Ms9/ePf5c9NgEZEGqccwS92J4J4MNeoMw+OTJKIRehPTL6K76d3ns7G/j6f2HuPz11zE+WctanlbRURmQj2GWZrqZj0j41mW9cYbWpG7vDfBg594J2OZHEu6dZ8FEWk/9RhmqSdR/77Pw6mpF7dVi0ZMoSAiZwwFwyyVagy1ZiYNj2enLTyLiJypFAyzVAqGWjWG4lCSgkFEFiYFwyx1TVV8TtW/5LaIyJlOwTBLJ6erVg0l5fIFjqcnNZQkIguWgmGW6tUYjqcncZ9+cZuIyJlKwTBLfV3Fmb7j2VzF/kYXt4mInKkUDLNUurnO6ERlMAwH92hQjUFEFioFwywlYxHiUWMsUx0MpR6D1iWIyMKkYJgls+K9o8cmag8lqcYgIguVgqEJfV2x+j0GDSWJyAKlYGhCXzJeo8aQpScRPXktJRGRhUbB0IRFyRhjmcmKfcPjM7tOkojImUbB0IRaQ0lHx7OsnOaWniIiZzIFQxNqFZ+HxzMqPIvIgqZgaELN4vNYluW9yTa1SESkeQqGJixKxiqKz+7O0fEsKzSUJCILmIKhCX3JGJlcgWyuABSvm5TJFTSUJCILmoKhCSevlxQMJx0dK65hWKFgEJEFTMHQhNL1kkp1hqPjGQANJYnIgtZUMJjZcjN7yMxeDL4uq3PcjuCYF81sR9n+L5rZXjMba6Yd7bKoq/JCeqVVzyo+i8hC1myP4WbgB+6+CfhBsF3BzJYDnwMuBy4DPlcWIH8b7FuQ+pLFC+Wd6jFoKElEFr5mg2EbcE/w+B7g2hrHvA94yN2H3X0EeAi4CsDdf+bu+5tsQ9uUegwn0sXVz6Ueg4aSRGQhazYYVpV+sQdfz6pxzGpgb9n2ULBvRszsRjMbMLOBw4cPz6qxrVaafVQKhCOjGbrjUXoSsXY2S0SkKdP+BjOz7wNn13jq9xp8D6uxzxt87akXuN8J3AmwdevWGb9+LpR6BqUhpAMnJli1WPUFEVnYpg0Gd39PvefM7KCZnePu+83sHOBQjcOGgHeVba8B/u8M23lG6knE6I5HOTpWnI106ESGVYu72twqEZHmNDuUtBMozTLaAXynxjEPAlea2bKg6HxlsC8UlvcmTg4lHTgxwdlLFAwisrA1Gwx/CLzXzF4E3htsY2ZbzexrAO4+DHwBeCz4d2uwDzP7IzMbAnrMbMjMbmmyPfNuZV+CI+NZ3D0YSlIwiMjC1lSV1N2PAlfU2D8AfLRs+27g7hrHfQr4VDNtaLflvQkOj2U4lpokmysoGERkwdPK5yat6EtyZDTLa8fSAJyroSQRWeAUDE1au6yHg6MTPLf/BAAb+/va3CIRkeYoGJq0ob8Xd3jkhUOYwXkretrdJBGRpigYmrRxZS8A33/+IGuWddMVj7a5RSIizVEwNGlDEAyTeefCVYva3BoRkeYpGJrUm4ydDId3bOpvc2tERJqni/q0wO0f3MLfPrWPD75lbbubIiLSNAVDC2xZu5Qta5e2uxkiIi2hoSQREamgYBARkQoKBhERqaBgEBGRCgoGERGpoGAQEZEKCgYREamgYBARkQrm7u1uw4yZ2WHglVm+fCVwpIXNWQg68TODPncn6cTPDDP/3Oe5+7TX7lmQwdAMMxtw963tbsd86sTPDPrc7W7HfOrEzwxz97k1lCQiIhUUDCIiUqETg+HOdjegDTrxM4M+dyfpxM8Mc/S5O67GICIiU+vEHoOIiEyhY4LBzK4ys91mNmhmN7e7PXPFzNaa2SNm9ryZPWtmHw/2Lzezh8zsxeDrsna3tdXMLGpmT5jZd4PtDWb2aPCZ7zezRLvb2GpmttTMHjCzF4Jz/rawn2sz+4/Bf9vPmNk3zKwrjOfazO42s0Nm9kzZvprn1or+R/D77R/N7NJm3rsjgsHMosAdwNXAZuBDZra5va2aMzngd939DcBbgY8Fn/Vm4Afuvgn4QbAdNh8Hni/bvg24PfjMI8ANbWnV3PoT4O/d/fXAmyl+/tCeazNbDfwOsNXdLwaiwHbCea7/Eriqal+9c3s1sCn4dyPw5828cUcEA3AZMOjue9w9C9wHbGtzm+aEu+93918Ej0cp/qJYTfHz3hMcdg9wbXtaODfMbA3wfuBrwbYB7wYeCA4J42deDLwTuAvA3bPufoyQn2uKd57sNrMY0APsJ4Tn2t1/CAxX7a53brcBX/einwFLzeyc2b53pwTDamBv2fZQsC/UzGw9cAnwKLDK3fdDMTyAs9rXsjnx34FPAYVgewVwzN1zwXYYz/lG4DDwF8EQ2tfMrJcQn2t3fw34Y+BVioFwHHic8J/rknrntqW/4zolGKzGvlBPxzKzPuCvgE+4+4l2t2cumdkHgEPu/nj57hqHhu2cx4BLgT9390uAcUI0bFRLMKa+DdgAnAv0UhxGqRa2cz2dlv733inBMASsLdteA+xrU1vmnJnFKYbC/3L3bwe7D5a6lsHXQ+1q3xz4FeAaM3uZ4jDhuyn2IJYGww0QznM+BAy5+6PB9gMUgyLM5/o9wEvuftjdJ4FvA/+c8J/rknrntqW/4zolGB4DNgUzFxIUi1U729ymORGMrd8FPO/uXy57aiewI3i8A/jOfLdtrrj7p919jbuvp3huH3b3fw08AlwXHBaqzwzg7geAvWZ2YbDrCuA5QnyuKQ4hvdXMeoL/1kufOdTnuky9c7sT+EgwO+mtwPHSkNNsdMwCNzP7NYp/RUaBu939i21u0pz9WC0+AAAAtUlEQVQws7cDPwKe5tR4+2co1hm+Cayj+D/X9e5eXdha8MzsXcAn3f0DZraRYg9iOfAE8G/cPdPO9rWamW2hWHBPAHuA36L4B19oz7WZfR74IMUZeE8AH6U4nh6qc21m3wDeRfEKqgeBzwF/Q41zG4TkVyjOYkoBv+XuA7N+704JBhERaUynDCWJiEiDFAwiIlJBwSAiIhUUDCIiUkHBICIiFRQMIiJSQcEgIiIVFAwiIlLh/wPBMKVTM1vIuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(tout, yout[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [], + "source": [ + "tbout, bout = sps.dlsim((a,b,0.1),t=np.append(tout,np.arange(99,199,0.1)) ,u=np.append((np.flip(yout[0],0)),(yout[0][-1]*np.ones_like(np.arange(99,199,0.1)))))" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.00000000e+00, 1.00050302e-01, 2.00100604e-01, ...,\n", + " 1.98699899e+02, 1.98799950e+02, 1.98900000e+02])" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tbout" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-1.40720618e-22],\n", + " [-2.00251656e-21],\n", + " [-1.42042184e-20],\n", + " ...,\n", + " [-4.73992765e-14],\n", + " [-4.91453138e-14],\n", + " [-5.07749201e-14]])" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bout" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c2ea4a550>]" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8FdX9//HXJwlJCDshgCxh30EQAii4oxbrglZUEBVFxbXaYqu41lrbn1tr1WpdcQEVEEVxxQVXFCSRQNgNYQsoJOwEsp/fHxn6jTExF7LMvTfv5+NxH7l35szwOdxMPnPmzJxjzjlEREQi/A5ARESCgxKCiIgASggiIuJRQhAREUAJQUREPEoIIiICKCGIiIhHCUFERAAlBBER8UT5HcChaNGihevYsaPfYYiIhJSUlJRs51xCZeVCKiF07NiR5ORkv8MQEQkpZrYhkHK6ZCQiIoASgoiIeJQQREQEUEIQERGPEoKIiABKCCIi4lFCEBERIMDnEMxsJPAoEAk855y7v8z6GOBlYBCwHbjQObe+1PpEYAVwj3Pu4UD2KSKHprjY8eOeXDKy9rEuO4d9eYUcnCHXOYdz4IDiUu9xjnqRESTGx9GpRQM6tmhA49h6PtZC/FRpQjCzSOAJ4FQgE1hkZnOccytKFbsC2Omc62pmY4AHgAtLrX8E+OAQ9yki5cjJK2Rddg5rs/aRkfV/P9dl53CgoKjK+2/RMJqO8SXJoZP3KvkcR1x0SD3LKocokG93CJDunMsAMLPpwChKzvgPGgXc472fBfzHzMw558zsHCADyDnEfYoIsDe3gC/XZPPpyq0syNjOlt25/1tnBu2a1adLQkOO7hxP54QGdEloSOeEBjSpX+9/ZQzDDCLMsIPLzADILShiw/b9rMvOYf32HNZn55CRncOXa7KYlZL5s1h6tm7EST1bcnLPlhzVvilRkbrqHE4CSQhtgU2lPmcCQysq45wrNLPdQLyZHQBupaQl8KdD3CcAZjYRmAiQmJgYQLgioW/Tjv18snIrn67cxsJ12ykocjSLq8ex3RK4qFVD749+QzrExxFbL7JK/1ZsvUh6tG5Ej9aNfrEuJ6+Q9dtLWh8ZWTnMT8/mmS8z+O/na2lSvx4ndE9gRK+WnNA9gaZx0VWKQ/wXSEKwcpa5AMv8FXjEObfv4NnIIeyzZKFzzwDPACQlJZVbRiTUFRU7Ujft5JOV2/h05VbWbN0HQJeEBkw4thOn9GrFwMRmREaUd+jUnAYxUfRp04Q+bZoAcOOIbuw+UMBXP2Qxb9U2vlidxZwlW4gwGJjY7H+th56tG1HmmJcQEEhCyATal/rcDthSQZlMM4sCmgA7KDnrH21mDwJNgWIzywVSAtinSNj7YeteXvhmPXOX/cT2nHwiI4whHZtz5xntOaVXKzq2aOB3iL/QpH49zjyyDWce2YbiYseSzF18tmob81Zv46G5q3lo7mraNavPxUd3YOzgRJrEqZM6VJhzv37S7f2BXwOMADYDi4CLnHPLS5W5HujnnLvG61T+nXPugjL7uQfY55x7OJB9licpKclptFMJdc45vk7P5rmv1vHFmixi60VwWu/WnNK7FSd0T/jftf9QtHVPLp+v3sbsxZtZkLGD+vUiOW9QWy4f3okuCQ39Dq/OMrMU51xSZeUqbSF4fQI3AHMpuUV0inNuuZndCyQ75+YAzwNTzSydkpbBmMPZZ6W1EglheYVFzEndwvNfr2PVT3tJaBTDn07rzkVDO9C8QXhcf2/VOJYLBydy4eBEVmzZwwvz1zFzUSbTFmzkpB4JTDi2E8d2baHLSUGq0hZCMFELQULRjpx8XlmwgZe+3UD2vjx6tm7Elcd15qz+RxATVbUO4VCQtTePVxduZOqCkvp3b9WQy4d34tyj2la5Q1wCE2gLQQlBpIakb9vHlPnreCMlk7zCYk7skcBVx3VmWJf4OnmGnFdYxLtLfuT5r9ex4sc9NIurx0VDE7l8eCdaNIzxO7ywpoQg4pOte3K5/4NVzF68meioCM4b2JYJwzvRrdUvb+usi5xzfLduB1Pmr+OjFVtpGB3F70d05bJhnYiO0nMNNUEJQaSW5RUWMeXr9Tw+7wcKixwTju3Elcfp7PfXrM3axz/eW8mnq7bRqUUD7jyjFyf3bFknW1A1SQlBpBbNW7WVe99Zwfrt+zmlVyvuOrMXHeKD75bRYPX56m387d0VrM3K4fjuCdx9Zi+6tlSLqrooIYjUgoysffzt3RV8tjqLzgkN+MtZfTihe4LfYYWkgqJipn67gUc+WcP+/CIuPaYDfxjRXc8xVAMlBJEatDe3gP/MS2fK/HXEREXyh1O6cekxHXUNvBps35fHvz5ew2vfbaRJ/XrcfFoPxg5JrPWntMOJEoJIDSgudsxevJn7P1xF1t48zh/Ujj+P7EHLRrF+hxZ2VmzZw1/fWc7CdTvo2boRfzmrD8d0ifc7rJCkhCBSzTbt2M+kmaksWr+T/u2b8tez+zCgfVO/wwprzjk+XPYT9723ks27DnDZsI5MPr2nnl84RNX2pLKIwNupm7lz9jIAHjzvSEYPakeELmHUODPj9H5HcFLPljzw4SpemL+eb9du59GxA+jZurHf4YUdXfAU+RV7cwuYNCOVm6an0r11I96/6TguGNxeyaCWxdaL5C9n9eHFywezPSefs/8znylfr6O4OHSucIQCJQSRCizeuJMzHvuat1I3c9OIbsyYeDTtm8f5HVaddmKPlsz9w3Ec360F9767gsteXMS2PbmVbygBUUIQKaOo2PHEZ+mMfupbioodM64+hj+e2l2zgwWJ+IYxPHtpEved05fv1m1n5KNf8fGKrX6HFRb0Gy5SypZdB7jo2QU8NHc1p/dtzfs3Hcfgjs39DkvKMDMuProD7/7+WFo3juWql5O5Y3YaB/KrPqd0XaZOZRHPB2k/MvnNNAqKinn4/P6cN7CthlAIcl1bNmL29cP410drePrLDBZkbOfRMUfRt20Tv0MLSWohSJ13IL+I295cyrWvfE+H+Djeu/E4Rg9qp2QQImKiIrntt7145cqh7Msr5Nwn5/PSN+sJpVvqg4USgtRpW/fkcsHT3zJ90SauPbELs64ZRqcgnLZSKje8aws+vOl4TuiewF/mLOeut5dRUFTsd1ghRZeMpM5atnk3V76UzJ7cAp69JIlTerfyOySpomYNonnmkiQenLuap75Yy7rsHJ68aJDGQwqQWghSJ320/CfOf+pbIgxmXTNMySCMREQYk0/vyUOjj+S7dTs498n5rMvO8TuskKCEIHWKc46nv1jL1dNS6N6qIW9dP5zebfTEazg6P6k9r151NLsOFHDOE/P5Jj3b75CCnhKC1Bn5hcXc+sZS/t8Hq/htvyOYcfUxtGysQenC2eCOzXn7+uG0ahzDpVO+45WFG/wOKagpIUidsGt/PpdOWcjM5ExuPLkrj485SgOk1RHtm8fxxrXDOK5bC+6YvYy/vrOcQnU2l0sJQcJeRtY+zn3yG77fsIt/XziASaf10FhEdUyj2Ho8N34wE4Z34oX567ny5ZKbCeTnlBAkrH2zNptzn/yGPQcKePWqoZxzVFu/QxKfREYYd5/Vm3+c24+vf8jmvCe/YeP2/X6HFVSUECRszVy0iUuf/46WjWJ46/rhJGkICgEuGprIy1cMYdvePM55cj7LNu/2O6SgoYQgYem5rzK45Y2lHNMlnjeuG6ZRSuVnhnVpwVvXD6d+vUjGPruAlA07/Q4pKASUEMxspJmtNrN0M5tczvoYM5vhrV9oZh295UPMLNV7LTGzc0tts97M0rx1mgZNqs3jn/7Afe+t5Ix+RzDlssE0jtVDSfJLnVo0YOY1x9CiYQyXPL+Qb9bqttRKE4KZRQJPAKcDvYGxZta7TLErgJ3Oua7AI8AD3vJlQJJzbgAwEnjazEo/HX2Sc25AIFO7iVTGOceDH67inx+v4XcD2/LomAHU05DV8ivaNq3PjKuPpn2zOC5/YRGfrdrmd0i+CuRoGQKkO+cynHP5wHRgVJkyo4CXvPezgBFmZs65/c65Qm95LKDRpqRGOOe4990VPPn5Wi4amsjDo/tr/gIJSMtGsUyfeDTdWzVi4tRk3k/70e+QfBPIEdMW2FTqc6a3rNwyXgLYDcQDmNlQM1sOpAHXlEoQDvjIzFLMbOLhV0HquuJix+2zl/HC/PVMGN6Jv5/TV7eVyiFp1iCaV64aypHtmnLDq9/zRkqm3yH5IpCEUN6RVfZMv8IyzrmFzrk+wGDgNjM7+GjocOfcQEouRV1vZseX+4+bTTSzZDNLzsrKCiBcqUsKi4r50+tLeO27jVx/UhfuOrOXhq2Ww9I4th5TrxjCMV3iufn1JUxbUPeeag4kIWQC7Ut9bgdsqaiM10fQBNhRuoBzbiWQA/T1Pm/xfm4DZlNyaeoXnHPPOOeSnHNJCQkJAYQrdUV+YTE3Tl/Mm4s386fTuvPn3/RUMpAqiYuO4vnxgzm5Z0vufGsZz32V4XdItSqQhLAI6GZmncwsGhgDzClTZg4w3ns/GpjnnHPeNlEAZtYB6AGsN7MGZtbIW94AOI2SDmiRgOQWFHHttBTeT/uJO8/oxQ0nd/M7JAkTsfUieeriQZzR7wjue28lj37yQ52ZbKfS+RCcc4VmdgMwF4gEpjjnlpvZvUCyc24O8Dww1czSKWkZjPE2PxaYbGYFQDFwnXMu28w6A7O9s7ko4FXn3IfVXTkJT/vzC5n4cgpfp2dz3zl9ufjoDn6HJGEmOiqCx8YeRf3oSB75ZA37CwqZPDL8W6AWSpkvKSnJJSfrkYW6bF9eIRNeWETyhh08OLo/owe18zskCWPFxY6/zFnO1AUbmDC8U8j2UZlZSiC392vGNAkZuQVFXPHiIr7fuJPHxh7FmUe28TskCXMREca9o/oQFWlMmb+ORrFR/PHU7n6HVWOUECQkFBQVc90r3/Pd+h38+8IBSgZSa8yMu87ozb7cQh799AcaxUZx5XGd/Q6rRighSNArKnZMmrmEeau28fdz+zJqgEYsldoVEWHcf96R7M8v4r73VtIwJooxQxL9DqvaKSFIUHPOcdfby3hnyRYmn96TcUPVgSz+iIwwHrlwADn5hdw2O40GMVGc1T+8Wqp6tl+C2gMfrubVhRu59sQuXHNCF7/DkTouOiqC/44bxOAOzfnjjFTmrdrqd0jVSglBgtaTn6fz1BdrGTc0kVt+08PvcEQAqB8dyfOXJdHriMZcO+17vl273e+Qqo0SggSlaQs28OCHqxk1oA1/G9U3JG/1k/DVKLYeL00YQmLzOK58aRGpm3b5HVK1UEKQoPN26mbuensZI3q25OHz+2ugOglKzRtEM+3KoTRvGM34Kd+x+qe9fodUZUoIElQ+WbGVSTOXMLRTc54YN1DzGUhQa9U4lleuOJrYehFc/PxC1mfn+B1Slehok6Dx7drtXPfq9/Rt05jnxg8mtl6k3yGJVCoxPo5pVwylsKiYcc8t5MfdB/wO6bApIUhQWLJpF1e+tIgOzeN48fIhNIzRHdESOrq1asTLE4ay50AB455byM6cfL9DOixKCOK79dk5XPbCdzRvWHJNtlmDaL9DEjlk/do14bnxSWTuOMDVU1PIKyzyO6RDpoQgvtqZk8+EFxcB8PKEobRqHFvJFiLBa2jneB6+oD/frd/BLbOWhtyw2WqXi2/yCou4eloKmTsP8MpVQ+nUooHfIYlU2dn927Bpx34emruaxOZx3Hxa6DxDo4QgvnDOMfmNNL5bt4NHxwxgcMfmfockUm2uO7ELG7fv5/F56bRvHscFSe0r3ygIKCGILx799Adme1NfarA6CTdmxn3n9mXzrgPc/mYabZvWZ3jXFn6HVSn1IUite/P7TP79yQ+MHtSO60/q6nc4IjWiXmQET148kM4JDbhmWgo/bA3+B9eUEKRWLcjYzq1vLOWYzvH849x+GpJCwlrj2HpMuazkmZrLXljEtr25fof0q5QQpNaszdrH1VNTSGwex1MXDyI6Sr9+Ev7aNYtjyvjB7MjJ58qXktmfX+h3SBXSESm1Yvu+PC5/YRFREcaLlw+hSVw9v0MSqTX92jXhsbFHkbZ5NzdNT6WoODhvR1VCkBqXW1DExKkpbN2Ty7Pjk2jfPM7vkERq3am9W3H3mb35eMVW/v7eSr/DKZfuMpIaVVzs+NPrS0jZsJMnxw1kYGIzv0MS8c3lwzuxYft+psxfR4f4OMYP6+h3SD+jhCA16p8fr+bdpT8y+fSe/LbfEX6HI+K7u87sTebOA/z1neW0b16fk3u28juk/9ElI6kxb6Rk8sRnaxk7pD1XH9/Z73BEgkJkhPHY2AH0btOYm15LJX3bPr9D+h8lBKkRSzbt4rbZaRzTOZ57NeOZyM/ERUfx9CVJREdFMHFqMntyC/wOCVBCkBqQtTePq6emkNAwRpPciFSgbdP6PDluIBu37+cP01MpDoI7jwI6Us1spJmtNrN0M5tczvoYM5vhrV9oZh295UPMLNV7LTGzcwPdp4Sm/MJirnslhV0H8nn6kkE011DWIhUa2jmev5zVm3mrtvHIJ2v8DqfyhGBmkcATwOlAb2CsmfUuU+wKYKdzrivwCPCAt3wZkOScGwCMBJ42s6gA9ykh6G/vrmDR+p08cN6R9G3bxO9wRILexUd34MKk9jw+L50P0n70NZZAWghDgHTnXIZzLh+YDowqU2YU8JL3fhYwwszMObffOXfwsbxY4GCbKJB9SoiZsWgjUxdsYOLxnTVgnUiAzIx7z+nDUYlNufn1Jaz6aY9vsQSSENoCm0p9zvSWlVvGSwC7gXgAMxtqZsuBNOAab30g+8TbfqKZJZtZclZWVgDhih++37iTu95aznHdWnDLb0Jn/HeRYBATFclTFw+iYUwUE19OYdd+f6bgDCQhlHd7SNnejwrLOOcWOuf6AIOB28wsNsB94m3/jHMuyTmXlJCQEEC4Utu27cnlmqkptGoSw+NjjyJKncgih6xV41ieumQQP+3O5fevLaawqLjWYwjkyM0ESs/u0A7YUlEZM4sCmgA7Shdwzq0EcoC+Ae5TQkBeYRHXTEthb24hz1ySRNM4dSKLHK6Bic24d1Qfvvohmwfnrq71fz+QhLAI6GZmncwsGhgDzClTZg4w3ns/GpjnnHPeNlEAZtYB6AGsD3CfEgLumbOC7zfu4uHz+9PriMZ+hyMS8sYMSeSSozvwzJcZvJ26uVb/7UqHrnDOFZrZDcBcIBKY4pxbbmb3AsnOuTnA88BUM0unpGUwxtv8WGCymRUAxcB1zrlsgPL2Wc11kxr2ysINvPbdRq49sQtnHKlhKUSqy91n9Wb11r3cMmspXRIa1tode+ac/w9DBCopKcklJyf7HYYAyet3MPbZBQzr0oIplw0mMkJPIotUp+x9eZz1+NdEmPH2DcNp0TDmsPdlZinOuaTKyqn3Tw7ZT7tzuWba97RpWp/HxhylZCBSA1o0jOGZS5LI3pfH9a98T0EtdDIrIcghyS8s5pppKezPL+TZS5M00Y1IDerXrgn3n9ePHTn57Myp+VtRNfy1HJJ/vL+S1E27eHLcQLq3auR3OCJh79yj2nFGvza1MuWsWggSsPfTfuTFb9Zz+fCOmttApBbV1vzjSggSkHXZOdwyaykD2jflttN7+R2OiNQAJQSpVG5BEddOSyEq0nhi3MBaO1sRkdqlPgSp1D1zlrPqp728cNlg2jat73c4IlJDdKonv+qNlEymL9rEdSd24aSeLf0OR0RqkBKCVGj1T3u54600hnZqzqRTu/sdjojUMCUEKVdOXiHXvZJCw5h6GsFUpI7QUS6/4Jzj9tlprMvO4bGxA2jZONbvkESkFighyC+8snAjb6duYdKp3RnWpYXf4YhILVFCkJ9Jy9zNve+s4ITuCVx3Yle/wxGRWqSEIP+z+0AB172aQnzDaB65cAARGrROpE7RcwgClPQb/Pn1Jfy4K5cZVx9D8waa+UykrlELQQCYMn89H63YyuTTezKoQzO/wxERHyghCMs27+b+D1ZySq+WXHFsJ7/DERGfKCHUcTl5hfz+tcXEN4jhodH9MVO/gUhdpT6EOu7ut5ezfnsOr155NM3UbyBSp6mFUIe9tXgzb3yfye9P6soxXeL9DkdEfKaEUEdt2J7DnW8tI6lDM24c0c3vcEQkCCgh1EH5hcXc+NpiIgz+PWaAxikSEUB9CHXSPz9azZLM3fx33EDaNYvzOxwRCRI6NaxjvlyTxdNfZnDR0ERO17zIIlKKEkIdkrU3j0kzl9C9VUPuPrO33+GISJAJKCGY2UgzW21m6WY2uZz1MWY2w1u/0Mw6estPNbMUM0vzfp5capvPvX2mei9Nx1WDiosdN7++hL25BTw+diCx9SL9DklEgkylfQhmFgk8AZwKZAKLzGyOc25FqWJXADudc13NbAzwAHAhkA2c5ZzbYmZ9gblA21LbjXPOJVdTXeRXPPd1Bl+uyeK+c/rSo3Ujv8MRkSAUSAthCJDunMtwzuUD04FRZcqMAl7y3s8CRpiZOecWO+e2eMuXA7FmFlMdgUvglmzaxYMfrmZkn9aMG5rodzgiEqQCSQhtgU2lPmfy87P8n5VxzhUCu4GyTzqdByx2zuWVWvaCd7noLtOYCTVib24BN05fTMtGMdx/Xj8NTSEiFQokIZT3F8QdShkz60PJZaSrS60f55zrBxznvS4p9x83m2hmyWaWnJWVFUC4Utrdby9n0479PDr2KJrGaWgKEalYIAkhE2hf6nM7YEtFZcwsCmgC7PA+twNmA5c659Ye3MA5t9n7uRd4lZJLU7/gnHvGOZfknEtKSEgIpE7ieTt1M7MXb+bGEd0Y3LG53+GISJALJCEsArqZWScziwbGAHPKlJkDjPfejwbmOeecmTUF3gNuc87NP1jYzKLMrIX3vh5wJrCsalWR0jJ37ufOt5YxqEMzbjhJU2GKSOUqTQhen8ANlNwhtBKY6Zxbbmb3mtnZXrHngXgzSwcmAQdvTb0B6ArcVeb20hhgrpktBVKBzcCz1Vmxuqyo2DFp5hKcg0cu0NAUIhIYc65sd0DwSkpKcsnJuku1Mk9+ns6DH67m4fP7M3pQO7/DERGfmVmKcy6psnI6dQwzaZm7+ddHazij3xGcN7DszWAiIhVTQggjB/KLuGnGYlo0jOHv5/bVLaYickg02mkY+fv7K8jIyuHVK4fqFlMROWRqIYSJT1duZdqCjVx1XCeGdW3hdzgiEoKUEMJA1t48bpm1lF5HNOZPv+nhdzgiEqJ0ySjEOee4ZdYS9uUV8tqYAcREaRRTETk8aiGEuGkLNvDZ6ixuO70n3VtpFFMROXxKCCEsfdte7ntvJSd0T2D8sI5+hyMiIU4JIUTlFxZz0/RUGsRE8dD5R+oWUxGpMvUhhKh/fbyG5Vv28OylSbRsFOt3OCISBtRCCEELMrbz9JdrGTskkVN7t/I7HBEJE0oIIWZvbgE3z1xCx/gG3HVmL7/DEZEwoktGIeav76zgx90HmHXtMOKi9fWJSPVRCyGEfLjsJ2alZHLDSV0ZmNjM73BEJMwoIYSIbXtzuX12Gv3aNuH3I7r5HY6IhCElhBDgnOO2N9LIySvkkQv7U08T3ohIDdBflhAwY9EmPl21jVtH9qRrSz2NLCI1QwkhyG3YnsO9765geNd4LtPTyCJSg5QQglhRsePmmUuIjDAeGt2fiAg9jSwiNUf3LQaxp79cS/KGnfz7wgG0aVrf73BEJMyphRCklm/ZzSMfl8yNPGpAG7/DEZE6QAkhCOUWFDFpxhKaxUVz3zmaG1lEaocuGQWhf360mtVb9/LC5YNp1kBzI4tI7VALIcgsyNjOc1+vY9zQRE7q0dLvcESkDlFCCCIHB67r0DyOO87QwHUiUrt0ySiIaOA6EfFTQC0EMxtpZqvNLN3MJpezPsbMZnjrF5pZR2/5qWaWYmZp3s+TS20zyFuebmaPWR3vOf1oecnAddedqIHrRMQflSYEM4sEngBOB3oDY82sd5liVwA7nXNdgUeAB7zl2cBZzrl+wHhgaqlt/gtMBLp5r5FVqEdI274vj9tnp9GnTWNu1MB1IuKTQFoIQ4B051yGcy4fmA6MKlNmFPCS934WMMLMzDm32Dm3xVu+HIj1WhNHAI2dc9865xzwMnBOlWsTgpxz3D47jT0HCvnXBQOIjlK3joj4I5C/Pm2BTaU+Z3rLyi3jnCsEdgPxZcqcByx2zuV55TMr2WedMHvxZuYu38rNp3WnR2sNXCci/gmk57K8a/vuUMqYWR9KLiOddgj7PLjtREouLZGYmFhZrCFly64D/GXOcgZ3bMaVx3X2OxwRqeMCaSFkAu1LfW4HbKmojJlFAU2AHd7ndsBs4FLn3NpS5dtVsk8AnHPPOOeSnHNJCQkJAYQbGoqLHbfMWkpRsePh8/sTqYHrRMRngSSERUA3M+tkZtHAGGBOmTJzKOk0BhgNzHPOOTNrCrwH3Oacm3+wsHPuR2CvmR3t3V10KfB2FesSUqYt3MDX6dnc/ttedIhv4Hc4IiKVJwSvT+AGYC6wEpjpnFtuZvea2dleseeBeDNLByYBB29NvQHoCtxlZqne6+Djt9cCzwHpwFrgg+qqVLBbl53DP95fyfHdExg3NLwug4lI6LKSm3xCQ1JSkktOTvY7jCopLCrmgqe/JX3bPj764wm0bhLrd0giEubMLMU5l1RZOT0OW8ue/jKD7zfu4tExA5QMRCSo6Kb3WrRiyx7+/UnJHAdn99ccByISXJQQakleYRGTZqbSpH40f9McByIShHTJqJY8+skPrPppL8+PT6K55jgQkSCkFkItSNmwg6e+WMsFSe0Y0auV3+GIiJRLCaGG7c8v5OaZSziiSX3uOrPsmIAiIsFDl4xq2P0frGL99v28dtXRNIqt53c4IiIVUguhBn31QxYvf7uBCcM7cUyXsmP9iYgEFyWEGrL7QAF/fn0pXRIacMvIHn6HIyJSKSWEGvLXOcvJ2pfHvy4YQGy9SL/DERGplBJCDfhw2U+8uXgz15/Yhf7tm/odjohIQJQQqln2vjzumJ1G37aNueFkTYcpIqFDdxlVI+cct7/w/yAbAAAKTElEQVSZxt68Ql7TdJgiEmL0F6savfn9Zj5asZU/ndad7q00HaaIhBYlhGqyedcB7pmznCEdm3PFsZoOU0RCjxJCNSiZDnMJRU7TYYpI6FJCqAZTF2xgfvp27jijF4nxcX6HIyJyWJQQqigjax//74OVnNA9gYuGaDpMEQldSghVUFhUzM2vLyE6MoIHzjtScxyISEjTbadV8PSXGSzWdJgiEibUQjhMmg5TRMKNEsJh0HSYIhKOdMnoMDzysabDFJHwoxbCIVq0fgdPf7mWMYPbazpMEQkrSgiHYF9eIZNmptKuWX3u1HSYIhJmdMnoEPz9vRVk7jzAjInH0DBG/3UiEl4CaiGY2UgzW21m6WY2uZz1MWY2w1u/0Mw6esvjzewzM9tnZv8ps83n3j5TvVfL6qhQTfl05VZe+24TE4/vzJBOzf0OR0Sk2lV6mmtmkcATwKlAJrDIzOY451aUKnYFsNM519XMxgAPABcCucBdQF/vVdY451xyFetQ43bk5HPrG2n0bN2ISad29zscEZEaEUgLYQiQ7pzLcM7lA9OBUWXKjAJe8t7PAkaYmTnncpxzX1OSGEKSc447Zqex+0A+/7pgADFRmg5TRMJTIAmhLbCp1OdMb1m5ZZxzhcBuID6Afb/gXS66yyq4md/MJppZspklZ2VlBbDL6vVW6mY+WPYTk07tQe82jWv93xcRqS2BJITy/lC7wyhT1jjnXD/gOO91SXmFnHPPOOeSnHNJCQkJlQZbnbbsOsDdby8nqUMzJh6vOQ5EJLwFkhAygfalPrcDtlRUxsyigCbAjl/bqXNus/dzL/AqJZemgkZxsePPs5ZQVOz45wWa40BEwl8gCWER0M3MOplZNDAGmFOmzBxgvPd+NDDPOVdhC8HMosyshfe+HnAmsOxQg69JL327nvnp27nrzN50iG/gdzgiIjWu0ruMnHOFZnYDMBeIBKY455ab2b1AsnNuDvA8MNXM0ilpGYw5uL2ZrQcaA9Fmdg5wGrABmOslg0jgE+DZaq1ZFaRv28f9H6zi5J4tGTO4feUbiIiEgYCernLOvQ+8X2bZ3aXe5wLnV7Btxwp2OyiwEGtXQVExk2amEhcdyf3n9dPAdSJSZ+hx2zKe+CydpZm7+e+4gbRspDkORKTu0FhGpSzZtIvH56Vz7lFtOb3fEX6HIyJSq5QQPPvzC/njjFRaNYrhnrP7+B2OiEit0yUjz9/fW8m67Tm8cuVQmtSv53c4IiK1Ti0ESgaue2XhRq46rjPDurTwOxwREV/U+YSQvS+PW99YSs/Wjbj5NA1cJyJ1V52+ZOScY/IbS9mTW8grVx6tgetEpE6r0y2E6Ys28cnKbdw6sic9WjfyOxwREV/V2YSwLjuHe99ZwbFdW3D5sI5+hyMi4rs6mRAKior5w4xUoqMiePj8/kRo4DoRkbrZh/Cfeeks2bSLJy4aSOsmehpZRATqYAvh+407+c9n6fzuqLaccaSeRhYROahOJYScvJKnkVs3juWeUXoaWUSktDp1yehv765g4479zJh4DI1j9TSyiEhpdaaF8NHyn5i+aBPXnNCFIZ2a+x2OiEjQqRMJYdveXCa/mUafNo354yl6GllEpDxhnxCcc9w6ayk5eYX8+8IBREeFfZVFRA5L2PchFBU7urduxEk9W9KtlZ5GFhGpSNgnhKjICG47vZffYYiIBD1dPxEREUAJQUREPEoIIiICKCGIiIhHCUFERAAlBBER8SghiIgIoIQgIiIec875HUPAzCwL2BBA0RZAdg2HU5vCrT4QfnUKt/pA+NUp3OoDgdepg3MuobJCIZUQAmVmyc65JL/jqC7hVh8IvzqFW30g/OoUbvWB6q+TLhmJiAighCAiIp5wTQjP+B1ANQu3+kD41Snc6gPhV6dwqw9Uc53Csg9BREQOXbi2EERE5BCFVEIws5vMbJmZLTezP3jLZphZqvdab2apFWw70sxWm1m6mU2u3cgrVsU6rTezNK9ccu1GXr4K6jPAzBYcjNPMhlSw7Xgz+8F7ja/dyCtWxToVlfou59Ru5OWroD79zexb7/fpHTNrXMG2QXccVbE+QXEMmdkUM9tmZstKLWtuZh97x8PHZtbMW25m9pj3HSw1s4EV7HOQV7d0r7xVGohzLiReQF9gGRBHycQ+nwDdypT5J3B3OdtGAmuBzkA0sAToHcp18tatB1r4XY/K6gN8BJzulfkt8Hk52zYHMryfzbz3zUK5Tt66fX7XIcD6LAJO8MpMAP5WzrZBdxxVpT7euqA4hoDjgYHAslLLHgQme+8nAw+U+n37ADDgaGBhBfv8DjjGK/fBwd/XX3uFUguhF7DAObffOVcIfAGce3Cll/0uAF4rZ9shQLpzLsM5lw9MB0bVQsyVqUqdglFF9XHAwTO0JsCWcrb9DfCxc26Hc24n8DEwshZirkxV6hSMKqpPD+BLr8zHwHnlbBuMx1FV6hM0nHNfAjvKLB4FvOS9fwk4p9Tyl12JBUBTMzui9Ibe58bOuW9dSXZ4udT2FQqlhLAMON7M4s0sjpIs2b7U+uOArc65H8rZti2wqdTnTG+Z36pSJyj5o/SRmaWY2cQajjUQFdXnD8BDZrYJeBi4rZxtQ+07CqROALHeJaUFZlbpAVkLKqrPMuBsr8z5/Pz38KBg/I6qUh8IvmOotFbOuR8BvJ8tveWBfA9tveW/VuYXQmZOZefcSjN7gJJsv4+S5mphqSJjqfhMurxrZ77fXlXFOgEMd85tMbOWwMdmtso70/DFr9TnWuCPzrk3zOwC4HnglDKbh9p3FEidABK976gzMM/M0pxza2sr/rJ+pT4TgMfM7G5gDpBfzuZB9x1VsT4QZMdQgAL5Hg7ruwqlFgLOueedcwOdc8dT0rz6AcDMooDfATMq2DSTn58htCNImvhVqBPOuS3ez23AbEqa9L6qoD7jgTe9Iq9Tfpyh9h0FUqfS31EG8DlwVI0HXIny6uOcW+WcO805N4iSk5DyklZQfkdVqE9QHkOlbD14Kcj7uc1bHsj3kOkt/7Uyv+R3Z8qhvICW3s9EYBVepyMl15q/+JXtoijppOzE/3WG9fG7PlWsUwOgUan33wAjg7E+wErgRG/5CCClnO2aA+u88s289839rk8V69QMiPHet6AkkQTDzQzl1efgsghKrjdPKGe7oDyOqlCfoDqGgI78vFP5IX7eqfyg9/4Mft6p/F0F+1vkrT/YqfzbSmPw+8s8xP+wr4AV3i/iiFLLXwSuKVO2DfB+qc+/BdZQcqZwh991qWqdKLnTY4n3Wh4sdSqvPsCxQIq3bCEwyFueBDxXatsJQLr3utzvulS1TsAwIM0rkwZc4XddfqU+N3nHxxrgfv7vodWgP44Otz7BdAxR0or5ESig5Oz+CiAe+JSSE4lP8U6QvD/wT3jfQRqQVGo/qaXeJ1HSl7IW+M/B/4Nfe+lJZRERAUKsD0FERGqOEoKIiABKCCIi4lFCEBERQAlBREQ8SggiIgIoIYiIiEcJQUREAPj/t6I7WHRbWxsAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(tbout[970:1000],bout[970:1000])" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.04028381793551497" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.max(bout)" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([989]), array([0]))" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.where(bout==np.max(bout))" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [], + "source": [ + "filt2 = bout[989-99:989+98]" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-3.00869288e-04],\n", + " [-4.45641762e-04],\n", + " [-5.91481095e-04],\n", + " [-7.36066637e-04],\n", + " [-8.76963144e-04],\n", + " [-1.01165372e-03],\n", + " [-1.13757602e-03],\n", + " [-1.25216124e-03],\n", + " [-1.35287558e-03],\n", + " [-1.43726345e-03],\n", + " [-1.50299200e-03],\n", + " [-1.54789623e-03],\n", + " [-1.57002404e-03],\n", + " [-1.56768041e-03],\n", + " [-1.53947007e-03],\n", + " [-1.48433779e-03],\n", + " [-1.40160548e-03],\n", + " [-1.29100549e-03],\n", + " [-1.15270908e-03],\n", + " [-9.87349619e-04],\n", + " [-7.96039594e-04],\n", + " [-5.80380941e-04],\n", + " [-3.42468088e-04],\n", + " [-8.48832612e-05],\n", + " [ 1.89316336e-04],\n", + " [ 4.76619718e-04],\n", + " [ 7.73091844e-04],\n", + " [ 1.07441189e-03],\n", + " [ 1.37591994e-03],\n", + " [ 1.67267189e-03],\n", + " [ 1.95950204e-03],\n", + " [ 2.23109302e-03],\n", + " [ 2.48205215e-03],\n", + " [ 2.70699358e-03],\n", + " [ 2.90062512e-03],\n", + " [ 3.05783874e-03],\n", + " [ 3.17380345e-03],\n", + " [ 3.24405935e-03],\n", + " [ 3.26461135e-03],\n", + " [ 3.23202113e-03],\n", + " [ 3.14349584e-03],\n", + " [ 2.99697185e-03],\n", + " [ 2.79119224e-03],\n", + " [ 2.52577617e-03],\n", + " [ 2.20127898e-03],\n", + " [ 1.81924122e-03],\n", + " [ 1.38222565e-03],\n", + " [ 8.93840700e-04],\n", + " [ 3.58749524e-04],\n", + " [-2.17336328e-04],\n", + " [-8.27679267e-04],\n", + " [-1.46455455e-03],\n", + " [-2.11930588e-03],\n", + " [-2.78241781e-03],\n", + " [-3.44360450e-03],\n", + " [-4.09191446e-03],\n", + " [-4.71585031e-03],\n", + " [-5.30350257e-03],\n", + " [-5.84269600e-03],\n", + " [-6.32114693e-03],\n", + " [-6.72662967e-03],\n", + " [-7.04714991e-03],\n", + " [-7.27112275e-03],\n", + " [-7.38755293e-03],\n", + " [-7.38621460e-03],\n", + " [-7.25782788e-03],\n", + " [-6.99422940e-03],\n", + " [-6.58853406e-03],\n", + " [-6.03528506e-03],\n", + " [-5.33058967e-03],\n", + " [-4.47223792e-03],\n", + " [-3.45980190e-03],\n", + " [-2.29471338e-03],\n", + " [-9.80317771e-04],\n", + " [ 4.78097188e-04],\n", + " [ 2.07329940e-03],\n", + " [ 3.79613790e-03],\n", + " [ 5.63559653e-03],\n", + " [ 7.57887562e-03],\n", + " [ 9.61150166e-03],\n", + " [ 1.17174638e-02],\n", + " [ 1.38793763e-02],\n", + " [ 1.60786641e-02],\n", + " [ 1.82957713e-02],\n", + " [ 2.05103878e-02],\n", + " [ 2.27016922e-02],\n", + " [ 2.48486072e-02],\n", + " [ 2.69300647e-02],\n", + " [ 2.89252752e-02],\n", + " [ 3.08139982e-02],\n", + " [ 3.25768105e-02],\n", + " [ 3.41953654e-02],\n", + " [ 3.56526419e-02],\n", + " [ 3.69331772e-02],\n", + " [ 3.80232803e-02],\n", + " [ 3.89112220e-02],\n", + " [ 3.95873992e-02],\n", + " [ 4.00444701e-02],\n", + " [ 4.02774572e-02],\n", + " [ 4.02838179e-02],\n", + " [ 4.00634810e-02],\n", + " [ 3.96188470e-02],\n", + " [ 3.89547544e-02],\n", + " [ 3.80784111e-02],\n", + " [ 3.69992928e-02],\n", + " [ 3.57290094e-02],\n", + " [ 3.42811430e-02],\n", + " [ 3.26710588e-02],\n", + " [ 3.09156929e-02],\n", + " [ 2.90333205e-02],\n", + " [ 2.70433083e-02],\n", + " [ 2.49658553e-02],\n", + " [ 2.28217249e-02],\n", + " [ 2.06319754e-02],\n", + " [ 1.84176893e-02],\n", + " [ 1.61997090e-02],\n", + " [ 1.39983804e-02],\n", + " [ 1.18333094e-02],\n", + " [ 9.72313380e-03],\n", + " [ 7.68531478e-03],\n", + " [ 5.73594917e-03],\n", + " [ 3.88960596e-03],\n", + " [ 2.15918824e-03],\n", + " [ 5.55821981e-04],\n", + " [-9.11227333e-04],\n", + " [-2.23461004e-03],\n", + " [-3.40891947e-03],\n", + " [-4.43069159e-03],\n", + " [-5.29837794e-03],\n", + " [-6.01229319e-03],\n", + " [-6.57453903e-03],\n", + " [-6.98890620e-03],\n", + " [-7.26075700e-03],\n", + " [-7.39689067e-03],\n", + " [-7.40539422e-03],\n", + " [-7.29548149e-03],\n", + " [-7.07732315e-03],\n", + " [-6.76187061e-03],\n", + " [-6.36067646e-03],\n", + " [-5.88571435e-03],\n", + " [-5.34920081e-03],\n", + " [-4.76342161e-03],\n", + " [-4.14056493e-03],\n", + " [-3.49256348e-03],\n", + " [-2.83094744e-03],\n", + " [-2.16670989e-03],\n", + " [-1.51018612e-03],\n", + " [-8.70947940e-04],\n", + " [-2.57713811e-04],\n", + " [ 3.21724618e-04],\n", + " [ 8.60559262e-04],\n", + " [ 1.35300561e-03],\n", + " [ 1.79432625e-03],\n", + " [ 2.18083825e-03],\n", + " [ 2.50990526e-03],\n", + " [ 2.77991499e-03],\n", + " [ 2.99024325e-03],\n", + " [ 3.14120569e-03],\n", + " [ 3.23399861e-03],\n", + " [ 3.27063018e-03],\n", + " [ 3.25384360e-03],\n", + " [ 3.18703380e-03],\n", + " [ 3.07415910e-03],\n", + " [ 2.91964954e-03],\n", + " [ 2.72831328e-03],\n", + " [ 2.50524258e-03],\n", + " [ 2.25572088e-03],\n", + " [ 1.98513207e-03],\n", + " [ 1.69887345e-03],\n", + " [ 1.40227322e-03],\n", + " [ 1.10051365e-03],\n", + " [ 7.98560761e-04],\n", + " [ 5.01101043e-04],\n", + " [ 2.12486046e-04],\n", + " [-6.33149855e-05],\n", + " [-3.22754042e-04],\n", + " [-5.62734752e-04],\n", + " [-7.80634259e-04],\n", + " [-9.74316712e-04],\n", + " [-1.14213862e-03],\n", + " [-1.28294643e-03],\n", + " [-1.39606680e-03],\n", + " [-1.48129013e-03],\n", + " [-1.53884790e-03],\n", + " [-1.56938458e-03],\n", + " [-1.57392482e-03],\n", + " [-1.55383658e-03],\n", + " [-1.51079117e-03],\n", + " [-1.44672077e-03],\n", + " [-1.36377435e-03],\n", + " [-1.26427272e-03],\n", + " [-1.15066342e-03],\n", + " [-1.02547614e-03],\n", + " [-8.91279368e-04],\n", + " [-7.50638810e-04],\n", + " [-6.06078155e-04],\n", + " [-4.60042627e-04]])" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filt2" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [], + "source": [ + "w, h = sps.freqz(filt2)" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aclaycomb/anaconda3/envs/geomagenv36/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.\n", + " warnings.warn(message, mplDeprecation, stacklevel=1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEWCAYAAAD/6zkuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXucVVP/x9/fmWmmZqb7Rboo3ZAiJE+RoouKiiQikYSU3OXy84zxuBOKUiEqdPOIUiSR9ChKj1Iq3aR0ofv9/v39sfZ+9p5jzsypuewzZ9b79dqvs87ee631PXvqfM53re/6LlFVLBaLxWKJZeKCNsBisVgslrzGip3FYrFYYh4rdhaLxWKJeazYWSwWiyXmsWJnsVgslpjHip3FYrFYYh4rdpa/ISJDReTx3L43TH0VkVphrp0kIrNEZLeIDBCRR0XkLedadaduwon2HYFtGfrPq34sFkvek2dfFJboRER+A04CjgBHgV+AUcBwVT0GoKp3RNqe/14RaQ68p6pVcsnc24AtQAnNZkGoiMx0+n4rl/o+rv4tFkt0Yz27wkl7VS0OVAOeA/oDbwdrUqZUA37JD6ERkfjj7T8vvcpopLB9XkuMoar2KEQH8BvQMuRcI+AYUM95/y7wlO/6Q8BGYANwK6BALf+9QAqw32lnj3NUctqeA+xw2ngdSPS1/b+2Qmx6FzgMHHLaagk8gfHeAKo7dROApzFe6gHn3tede04HpgPbgOVAl5D23wCmAnszeSbh+v8QeA/Y5TyLOOBhYBWwFRgPlPG1cyOw1rn2mP/5Z/KcmwPrfe8rAf8G/gLWAP18155w+hoF7AaWAA1916sCHzl1tzrPPcl5FvV991Vw/m7lM/kb3Az8B3jFqfeUc/4WYCmwHZgGVHPOi3Pvn8BOYBEZ/00Ndf4eu4Fv3HrO9SbAPKfePKCJ79pM4F+OLbuBL4ByzrWizt9jK+bf2DzgJOdaScyPuI3AH5h/p/FB/x+0RzCH9ewsqOoPwHqgaeg1EWkD3If5sq8FNAvTxl6gLbBBVVOdYwNGhO4FygGNgRbAnRHYdDPwPvCC09aXWdz7GPAt0Ne5t6+IpGC+WD/AfKF3BYaIyJm+qtdjhLI4MDvC/jtiBK+Uc70fcKXzXCphBGAwgIjUxQjqjc61skBEQ7wiEgdMBhYClTHP7R4Rucx3WwdgrGPLJIyguV7qpxiRre7UH6uqB537u/na6Ap8qap/hTHlAmA15hk+LSJXAo8CnYDymOc+xrm3NXAxUMex6VqMCLncgBGtcsBPmOeHiJQBpgCDMM/oZWCKiJT11b0e6OHYkQg84Jy/CSNqVZ26d2DEG2AkZri+FnCOY9+tYT6nJcaxYmdx2QCUyeR8F+AdVV2iqvuA9ONpVFV/VNW5qnpEVX8DhhFGMHOZK4DfVPUdp+8FGC+ps++eT1T1P6p6TFUPRNjuHFX92KmzH7gdeExV1zti8gTQ2Rny6wx8qqqznGuPYzzfSDgf4209qaqHVHU18CZwne+e2ao6VVWPAqOBs53zjTDi+qCq7lXVA6rqivlI4HpHTMEI8egs7Nigqq85z9D9vM+q6lJVPQI8AzQQkWoYT7g4xqMW556Nvram+J7FY0BjEakKXA6sUNXRTj9jgGVAe1/dd1T1V8eG8UAD5/xhjMjVUtWjzr+3XSJyEubH1z3OM/gT43X6n5+lEGHH4C0ulTFDVaFUAub73q87nkZFpA7ml3pDIBnzb+7HE7TxeKgGXCAiO3znEsj4xX5cnyVMnWrARBHxi9hRTBBQJf/9qrpXRLYSGdWASiH2x2M8KZdNvvI+oKgjslWBtY4YZUBVvxeRvUAzEdmI8XomZWFHZp93YEh0qgCVVfUrEXkd49meIiITgQdUdVdoW6q6R0S2YZ5RJYwX6mct5t9kuM+a6pRHO593rIiUwgxpPubYWQTYKCJuvbhMPo+lkGA9Owsicj7mi2V2Jpc3knHorWoWTWUWyPEG5ld6bVUtgRkCk0zuyymhfa8DvlHVUr4jVVV7Z2PvifTTNqSfoqr6B+bZ/e95iUgyxgtx2Yv5AeBSMaTdNSHtFlfVdhHYuA4jNuF+zI7EDGXeCHyYjVeb2ee9PcSuYqr6HYCqDlLV84AzMcOZD/rq+p9FKmYkYYNzVAvp5xTMPFuWqOphVU1X1bqYeb8rgO6OnQcxc3uunSVU9cys2rPELlbsCjEiUkJErsDM47ynqj9nctt4oIeInOF8Wf8ziyY3A2VFpKTvXHFMMMceETkd6J1pzZyzGajhe/8pUEdEbhSRIs5xvoickcv9DsXMZVUDEJHyItLRufYhcIWIXCQiicCTZPw/9xPQTkTKiEhF4B7ftR+AXSLSX0SKiUi8iNRzfphkxw8YoX1ORFJEpKiIXOi7Phq4CiN4o07g8z7izn2KSEkRucYpny8iF4hIEYyQH8B4uS7tfM/iX8D3qroOEyRUR0SuF5EEEbkWqIv5G2aJiFwiIvWdecpdmGHNo87w6RfAAOffeZyI1BSR/BhCt0QhVuwKJ5NFZDfm1+9jmGHGHpndqKqfYQIHvgZWYiIrwfxqDr13GSZYYbWI7BCRSphAgusxUXRvAuNy96P8j4GYubLtIjJIVXdjAhKuw3gOm4DnMRGJud3vJOAL55nOxQR1oKpLgD6YIJmNmOCV9b66ozEBKL9hvpj/92ycebj2mLmpNZj1fm9hgjGyxFe3FvC70+e1vuvrgQUYr+3bzNrIou2JmOc4VkR2AYsxc2MAJTB/4+14Eagv+ap/AKRhhsvPwwSsoKpbMR7Z/U6dh4ArVHVLBCZVxPyo2IWJEP0GM5QJxsNLxKwl3e7cd/LxfF5L7CCqdq2sJXIcz2gxkJTZnJAla5xF/bdmFV2aT3aMwASf/F8+9fcuZllFvvRnsYRiPTtLtojIVSKSKCKlMb/qJ1uhK7iISHXM0oFoTCRgseQJVuwskXA7ZnHyKswcTF7Nu1nyGBH5F8Yzf1FV1wRtj8WSX9hhTIvFYrHEPNazs1gsFkvME5OLyuPi4rRYsWJBm2GxWCwFin379qmqxqQTFJNiV6xYMfbu3Ru0GRaLxVKgEJH92d9VMIlJBbdYLBaLxY8VO4vFYrHEPFbsLBaLxRLzWLGzWCwWS8xjxc5isVgsMU/Ui52TtX2kiLwpIjcEbY/FYrEUVkSkjYgsF5GVIvJw0PYcD4GInYiMEJE/RWRxyPnMHmQnzJ5bvYAO+W6sxWKxWHC2URqM2eWiLtBVROoGa1XkBLXO7l3gdXx7afkeZCvMliTzRGQSZuNQd5+1o+Qhnyz7hHW71nFx2S789J8KHDoEF14Ip58OIvDzz/DFF3DZZVCvXl5aYrFYLFFHI2Clqq4GEJGxQEfMFkpRTyBip6qznMzrfsI9yPUYwfuJCD3RMmXKMHPmzOO265X/DuWbXZ8Tx93Ujj+PBgmXsnlKU0rOSCE+HvbtM/dNnw7r10PRosfdhcVisUQzCSIy3/d+uKoOd8qVMXtguqzH2buxIBBNGVTCPchBwOsicjkwOVxlEbkNuA0gMTGR5s2bH7cB7X5oTvyyxRyrO4YVSWMYt+95Pjo4kLLrrqDk7125+cJ2tGlZlObNjXc3Lq+2IbVYLJZgOKKqDcNck0zOFZidBALb9cDx7D5V1XrO+2uAy1T1Vuf9jUAjVb3reNtOSUnRnKYLU1W+/+N7Pvj5A8YtGcefe/+kRFIJrj7janbOvp6PX72ErX/FU6pUjrqxWCyWqEFE9qlqSphrjYEnVPUy5/0jAKr6bD6aeMJEUzTmeqCq730VYMPxNCAi7UVk+NGjOZ/aExH+UeUfDGo7iD/u+4Mvun1BpzM68e+l/+aj1FYcu6cy3d6/m+/Xf4/dJslisRQC5gG1ReRUEUkErgMmBWxTxESTZ5cA/Aq0AP7APNjrVXXJ8badG55dOA4cOcCkpVO5/tkPoM6nHJWD1Chdg671unJ9/eupW77ABCdZLBZLBrLy7Jzr7YBXgXhghKo+nW/G5ZBAxE5ExgDNgXLAZiBNVd/O6YMUkfZA+6SkpF4HDhzIZaszctFFcCRhJ3e8OpExi8fw5eovOabHOPuks+laryvX1bsOEWHwD4PpcmYXyhQrw+B5g7nq9KsokVSCV+e+Stf6XSmaUJQXv3uRm8++mQ6ndSA+Lj5P7bZYLJZwZCd2BZmY3Kk8Lz07lz59YPRo2LED4uJg857NjF8ynjGLxzBn/RwAyhYry9b9WwFITUxlz6E9ACTGJ3Lo6CEA4iSOY3oMgColqjD26rFceMqFeWq7xWKxZIYVuwJGfojd8OFw++2wahXUqJHx2urtqxm7eCwfL/uY7md3R1UZt2Qct5xzC6rK2CVjueO8O9h/ZD/jl4znrkZ3sfvQbu6bdh8JcQlMvHYi9U+qn6f2WywWSyhW7AoI+TmMOXs2NG0Kn30GbdrkTpszf5tJx7Ed2XVwF02qNuGt9m9xRvkzcqdxi8ViyYZYFrtoisbMMao6WVVvi4/P+3kv15tbtSr32mxevTmr+q3ipVYvsXzLcq798Fo279mcex1YLBZLISWmxC4/OflkKFYMVq/O3XbLJZfj/ib3816n9/h166+c8uopXP/v61m/a33udmSxWCyFiJgSu9xcZ5d9X8a7y22xc2lTqw0L71jI7efdzqTlk2j7flt2HtiZN51ZLBZLjBNTc3Yu+RGgAtC+PaxbBz/9lLf9fLn6S9q+35YyxcrQ85yePHThQ5QqalO3WCyW3MXO2VkypXJl2HBcOV5OjJY1WvJV969oXKUxz//neZq/25x9h/flfccWi8USI1ixywGVKsFff8GhQ3nfV9NqTfn4uo+Z3HUyCzcvpNGbjRg6fygHjxzM+84tFoulgBNTYpefc3ZgxA5g06Z86Q6AdrXbMa7zOIrEF6H3lN40H9n8fwvULRaLxZI5MSV2+bn0ADyxy4+hTD9dzuzCgtsWMOrKUcxdP5f2Y9ozd/3c/DXCYrFYChAxJXb5TeXK5jW/xQ7Mrgw3nn0jA1oPYP6G+TR+uzFXjr2So8fyx6u1WCyWgoQVuxxQsaJ53bgxOBvua3wfa+9Zyz8v/iefLP+EHp/0YOW2lcEZZLFYLFGIFbscUKaMed26NVg7UhNTeaL5E9z3j/sYt2QcdV6rwx2f3mH32bNYLBaHmBK7/A5QKVIESpUyEZlBIyIMuGwAv939G73O7cWwH4fx0PSH2LovYCW2WCyWKMAuKs8hderAeefBmDH50l1EHD12lG4TuzF28ViSiyTT/8L+/LPZP4M2y2KxRDl2UbklLOXKwZYtQVuRkfi4eMZcPYafe/9M65qtSZuZxitzXrFLFCwWS6HFil0OKVcuOoYxM6NehXqMvXosLU5twX1f3EeNgTV4e8HbQZtlsVgs+Y4VuxwSjZ6dn6SEJKbfOJ3Pb/icaqWq0WtyL/79y79t8IrFYilUWLHLIeXLR7fYgQleuazWZUzrNo2zK55N5wmdafRWI6aumBq0aRaLxZIvxJTY5Xc0JphozIMHIY83Rs8VUhNTmdNzDkPaDWHngZ10HNuRGatnBG2WxWKx5DkxJXb5nS4MjNgB7NiRb13miKIJRel9fm/m9ZrHaWVPo/V7rek0rhPzN8wP2jSLxWLJM2JK7IKgoImdS8miJZnVYxb9L+zPrLWzaPpOU75b913QZlksFkueYMUuhxRUsQMoU6wMz7R4hl/6/EKVElVoNboV/T7rx5rta4I2zWKxWHIVK3Y5pGRJ81oQxc6lQkoFZnSfQee6nRk6fyhnDT2L2b/PDtosi8ViyTWs2OUQ17PbuTNYO3LKKSVPYeSVI1nZbyUVUyvSaVwnhswbYjeHtVgsMYEVuxxSkIcxM+OUkqfw8bUfU7tsbfpM7UOt12qxYOOCoM2yWCxRjohcIyJLROSYiDQMufaIiKwUkeUicpnvfBvn3EoReTgv7bNil0NiTewAzqxwJrN7zGb6jdNRVTqN68SHv3zIMT0WtGkWiyV6WQx0Amb5T4pIXeA64EygDTBEROJFJB4YDLQF6gJdnXvzhJgSuyDW2RUrBgkJsSV2YBait6zRkgnXTCApIYlrJlxD/Tfqs3zL8qBNs1gsUYiqLlXVzL4gOgJjVfWgqq4BVgKNnGOlqq5W1UPAWOfePCEhrxoOAlWdDEyuWrVqr5kzZ+Zbvy+9BKVLQz52ma8MOXMI3/z1DQNXDKTNO224r8591C9ZP2izLBZL7pMgIv5Ft8NVdXgO26wMzPW9X++cA1gXcv6CHPYVlpgSO5dt27bRvHnzfOuvRw9o2hRGjcq3LvOdFrSgycom3PTxTfT7qR/Nqzdn9FWjqVKiStCmWSyW3OOIqjYMd1FEvgQqZnLpMVX9JFy1TM4pmY8s5lnS3pgaxgyK1FTYsydoK/KeNrXasLrfal5u/TLzN8znmgnXsG7nuuwrWiyWmEBVW6pqvUyOcEIHxmOr6ntfBdiQxfk8wYpdLlBYxA4gJTGFexvfy9sd3ua/G/9LjUE1uHHijWzbvy1o0ywWS3QyCbhORJJE5FSgNvADMA+oLSKnikgiJohlUl4ZYcUuFyhevPCInUuXM7uwrO8y+p7fl/FLxtNlQhd2H9wdtFkWiyUgROQqEVkPNAamiMg0AFVdAowHfgE+B/qo6lFVPQL0BaYBS4Hxzr15Y18s7muWkpKie/fuzbf+OnWClSth0aJ86zKqGPnTSG6ZdAslkkpwx3l38Hizx0kukhy0WRaL5TgRkX2qmhK0HXmB9exygcI0jJkZNzW4ibk959KqRiue/8/zdB7fmUNHDwVtlsVisfwPK3a5QGoq7C7kI3jnVz6f8deMZ9gVw/hs5WecMfgMXv/hdQ4fPRy0aRaLxWLFLjco7J6dn17n9WLSdZM4KeUk7vrsLjqN78TRY/m3yN9isVgyw4pdLlC8uNmp/MiRoC2JDtqf1p7ven7HoDaD+PTXT2kxqoXdRcFisQRK1IudiNQQkbdF5MOgbQlHaqp5zceYmAJB30Z9GdJuCMu2LKPpO03pPrE7sRgQZbFYop88FTsRGSEif4rI4pDzEWe6dvKm9cxLO3OKK3Z2KDMjIkLv83uzqt8qHmzyIKMXjebq8Vfz8+afgzbNYrEUMvLas3sXk+X6f4TLdC0i9UXk05CjQh7blyu4YlfYg1TCkZKYwvMtn+eJZk/w5eovOXvo2dzz+T1Bm2WxWAoReSp2qjoLCE2tkWmma1X9WVWvCDn+zEv7cotkZ0nZvn3B2hHNiAhpzdP47Z7fuPXcWxn4/UD6TOnDpj2bgjbNYrEUAoKYs6vM3zNdVw5zLyJSVkSGAueIyCNZ3HebiMwXkflH8jlSpFgx87p/f752WyApU6wMQy4fQu+GvRn24zCqv1qdZ799NmizLBZLjBOE2IXLgJ0pqrpVVe9Q1ZqqGvZbUVWHq2pDVW2YkJC/mzlYsTs+EuISGHL5EJb3XU672u149KtHeX728+w/bB+gxWLJG4IQuzzLdB3E5q1gxe5EqVmmJmOuHkOH0zrw8IyHqfZqNd5e8HbQZlkslhgkCLHLs0zXqjpZVW+Lj4/PjeYixordiZOUkMTH137M1zd9zenlTqfX5F68veBtjumxoE2zWCwxRF4vPRgDzAFOE5H1ItIzLzNdW8+uYCIiNK/enM+7fU6z6s24dfKt1BtSj0nL82y3D4vFUsiwux7kAhs3QqVK8MYbcMcd+dZtTHL46GHGLxnPs7OfZdmWZUy4ZgJXnXFV0GZZLIUCu+uBJUusZ5d7FIkvwg1n3cDcW+fSsFJDOo3vRMtRLflu3XdBm2axWAowMSV2dhgzdkhNTOXL7l/yfMvnWbplKRe/czFTfp0StFkWi6WAElNiF1SASmIiiFixy21SE1N56MKHWNpnKfVPqk+n8Z24a+pdbNy9MWjTLBZLASOmxC4oRIx3Z8UubyiRVILPb/icHg16MPTHodQcVJOZv80M2iyLxVKAiCmxC2oYE4zY2XRhecdJqScx9IqhLO+7nFNKnkKHMR1I+zqNHQd2BG2axWIpAMSU2AU1jAnWs8svapSuwdQbptK6ZmuenPUkpw48lXl/zAvaLIvFEuXElNgFSXKyFbv8okbpGnzY5UP+e/t/KZ5YnCvGXMHwH4dz6OihoE2zWCxRihW7XMJ6dvlPg4oN+PT6T6lZuia3f3o7dV6rw9K/lgZtlsViiUJialG5iLQH2iclJfU6cOBAvvbduDEULw5ffJGv3VoAVWXaqml0n9id4knFGXbFMFqc2gKRzHKOWyyWcETronJJl8ZAN6ApcDKwH1gMTAHe0zTdmW0b2YmdCA2dDir5OvhS9W/71EUN+Z1BBeDSS+HwYfj223zt1uJj7vq5XDPhGtbvWk/DSg0Z13kcNUrXCNosi6XAEI1iJ+nyGWazgE+A+cCfQFGgDnAJ0B54WdM0y/yCYcVOhJuBfsAa4MeQDi7EiN7jqvye84+TuwQhdm3bwtat8MMP+dqtJYQDRw7w3qL36P9lf0oVLcXkrpOpW75u0GZZLAWCKBW7cpqmW3J8TxZi1wcYoUqmM1EiNADKqjIjQpvzjSDErmNHWLsWfvopX7u1hOGHP36g1ehW7Dq4iw6ndeCNy9+gUvFKQZtlsUQ1ORE7EXkR42UdAlYBPVR1h3PtEaAncBTop6rTnPNtgIFAPPCWqj4Xtv10SQH2a5oek3SpA5wOfKZpejgS+8IGqKgyOJzQOdd/ikahC4qkJDhkgwGjhkaVG7Gq3yqeaPYEM1bPoPHbjVnyZ65srmGxWDJnOlBPVc8CfgUeARCRupit3M4E2gBDRCReROKBwUBboC7Q1bk3HLOAopIulYEZQA/g3UiNCyt2IhQV4SYROoggIvQX4VMRBopQLtIO8pMgF5UnJlqxizbKJZcjrXkas3rM4tDRQ5z/5vn0mdKH7fu3B22axRJzqOoXzhZuAHMxG3MDdATGqupBVV0DrAQaOcdKVV2tqoeAsc694RBN031AJ+A1TdOrMCIZEQlZXBsFHAZSgPsxc3SvAxdh1PSKSDvJL1R1MjC5atWqvWbOnJmvfbdqBRdcAPncrSVCBp45kJFrRzLsx2FMWzqN1855jWLxxYI2y2KJNhJEZL7v/XBVHX4C7dwCjHPKlTHi57LeOQewLuT8BVm0KU5U5g2YIVHIWsMykNWNdVWpJ0ICsF6VZs75z0VYGGkHQbBt2zaaN2+er3327g0ffQSbN+drt5bjoAtdmPLrFNqPaU/Pn3ryWNPHuPXcW0lKSAraNIslWjiiqg3DXRSRL4GKmVx6TFU/ce55DDgCvO9Wy+R+JfORxayWB9yNGRqdqGm6RNKlBvB1FvdnICuxOwSgyhERNoRcy/9xwijHDmMWDC6vcznf3PwNj331GH0/68sHiz9g5k0zKRJfJGjTLJaoR1VbZnVdRG7CjPq1UC/6cT1Q1XdbFfifpoQ7//e+03QWZt7Ofb8as2IgIrISuyoiDMKoslvGeV85fLXCSWIiHDwYtBWWSGharSnf3PwN7/z0Dj0n9eSsoWeR3jydznU7Eyc2qZDFciI4kZX9gWaq6k+LPwn4QERexqzXrg38gNGS2iJyKvAHJojl+rDtmwjMB4Dq+LRL0/TSSOzLSuwe9JXnh1wLfV/osZ5dwUJEuOWcWyhbrCyPfvUo1354LW1rteXT6z+1gmexnBivA0nAdCd70VxVvUNVl4jIeOAXzPBmH1U9CiAifYFpmKUHI1Q1q5DpCcBQ4C1OYHTRpgvLJZ58EtLS4MgRCGDTBUsOOHrsKC/PeZmHvnyIljVa8mTzJ2lctXHQZlks+U40Lip3kXT5UdP0vBOtH9azE2EyWUwWqtLhRDvNK9xozJSUlF753Xdionk9dMgkhbYUHOLj4nmgyQMUK1KMtJlpNBnRhO5nd+fdju/a/JoWS/QwWdLlTmAi8L9JI03TiFJXZjWM+ZLz2gkTffOe874r8NtxmxnjWLEr2IgIfRv1pUeDHjz5zZO88N0LHD56mKcufcrm17RYooObnFf/FJsCEf0HDSt2qnwDIMK/VLnYd2myiBcRYzEkOdHrdt6uYJOSmMJzLZ8juUgyz8x+hnFLxnHvP+7lxVYvWi/PYgkQTdNTc1I/kgV55UWoocpqABFOBcrnpNNYxPXsbERmwUdESGueRq/zepH2dRoD5gxg/+H9PHXpU5QuVjpo8yyWQoukSz1M1pSi7jlN01GR1I1E7O4FZooYscOEfd52nDbGPP5hTEtsUKl4JYa3H05KYgoDvx/IyIUj+b+L/4/+F/a3Xp7Fks9IuqQBzTFiNxWTU3M2JttXtmQbY63K55h1EXc7x2mq2C1KQ7DDmLGJiPBqm1dZeMdCWtVsxSMzHuHxrx/nyLEj2Ve2WCy5SWegBbBJ07QHcDZmqUNEZJUI+iK3rMpBVRY6x0HnegkR6p243bGF9exim7NOOouPunxEt7O68fS3T1P/jfr8+5d/E0tLdyyWKGe/pukx4IikSwnMHqsRR49l5dldLcJ3IvxThMtFaCTCxSLcIsJo4FMgquIOg971AOycXSwjIoy6chQfdfmIOImj84TODJgzwAqexZI/zJd0KQW8idlQfAEmE0tEZLmoXITSGNfxQuBkYD+wFJiiyuwcGJ2nBLF56/Tp0Lo1zJ4NF16Yr11bAuDosaN0HNuRKSum0KhyI5665Cla1WwVtFkWS46I5kXlfiRdqgMlNE0XRVwnFn+VBiF233wDzZvDV1/BJZfka9eWgDh89DCjFo7iX7P+xdqda3mn4zvc3ODmoM2yWE6YaBQ7SZfTNU2XSbqcm9l1TdMFkbQT8V5Alqyxw5iFjyLxReh5bk+6ndWNVqNb0eOTHnyy/BPSmqXRoGKDoM2zWGKF+4FewIBMrikQUSJo69nlEj/+CA0bwiefQIeoS6RmyWv2HtrLy3Ne5qU5L7H74G4mXjuRjqdntemyxRJ9RKNnl1tYscslFi+G+vVhwgTo3BnmzYNzzoEE6zsXKnYc2EHLUS1ZtHkRdzW6i3sb30uVElWCNstiiYhoFDtJl05ZXdc0/SiSdrJdZydCsgiPi/Cm8762CFdEZmbhwT+MOXUqNGoEb74ZrE2W/KdU0VJ8ceNNSCUHAAAgAElEQVQXXFfvOgZ+P5Bag2oxdcXUoM2yWAoy7Z2jJ/A2cINzvAV0i7SRSDbuegeTYdrd82Q98NTxWFoYKOJsdH34MIwda8rr1wdnjyU4yhQrw6irRrHirhWcWeFMrh5/NQO+G8Dug7uDNs1iKXBomvZwFpErUFfT9GpN06uBM4+nnUjErqYqLwCHAVTZj9lh1uLDFbsjR2D5clPeFtHGE5ZY5dTSpzKt2zQurHohD0x/gOoDqzNj9YygzbJYCirVNU03+t5vBupEWjkSsTskQjGcve1EqIlvLyGLwZ2bO3wYduww5bVrg7PHEh2USy7Hl92/ZG7PuVQqXok277dh+I/DOXos/xMfWCwFnJmSLtMkXW6WdLkJmAJ8HWnlSMQuDfgcqCrC+8AM4KETMjWGccXuyBHYvt2Uf/89OHss0cUFVS5gdo/ZNKvWjNs/vZ0zBp/BD39EnPzBYin0aJr2BYZhcmI2AIZrmt4Vaf2IojFFKAv8AzN8OVeVLSdmbv4QRDTmzp1QqhQMGAD9+xvRK1XKEz6LBUzmlY+XfcwD0x9g18FdTO46mSZVmwRtlsUCRGc0Zm4RNjBehNDV6u5Y6SkinKJKRKvWcwMRuRK4HKgADFbVqNt1wfXsdu40QhcfD/mst5YCQHxcPFfXvZqzTjqLZu8248IRF9KudjteavUSZ5Q/I2jzLJaoRdLlH8BrwBlAIhAP7NU0LRFJ/ayGMQc4x2Dge2A4JgHn98CgiA0UGSEif4rI4pDzbURkuYisFJGHs2pDVT9W1V7AzcC1kfadn7gBKn/9ZV4rVzbzd4cPB2eTJXqpXbY2K+5awbMtnmXOujm0GNWCpX8tDdosiyWaeR3oCqzAbEJwK0b8IiKs2KlyiSqXAGuBc1VpqMp5wDnAyuMw8F2gjf+EiMRjRLQtZiO+riJSV0Tqi8inIUcFX9X/c+pFHa5n54pdpUrmdf/+YOyxRD8piSk8fNHDfH3T1+w9vJd6b9Tj5o9v5veddrLXYskMTdOVQLym6VFN03eAiDMRR5Lf43RVfv5fZ8piESJO/Keqs0SkesjpRsBKVV0NICJjgY6q+iz8fcG6mG2hnwM+U8086aeI3Iazg3qiu8I7H4mLM4ffswPYtw9KRORkWworZ1c8m5V3reTZ2c/yxvw3mLV2FnN6zuGk1JOCNs1iiSb2SbokAj9JuryAmVqLeH4xkmjMpSK8JUJzEZo5mVRyOt5SGVjne7/eOReOu4CWQGcRuSOzG1R1uKo2VNWGCQHl6EpI+Ltnt29fIKZYChjlU8rz8mUvM6P7DDbs3sDpg0/n8a8eZ9t+u1jTYnG4EaNZfYG9QFXg6kgrR6IKPYDewN3O+1nAG8dn49/IbFF62LBQVR1EBPOEItIeaJ+UFPFO7blKQoK3kLxiRfNqxc5yPDSp2oT5t83nn1//k6e+fYqJyyYy+5bZlCpaKmjTLJbAkHSJB57WNO0GHADSj7eNbD07VQ6o8ooqVznHK6ocOAF7/azHqLJLFWBDDttEVSer6m3x8fE5beqEKFIE9uwx5TJlzKsVO8vxUq9CPT669iOmdZvGr1t/pcHQBrwx7w0OHMnpfzuLJe8QkX+JyCIR+UlEvhCRSs55EZFBTjDiIhFvXzoRuUlEVjjHTeHa1jQ9CpR3hjFPiEgSQa8RYXXocaIdOswDaovIqSKSCFwHTMphm4hIexEZfvRoMNkpEhI8sStd2rxu2wZ9+sDmzYGYZCnAtK7ZmhndZ1AxtSJ3Tr2TZu82s/k1LdHMi6p6lqo2AD4F/umcbwvUdo7bcEYGRaQMJmnJBZg4jjQRKZ1F+78B/5F0eVzS5T73iNS4SObsGgLnO0dTzHDie5F2ICJjgDnAaSKyXkR6quoRzLjrNMz833hVXRJpm+GIBs/OxRW7ceNgyBCz0NxiOV6aVmvKnJ5zGNd5HD9u+JGL372YScsncUyPBW2axZIBVd3le5uCNzXVERilhrlAKRE5GbgMmK6q21R1OzCdkMj9EDZgRDQOKO47IiLbOTtVtoacelWE2XiqnU197Rrm/FQgpvY+8cfFuMOYbp7MraFP0WKJEBGhy5ldSIpP4p5p99BxbEcuqX4JH1/3MSWSbKivJXoQkaeB7sBOvGUB4QISjytQUdP0uOfp/GQrdiGZVOIwnl7EapqfuAEqlStXZubMmfnef//+Zj87MOL20ktQrBhcdJFZfhCASZYYoiQleeust5iycQoDVwyk+dDm9KvVj+op1YM2zRI7JIjIfN/74ao63H0jIl8CFTOp95iqfqKqjwGPicgjmNG7NMIHJEYUqCjpMhx4TdP050yupWASjRzUNH0/i8+VfW5MkQxZpY8Aa4ABqizPsmKABJEbE6BOHVixApKSYM0as/ygWDGzsPyss2Dhwnw3yRKjjPjvCO75/B72Ht5L97O7M7jdYJKLJAdtlqWAk1u5MUWkGjBFVeuJyDBgpqqOca4tB5q7h6re7pzPcN//2kqXBsCjQH1gMfAXUBQzB1gCGAEM1TTNcjeeSMSuhmrGgBQRTlVlTSQfOgiCEru6dWHpUuPF/f67SQTtUqYMbNkCkydDu3YZhzwtlhNhy74tPDf7OV6e8zIdTuvA6+1ep0qJKkGbZSnA5ETsRKS2qq5wyncBzVS1s4hcjvHy2mGCUQapaiMnQOVH+N/o4QLgPFXNdHGppEsqZmTxZGA/sFTTNGKnKxKxW6CaMSm0CD86qcOikqDE7uyzYdEiqFDB7FLuT+SSnAxjxkDHjvDss/BwltlALZbIeem7l3h0xqPESRx9zu/Dsy2fJTE+/7MIWQo+ORS7fwOnAccwaSbvUNU/nAxYr2OCT/YBPVR1vlPnFozXBvC0qr6T088Qjqx2PTgds+15SRE6+S6VwLiQUUc0LCoHM4xZpIh5f+SIObd/P/zxhykvWxaIeZYY5YEmD9C5bmee/OZJXp77Mlv3b2VQ20E2eMWSr6hqptlM1HhUfcJcG4EZhsxzslp6cBomT2UpoL3vOBfolfemHT/RsvSgqPNTwO/ZqRpvD+DQofy1yxL7VC9VnREdR/DoRY8ycuFIag6qyQv/ecEuUbBYHMJ6dqp8AnwiQmNV5uSjTQUWv2cHGdfdgZnPA7uDuSXveLrF01x1xlU8/vXj9P+yP3/u/ZMXWr1AnESypNZiiX4kXVI0TY97nirs/wARHnKK14swKPQ4YUvzkKAzqIR6dqFBKL/8Yl5/+y3fTLIUQhpWasjU66dyZ8M7GTBnAPWG1OO9Re+R3fy8xRLNSLo0kXT5BWcjAkmXsyVdhkRaP6ufe+7OBvMxETOhR9QR9DBmqGcXKnabNpnXvXvNkGb16nb+zpI3iAivt3udMVePoUh8EW6ceCP//DqiPBAWS7TyCibrylYATdOFwMWRVs5q89bJzuvIzI4cGh2TuOLmenaup+fO3e3caV737YOJE2HtWhgwIH9ttBQeRITr6l3Hf2//L7eecytPffsULUa14Ks1XwVtmsVyQmiargs5FfEwXlbRmJPJctsdOkTaSWHBFbdQz6548Yzpwg4dgmNO3MAufzY5iyUPiJM4hl4xlNPLnc6AOQNoMaoFz1z6DI80fSRo0yyW42GdpEsTQJ3dD/pxHHurZrW0+aWcWlbYCOfZhYodwK+/mld3s1eLJS+Jj4vn/ib307dRX26ZdAuPfvUoa3asIa1ZGpVLZLVvssUSNdwBDMTkz1wPfEGYJQ2ZkVU05jduWYRE4HSMp7dclagMng96nV1Wnl0ortitXg2HD8Obb8Ktt2ZcrmCx5DZJCUmM6DCC8snlGTJvCKMXjWZA6wHcef6dQZtmsWSJpukW4IYTrR9JIujLgaHAKkzizlNFuF2Vz06007xCVScDk1NSUgJZB5iVZ+dSsqSZu1vuJLnZtw/ef9/sebdjBzz6KBZLnpKUkMSrbV7l7gvupveU3tz12V38vvN3HmzyIGWTywZtnsWSAUmX18hqSi1N+0XSTiSLbwYAl6jSXJVmmG0bXonIykJGJJ6dmy/Tzaayf7+3U8J//5v3NlosLqeWPpUJ10yga72uvPCfF6gxqAajF44O2iyLJZRwKwKOa2VAJOmI/1Rlpe/9auDPyO0sPLgrHkI9u9RU755SpUwUphugsn+/SRANsC40zshiyWOKJxXnvU7v8chFj3DHlDvoOaknW/dvpXfD3iQlBDMdYLH40TTNlej/SMRuiQhTgfEYV/IaYJ6bL1OVj3LDkFhg+3bzWr26ec3Msysdsun80aNG/AA2bzbDmi+9BA88YJJHWyz5wZkVzuTjaz+m67+7cu+0exkwZwBvXP4GV9S5ImjTLBYAJF0yWyGwE+P5DdM0PZBV/UiGMYsCm4FmmP2H/gLKYPJk2v8JPlasMK9nnGFe45ynm9kwpp/VzgZKe/ea+bu0NHjqqbyz02LJjLLJZfnixi+YfuN0yhQrQ5cJXfhk2Sc284olWlgN7AHedI5dGG2q47zPkmw9O1V65NDAfCPoaExX7OrWzXg+nNjFxZnhzFWrzPu9e0GcvXtnzMg7Oy2WrGhZoyXTuk2j9ejWXDnuSs49+VxevexVmlZrGrRplsLNOZqm/owpkyVdZmmaXizpsiS7ytl6diKcKsLLInwkwiT3yJHJeUTQ6cJ69jSvlUOWLfnn7PzDmCVLmlc3WGXfPjOUCd7r4cO5b6fFkh0VUysyr9c83mr/Ftv3b6fN+22Y+dvMoM2yFG7KS7qc4r5xyuWct9kuh4tkGPNj4DfgNUxkpntYQnj9dThwwPPOXIoV88p+z84VO7+guUmiDx+G+fPNursvvsgTcy2WLElKSKLnuT2Z03MOVUtU5ZKRl9B+THsW/7k4aNMshZP7gdmSLl9LuswEvgUelHRJgexTWEYSoHJANTp3OYg2RLxlB378CaEzEzs/a9aY1z17vKUId94JK1f+/V6LJT84KfUk5t46l9e+f42B3w+k8duNGd95PG1rtw3aNEshQtN0qqRLbUyCEwGW+YJSXs2ufiSe3UAR0kRoLMK57pEDmwsdfrHLbBgTPO/PDVbZs8cMa4JZbG6xBEmpoqV4vNnjLOq9iFplatF+THvunHIn63ba9TKWfOU84EzgLKCLpEv3SCtGInb1MTuTP4c3hGnzZkaAO5zp38TVL3D+suvxuZ7dsWPeurv4eCOCTZvCO+/knb0WS3ZUKl6JWTfPouc5PXn7v2/TYFgDlv4VcS5ei+WEkXQZjdGei4DznaNhpPUjGca8CqgRrfkwCwIJCeY4csQsOE9KMllT/EOapUvDxo0Z67nr7/bsgblzYfZs+PFH6FFg4mMtsUjxpOIMaz+MB5o8wIUjLuSidy7igcYP0O+CfqQkpgRtniV2aQjU1bQTWwsTiWe3EMhkdZglUhISvKwqSUneYnG/Z+cf3nQ9QVfs9u37++4I06fb5QmWYKldtjZf3fQV/6jyDx796lFOH3w6a7avCdosS+yyGKh4opUj8exOApaJMA846J6Mxv3sgl5nF44iRYzY7dnjid327Rk9O3+5TBmz9MCNzARvSFPV7JjQurX33mIJinoV6jHl+il8u/Zb2o9pT/ORzfnXJf/ihvo3EB8XzBIgS8xSDvhF0uUH/FqUphFpUSRil3aChuU7Qe96EA6/Z5eY6AWjhPPsSpc2Yuf35lwv78AB+O67jO1PmWIE1RVAiyW/aVqtKZ/d8Bl9P+vLTR/fxPP/eZ4Z3WdQMfWEf4hbLKE8kZPKkWRQ+cb/XoQLgesh43lLeBISvCUJkQxj+svJyWYY8/ffvXPr13vlo0fhCidpm/XyLEHSuGpj5vWax0dLP6L7xO60ea8Nr7V9zWZeseQKmqYZtShdjkuLIvHsEKGB02gXYA3w7+Mzs3DjDmOCibLMzLMLHcZ0qVDBDGe6nh1kLM+albGvoUMhJQVuvDFXTLdYjos4iaNz3c6kJqZy08c3cfG7F9OsWjMmXDOB8inlgzbPUsCRdDlhLQordiLUAa4DugJbgXGAqHJJjqwthCQkQK1asGSJyYfpenYpKV5+zHBeXtmyRuzc9GGQ0cv7/nuvrAq9e5uyFTtLkLSp1YY1d6/hrQVv8fCXD9P6vdZMuGYCtcrUCto0SwFD0iVzLUrT49KirKIxlwEtgPaqXKTKa8DRE7S3UJOQAO++CyNHwplnemKXlOR5eSm+iG2/2Pm9PDehtN+z8wex/Pprxn5vugn698+p9RbLiZFcJJl+F/Rj4rUTWb5lOae9fho3fHQDew7tCdo0Sx4iIg+IiIpIOee9iMggEVkpIotE5FzfvTeJyArnuClMk54WpelFmqYnpEVZid3VwCbgaxHeFKEFJkWLJULcReUiZpiyu7PW3xU4f7CKf+86v/D5xe7UU81rOLGbOtUrHz4Mo0bBCy94748cOeGPYrGcMJfVuozVd6/mwSYPMnbxWK4ceyU7Dti0QLGIiFQFWgG+8SfaArWd4zbgDefeMpgAyAuARkCaiITs+An4tShd3pR0OSEtCit2qkxU5VpMHrKZwL3ASSK8IYKN+zsOQgNHXGHzi51/tUQ44XN3Uzjg26LQL3xuLk2Apb6kFqpQsSJceOHx226x5AYVUyvyXMvneLfju3y15itqDarFwLkDOXTU5qqIMV4BHiLjJqsdgVFqmAuUEpGTgcuA6aq6TVW3A9OBNqENappO1DT9uxalyxuSLhFrkRzPxowilMHsVH6tKpdGXDGfqVq1qo4ePTpoM/j1V9i9G+rUybin3e+/m2UFZ5xh0oMdOAA1a3r72lWp4kVcVqgAf/5pyqVLe7uhJybCoUMmldhRx6FPTTVr+QCqVvXW5p11FixaZMrnnWe8vLg4U9diyW9W7F7B0NVDWbBjAQ1LN+Tpek+TGJcYtFkW4JJLLjkE/Ow7NVxVh0dSV0Q6AC1U9W4R+Q1oqKpbRORT4DlVne3cNwPoj9kMvKiqPuWcfxzYr6rZpqOUdPG0KE0j0yJVjbkjOTlZo4FmzVRB9auvMp6/915z/uefVc8+25QnTzavoDp4sFe+/36v3K2bV27QwCu7x+mne+VrrvHKU6Z45U2bzGtiYiCPxGJRVdVjx47pkB+GKE+gp7xyio5YMEIPHz0ctFmFHmCvZvHdCnyJyWQSenQEvgdKOvf9BpRzylOAi3xtzMAkdH4Q+D/f+ceB+7PqPydHJOnCLLlMZsOYib4ftv6yfy88f7lsWa/sDnW6Xh9kXIv3889/Lx86ZHJxLlmScd7PYskPRITe5/fmi25fUCGlArdMuoUuE7pwTI8FbZolC1S1parWCz2A1cCpwELHq6sCLBCRisB6oKqvmSrAhizO5wlW7AIgswAVv8D5d0nwC5x/Ls8vdm7ZL3b+sj9K0x0SBSN8F1xgAl/c3dJ37478c1gsOaVVzVb8cOsPPHPpM0xcNpFzhp3DpOWT3F/6lgKCqv6sqhVUtbqqVscI2bmqugmYBHR3ojL/AexU1Y3ANKC1iJR2AlNaO+fyhKgXOxE5Q0SGisiHItI7aHuOB1eEEkOmIzLz7PwC5y+7i9Eho/CVKOGV3YhNdw4Pwoudu4UQGGHbu9eUlyyBJ5807a5caQY97YaxlvxARHj4oocZc/UY9h3eR8exHbl10q1W8GKHqRjPbyXwJnAngKpuA/4FzHOOJ51zeUKeip2IjBCRP0Vkccj5NiKy3Fl38XBWbajqUlW9A7NiPuK9i6KBN9+EV16BJk0ynm/cGC69FMqVy96zC+fl+aM0/V6eK3x+sdvgGxhwN4cF2LLFK+/YAWlOFtRVq+Dll6F2bRPYYoXPkteICNfVu46lfZbyYJMHGfHTCDqO7ciPG34M2jTLCeB4eFucsqpqH1Wtqar1VXW+774RqlrLOfJ0t8689uzeJSSUVETigcGYtRd1ga4iUldE6ovIpyFHBadOB2A2ZmKzwFCmDNxzj7fezuUf/zDb84QOY8Y5f41wYpeU5LUVbi2eK3yHDnk7pPuFzy92/rk6/27oW7fCoEGmvG4dvPpqRuFzvUGLJbdJiEvguZbP8VyL55i1dhYN32zIQ9MfCtosSwyQp2KnqrOAULe0EbBSVVer6iFgLNDRGfO9IuT402lnkqo2AW4I15eI3CYi80Vk/pECtHraHdIsUiTznc0TEjKW3WHKpCSvXKqUJ5QlS3rtuPk2IxE7/1zeli1eSrLNm2HiRK/u6NFmiYO7TMJiyW3iJI7+F/Vn7T1rufWcW3nxuxfpNakXv+/8PfvKFksYgpizqwys871f75zLFBFp7qSaGYYZ+80UVR2uqg1VtWFCQkT5raMCv2eXmdiFCp87jVGkiHctJcVblJ6S4s3zJSdnnBMsWjRjlGa45NL+4c2NG2HXLlNevx4mTDDlefNg/nzjpe6wyTAseUDJoiUZesVQ7m98P+8ufJeag2ry3OzngjbLUkAJQuwyS/MSdiZaVWeqaj9VvV1VB2fZsEh7ERl+9GjBSeGZ3TCmX7f95xMTvXm+5OSMZVfsihXLmKElJcUknQYTiOL37Pxit2mTV9640fP61qzxhk9XrIAXXzSJqCdMMAL5zjte+xZLbhAfF89LrV9iVb9VXHn6lTwy4xEenfEouw7uCto0SwEjCLHLs7UVqjpZVW+LL0CpQfyel9+zCzek6ffsXHEsWjSjZ+eWixXzhkmLFjXDjy7lyhkhAyOUfuHzlzduhG3bvPOu8C1aBCefbMqzZ8Pbb8Mtt8ATT5hzX34JizOEJVksJ84pJU9hzNVj6H52d56d/SynvHIKQ+cPDdosSwEiCLGbB9QWkVNFJBGzdcOkAOyICrIbxgz17FyxS0z0vKiiRTP37IoW/btn57bjX7pQo0ZGgfMvT9iwAQ4eNOVNm7w5v82bPeFbu9ZLU/bddzB9OrRqBbfdZs6deSY87MTc/vxzxuhQiyVSEuISGHnlSOb3mk+jyo3oPaU3L895maPHCs5IjiU48nrpwRhgDnCaiKwXkZ6qegToi1k8uBQYr6pLcqm/AjeM2aoV3HyzyXt5vJ6d+zH9nl3oMKbfs3PFLjExo9hVqmTyZYJJNr3ON6O6datX3r/f21dv717PM9y927tv92740YkW37PHDHf+8gs8/7yx/ayzoEEDc338+IzJqy2WSDiv0nlMvWEq7Wq34/4v7qfBsAZMXRF2Ot9iAfI+GrOrqp6sqkVUtYqqvu2cn6qqdZx1F0/nYn8FbhizQQMz1xUXl/3Sg9Cy69klJYUXO79n5w5jJiV5ialFMu6fV6GC58klJ3tDmAD79nk7Luzd63lofrHbscOL/jx8GKY5+RCKF/fE8a+/jPBdey2c6+xsNWoULFiQ9bOyWFwS4hKY3HUyY68ey4EjB7j8g8sZ+dNIuxDdEpaoz6ByPBREz85PJEsPXBITM3p2bt2SJTP37PzDmImJnvD5A13AiJ1L2bIZxc6/hCHUs3MjOHfs8KIzt2zxzhcpktGL83uMqmaj2fPOM+9nzswYMGOxZEacxHFtvWtZ3Hsxjas05uZPbubidy9m9u+zgzbNEoXElNgVRM/OT3ZLD8J5dkWLeh5XqNi5np1/GNPvCYaKXblyGcvuD+WyZTOK3Z49Xh7NULFz79u2DXbu9MoLF3r1l/gGrt28nGDqXnIJVK9uljx89x106GCGULdtg2HD/r4/oKVwk5SQxMybZzK43WBWbVvFxe9czOTlk4M2yxJlxJTYFXT8w5iu8IXz7ELFbv9+U/aLXdGi4T07V+yKFPHELi4uY2aWUOFz5/VKl/a8t4QE4+W5wSqHDnlLF44dyzj/58/R+fXXXvmbb7yyP4JzxQqz4ezkyaZu585wxx2wfLmJ/hQx4rhnD8yahaUQkxifyJ3n38mvd/1KvQr16DC2A9d9eB1L/1qafWVLocCKXRQRyaJyl9BoTFfsSpUK79n55+8y8+z8IggZxc6ff9N/vnx587ppkzcPGC6y059fc/58r7xihVf21/3rL6+8ZYsnkJs2wTPPmPLy5dCvHzRrZvratAk++MB6f4WV1MRU/nPLf3is6WN8+uunnD30bL5d+23QZlmigJgSu1ias8vMs8tqZ4TMPLtixbyUYUlJGZc5+AXOLSclZT2kmV25qrN6ct06YwdkFDt3jg8yLlz3i6A/nZl/3s6fzuyPP7wgmlWrTLQnGAF9+GG44QYz/LltG7z3ntfX4sWegO7f7815WmKL4knFeerSp1h992qql6rOZe9dxsNfPsymPZuyr2yJWWJK7GJlzs5PVp6dS+icnTsUWKmSJ0bx8RnzcPo9O7eP0Pm7zBJMh5Zdzw7gpJO8crVq5nX7dm9o1B/s4i/7xc4vjn4v73dfWsQNG0xkqFvXFfTvv/ee4Xvvmfm9G2+E//s/ExBTvz506WK8vuRk6NnT3PvMM2ZhvCW2qJBSgW97fEuH0zrw4ncvUvu12sxZNydosywBEVNiV9B5yEnunpp6/J6dS6lScNFFptyjhyd2e/Z4np2qJ2r+OTv/MKbfE4TIhjT9kZx+4XMFcccOry9/NKZfyPxiF074fvvNC4JZscLz3Fat8nZk2LDBWxP4559G/Ny6rriOHGl+JDz2GDRt6olg//7m+vbtNv1ZQeek1JMY23ksS/sspWJqRdq+35bXvn+NfYf3BW2aJZ+JKbEr6MOY/fubL1y/eEWSJ9N/f8mSZnue7dvNwnFXjHbv9jy7o0czzs25ApSQ4JXj4zO2m92cHXgeVug9mZV37fI8vi1bvB0cwu3K4C/7A122bfOGO/fs8QRu507Pe9y2zQuUKVcO5jg/7hMTM+7esGuXGd584QXzdyhXzuw9CGbZxMMPG/FbscLs/adqBHxGgdp4qnBSp2wdZnSfwVknnUW/z/tRa1Atu1deISOmxK6gD2P6yc6zCx3GdCle3NznCk9mnt3Roxnru2URTwTj48MHq4QruwEq4M3ZQUZBzKzu4cMmwjM+3tuVoQbpeNgAACAASURBVGTJrFOYuWzb5kWG7t7tid2uXZ7Ybd3qLYHYvNmb40tOzhgcE+phHjsGP/xghPLcc00WmHXrTITok08aW7t0gZYtTR9jx5olE4cPG4/RrhWMLk4peQqzesxi1s2zSIxPpN0H7fhsxWd2IXohIabELhaJ1LNzhw1DdT47z84/pAnhPTv//J1fsPzenF/s/OnI/MOb/rr+FGlFi3r1k5ONQLrCVblyRiHyD4H6tyMK9ezc+/zr/TZv9rYs2rEDfvrJqz/HN52zaJFXDt3d3Q1y2bjRixBduRL69DECt3ix8QKrVzfCvGsXfPSRV2/8eE9kp03z1hnu2mWDZvKDptWa8nm3z0lNTKXdB+24ZOQl/PLXL0GbZcljrNhFOZF6dgsWmAjEUPxil5lnd+xYRs/OL3Z+z84VSsg4pOkXO7/A+cvhPLvk5Iy5O906RYtmTGFWsaIXbVqihCdiIhmFb+tWz8sLHcZ0xe7QoYyL2H/4wSsv9S3J8guc36v0D3v+8Qe4+wSvXGkCggDmzjUJrwHeegteegmuvtoEwqxYYdKkdetm/iZt2kC7dqadkiWNYAK88gosW4Yljzi93Oks7bOU19q+xpK/ltDmvTbMXT83aLMseYgVuygnUs+uUiVvfsmPK0zt22c/ZwcZhzH9np0/WMUvXn5RCufZ+b3CEiU824sV89KW+T270NydoXOErsCUL++JW8mSnleXkmK8JFcIjxzJKHB+wfIvafDPBYYTO/95f3nlSi8pwE8/eZ9rxQpvycXGjfD++6ackODlAl2+3PNchw0zwnzffSZ69Ngx6N4dhg8313/4wVxTNRGkvXqZ8i+/mLlaMMsy/J/LkjmJ8Yn0bdSXz2/4nANHDtD47cZ0GNOB1dtXZ1/ZUuCIKbEr6AEqfiLJoJJZOZTERDOUNmxY5p6dqlff79nFxWUURL/YVazolSMZxvTfk5LitZWc7AWp+D07/6L34sUz9h1u2UP58t5C8goVzLzZ1q2et7VmjdeOX/j8nmE4gQsndr/8kvG8O0e3fXv4QBlX+EQ8r7J8+YwC7M5JHjli7h89Gm6/3bR7wQXG69u2zUSQvvWW+QzNm8Pdd5t7br/dDGsfPGhsHDHCa3vPHu85LVzoDekuXeot5yhsnFfpPFbfvZpnLn2Gb9Z+Q9v327Ji64rsK1oKFDEldrEUoOKS1TCm6/Fktj7Pz8knm/tP1LPzZ1+B8GLnFzi/8CUnZ9xc1rWjWLGMYufflcG/Aa3fwwwXHOOfF/SXa9Y0r/v2efOaO3Z4n8c/5+cvR+LZ+YNbNmzwhkp37/aWQ2QVKOO2tWdPRrFbvtwr+wXVX3bFFEzQjDsfuHw5fPihKX//Pdxzj1lPOHWqSalWvDi8/LK5v0EDk35t1y6oWxduvdUIpAgMdfZFHTMm43NxUTVDwmB+WPjzphZEUhNTeaTpI0zuOpk/dv1B3SF1uX3y7XYhegwRU2IXS3TrZl6zGsZcsMDbQicSwnl22c3ZpaZ6HpL73iUrgfOX3SE+v2fnFzv/uj6/2PnLEH7+L9zidn/ZL4Lu/Xv2eIK9ZYv3GVat8kTWHxXqF7twGWH8UaHh5g43bfI2vN2xI+OOEOGCY/yi688h6kawgpnnq1HDlL/+2numn33mrTVctAgmOdslL1/utfX555532ru3GQq9/no4/3zzb6ZnTyOIqkYkk5JMuVs3M1StCk895XnZCxeatYyZ4Q+AXL/ey7u6Y0ewaxsvrnYxK/ut5LZzb+Pdhe/S9v22bNu/LfuKlqjHil2UMnSo8QSy2vWgalVo3TryNrOLxgxdeuB+2aemmi+zKlX+3qbf4/N7YKFDoO6XWWpq5mIXLnenf2NayDj/5xe4cJ5duKjQ0CHQ0Hvc5RAlSnhiUrWqJ3yJiRk9Hv9w6IYNXkYbv9ht3eoNG+7Zk1Eg/cExfo8xqzlCF7/Ht2yZJ6IbNmQesLN3rwmicT+7K67JyRmXS7jDqb/9ZsR/xAiTgHvHDm8Ocft2E10KRhwff9w8l02bTODNzTeb8jvvmCUbK1ea++LizPzlX3+Z5/p//2fsK10ann7aeJiXX+4N9S5d6s3VHjvm/Wj44w+zJRSYHwNffeU9X/+PkeOhYmpFBl8+mI+v/Zglfy6h9mu1SZ+Zzq6Du06sQUtUYMUuSklI+P/2zjxMi+La/5/DLMzKDAMMgogsgrghosElaoKogEZBo4kmkuvP6xJj3J5oojHXiyaaxOs1Bkli3DUxKmpuRMXgErcQURTFFRODJCrIJoKyDDBzfn9Ul1Xd0/3OOwM47wz1eZ55pqbfXqq636lvn1OnTsU7drvNkmucLgsrRlluzKRlZ73B1pKbPz8exAHx82SVKypcR1VXFxc7a0klxc7W1S/7LlDItuz87b7YpWV1SZZraty99aNCi4qMEPrjglZIqqud2FVUuAnsZWXxKRD+UkgQFy9fLLPELisq1LcKly514vzJJy5QxV96aflyJxaLFjnLrqEh24r1r+1fz5/z6B/7yivu+3r//fDQQyZa+NZb4Ze/NNunTXPTPR57zLlvr7/e3IMZM+CQQ4xY7rorHHywuf8jR5rpKABDh5oloVRNQM+YMaZ8xBHGG6Fqpn1cdJEpNzbCww+be9PQYCJj5841fw8ZYoSzocHMn9xx43hmnzqbnboewOSnJ3PI7Yewav2qz9q4apV76XjzTWMZg/kfefZZd0/tUli5WLjQWbRvvunK+UwBbGoKic/zIYhdB8IXuLYMS9rjs9yYEA9QsdaJFd3KStMh+GRZc1nBLT16xMXOuhDzsex8FyhkC5Y/juhPbs9HHJMCbM9VUxO/dtJKtONX9fVO2Hv3NtbKunWuc373XWfN+hGTvgj6yyJlZZTJsvgWLnRW9KefurG8pNhZC3PRInft5cvj7lF/7DBL+PypG0lBtPduwQJ3vY8+ci9MNTVOFOrrnchv3OhEdM0aJ97PPWeOnTfPbP/0UxdUs3KlSxX3wQfuvPPnm4jVn//cuPx/+EP4ylfgxhuNK3faNJg82bTjnXdMyr65c+Hee40Lt3L1SF4470H2W/Ag85bMo+9le3PQuTexoXEDQ4a4/4fddoPx4015552dMB9zjHnhUjVLWf3sZ0b8Fi+GXXYxEbWvvw4DB5po2ldfNee66irzPejSxbwsbNgAl13mvht/+pOZ0gIm0tofR28vRGSyiHwgIq9EP0d4n10sIu+IyNsiMtbbPi7a9o6IXLQ169epxK4zRWOmUVxs/mHOP79tx/foASeeCA88kD2p3Hdj7rMPnH22iQbMoqVAF2gudv7Ug9aIXVVV8zyglnzEzp8mkcua86dAWEuyujp+7SyXaFZ+0J12Mr83bnQdkz9euGKFa/+KFe5aCxa48c4syy7pQrV8/LH7LEvsVqyIJ+X2F9XNx53qC6K/bNOSJc6NuHq1E9SVK51F7AfpLF3qRHDt2njErD8m6bfbTwLgJx2YP99ZlU8/7YKU/PmPH37oxru32865kSsrXb3ff9/VY/YdX+HafR5h7Ue1/LXuNA666RCWfWpurn25AGcx2+MfecTV9Uc/gosvNv9PP/mJqed997n5sc895+75n//sXjwuusjc28mTTYL1Dz80Inrhheb/d8YMc/8KxLr7haqOiH5mAIjIrsAJwG7AOODXIlIkIkXAr4DxwK7AidG+W4VOJXadMRoTXLBKUZF5Y7zmmradp0sXs9bb/vtnB6jYW1dUZDqMKVOgf//c57TkcmNafMtu/XrX2RcXZweo+GOHvuD45/VFJkvsssTRnwJRXh6f3J4muqWl2enQ8gmOSdve2OjKDQ3xyNF+/cy17Xja9ts7UUuOHfpl3xLMcmNC9lJKvthlTcXwxw599+ZHHzmrMpnNxord0qXOxffvfzshW7Mm7i73Bc6/tl+/WbNc+e233cvLe++56/n3YMUKJ2TLlrlxy7Vr3X1bsSIe9TpQD4Ub5sD9d/Lykhfh1P1h8EzmzXMq49dv7lw3VeZvf3NW6LJlLmFAcTHMmWPKFRVO/P25ku+8456ranx81088UMARsROAu1W1QVXfBd4BRkU/76jqAlXdANwd7btVkM6YF26HHXbQ3+UyRzogjY1tc11m0dBg3hxLS43V8eabpkMfNMiUy8vNOEkWL0U5dPfe25VHjHDpt/bYw71FDx/uOpMRI4zIzZ9vXDebNpkOqUcPc/0PPjAWWHm56dC7dXNBIlVVxuVoO6MhQ1yHt+uuLlDD3z54sOssBw1ynUn//ua6qs7daINSNm40Vld1tXkBWL3aTYFYudJ0UDU1rgPv2dN1RvmUa2tdB1xV5QJKKipch1hZ6dxyZWXm+W/caOrjr19YWupcqEVFLt2YXy4pMeWmJre9Sxc3LlRc7FyvJSXOUvHLWXUrL3d18ct+u7p1M+WmJnOexkbz/bMrbthzVVc78fPvUa9eTjh793YC5Jez7nV9vXlOjY3mO7ZmjXvJ2rTJ1Kuy0tyX1avdWLkVmn79nGXZv7+zINf1eo2rF17OKl3OyKr9OF4vo0RK2XHH+EvJ4sWm3X36mO9YQ4Opk3XB1tWZe/zJJ6b9XbuaupeUmP2sIPvn9b/HAwc6gd1pJ3P/6+riXpbWMHr06A3Aa96mG1T1hnyOFZHJwMnAauBF4HuqulJEpgKzVfX30X43A5HNyzhVPTXaPgnYV1W/27bat4CqdrqfiooKDeRmwQJVUN1xR9XXXjPlnXdWnTPHlEeOzH38WWepipiykQzVNWtcefFiV162zJWbmswxq1aZ8q23mu0nnqj6v/9rysceq/rzn5vy+PGqU6aY8uGHq955pylXV6s++aQ77/vvu/Lzz7vyY4+58syZrvz735tzgOoll6gOHWrKkyapHnqoKY8dqzpxoinvu6/qN75hygMGqH772+5cP/iBK198sStfdJErf+97rnzGGa58zDGuPH68Kx9yiGp5uSmPGGGeDajW16vus4/bb+RIV7b7gOrgwa48YkR6uU8fV66qMr9LSlS7dTNlEdWaGlOurVXt2tXVAVSLilTr6tw5tt8+vbznnq48cKBqr16mXFysussu7rPddks/ZuxYVz722PR7d9BBrvylL7nyiSe68sSJ7toHHKC6++6m3K+f6oEHuv2OPNKV/ed84YWu/P3vq1LUoOx3jTIZ5ZvjlPrXPvuOgOp557nyOee4e3nSSe75HHaYe4aDB7vvXmmp+R+zx192mStfeWX69nPPNb+ffbbt/QKwRjW7bwUeB15P+ZkA9AaKMB7DK4BbomN+BZzkneNm4KvA8cBN3vZJwHW5rr85P53KjRnIHzsRXdW5IkXMoPmAAW7wO4upU5vPh8oas/Pdjfa63bqZso30XL/euSibmuLH+9GYtlxXF8+m4o/H+S7GrHmANTXxuX/+FAi/7E+s9+thXa7FxXH3qO+u9OuUtfxRVpBNMleovba/En2uc/n18IMX/PmSaeOOGzc6F6qqO/bjj832bt2c1WMtYjDP0VpTXbs6S6yy0lke5eXOjdm1q7Gs/PE4f+zRd6fmM8Hfn8bhux79fVauTB+3XLzYlZPnyjlu2VgKs89n2MJfQv9ZcOZwHi8/HbpsbHasn1AgmZjcWrMffODqsWFD3L2cNWbql61L035/twaqeqiq7p7y84CqLlHVRlVtAm7EuCkB3gd28E7TD1iUY/tWIYjdNor9hxg1ynRqYMTHdk6jR7f+nP7UiKRYDRiQfow/fmfLTU2uQ/fn/vlz9Hr0MFFv/nmseGVldfEDZfztFRVOdMvLnTj744VJscuaDuGPx2WNHfoinZwTaF8YkmOH9noVFa7s5xZNnssXPl/sfHFszZiibY9thy/G9noNDe4Y61rt3dt14EOGmE5+40Ynup984qJ9ly+PB+nYti1Y4O7ZggXmuZSWNl+NwmKFFrITd/ti19gYF9qs47NEd9Nfz4Fr34XZ57J0hxth4slQ9WFsPNPf309Y7q/CsX59fJpClqhlBSrZF4etKXa5EJE+3p/HYCw+gOnACSLSVUQGAkOAF4A5wBARGSgipZgglulbq35B7LZRevUy6aSyMlxsLr7Ydelixgf9DsViO+6k2KUFu/gde3JcwrcSszK5+GJXU+NE3i4pZPfJsuzSpkD4EZuQbdnlExXqi66fPi3LwkzmDc2y7Pz5mllWaJbYVVbGXwTsPejWLXsqRta5/KQEvgDbfTZtcsdu2BAP3tkhev9ftcrcv6oqJww9ezqLrbbWfc+6d3ci2K+fE4x+/ZyFaQV7+XL3fbJjZmCsPvt98qeNLFjg5qUuWQKs6wEzf0HZ85fCbtPg3EEsHHwJSBNFRXGxsqJbXGyE1bcqs0Q3H7GzbW0vsQOuEpHXRORVYDRwPoCqvgFMA94E/gycFVmAm4DvAjOBt4Bp0b5bhSB22zCjRpkOduhQGDsWbrtty507GUxTWdl8kjy4bfX1rvNUTXdjVlW5Ts0eN2aMc4368+OSxybL3bq5TqauzglFWVl82SE/GjPNuiouzp7oniUyvtj5Vl4yKtSvh2/NtTZJtn9tv5w1yb57d2ell5XFrbk0d6pI9rX9a/j7tJTGLblPXZ0ToO7ds6+dJbR9+ji3u+9lsPvYwBEwgSN+ZKzvyrVTSFaudILvi+76Ry6DX71F6YKJNIy6Eg6/gPq+6z9zjQ4Z4iwwW6d161y7ly93LxfLl7u2ffCBq/eCBU78Fy82/2vl5e0vdqo6SVX3UNXhqnq0qi72PrtCVQer6s6q+oi3fYaqDo0+u2Jr1i+IXYCSEjOvZ9SolvdNw7ekWsteexnr8vrrXWfmW3a+G7Oy0mT379oVLrjAbJs5M56KrKQkezpE0rKzjB4dnwLRkhuzvNydq1u3uNj5rr2sMbssEUyuApEmdlmWnW8VQvZUjCyr0t+/oiLuQk2rh2/ZVVXFO9gsKy9LaLOEzy+Xl7tnVlsbfwHKsqyzxi3TrErIb8yzZ0/Xbj/RQEx0P9qJgS/fCXPOhP1/wbJvDoJR1wEaE9q0ejQ1uWurxuvhW8Y9e7oXkupqF+UK7WrZFTSdSuw6+6TyQuXtt93abD577ZXf8d/6lunArIXW1JQ+/mcTUq9fb5ITQzytWXLiN2SvyVddDQccYDr/ujrXudtQdHtue3xpqatHcbHbXlsbFxlf+LPG7HKJna1H1tihvwqEP4bpB9lA9pqDWYEySWGx7fCFPWvc0q9H8lxZY5j5Wnn+Sva+sKcJvkj83mbVw98nH6H19/Hvv2/dJkW3d73Aw7+G2x+nW8MwOOIcOPQievTUz/bJEt1c1qklKfj2HpSUtC2V4LZApxI77aSTygudPn3ShW32bDfXKh98sfO3+f/UuUhOOofmK7pbSkpMSikbuWdFZvVq12klA2Vs2bqNwAjJ8OHuvL7YZY3Z+aKUFDvbEbfWsvPHGiEuZFluTH+fpDvVt+zSxM4XQb+jT0anZkXM+uUskUmOYabdg1yCvznjln65pibdnZ20blPd2e+O4SsfPWGsvAOv4tHBe8KuZg2mLOs2y5VrPRf22lkWfiCdTiV2gfbnwgvNhHIwQtMal4p1PyYT26YFqKSRZtn5a/0l33i7dIl3HmDEzs8hmpb7s6jICXJtbbxj7NrVvV37bffFzu+QkmLnW1RZY3Z+J2f3KSpqvTvVFyJfpJP5QdPq4VtXfkefdKf618hyp2Z19Ml6ZN2DfMQu6x7k60JNC1ryv2/+PUhGqm7XW2DGVPjjHXQpaoSvHQ/7TskrMtYv+y8eue5BIJ0gdoEtylVXxddjaw120H3//ePbBw0ymVdGjsx9fP/+8XlkreFLXzK/v/lN5xb1E2aDc60WFbnQcduJfvvbcNxxpmw7QV9c/U7Id/n5nfCQIXFLpjWWXVlZXFh8wcnHsktOxWjJsquocNuTFmYyajbt2lli1727e0HJWgIqH8uuuDjbkmzLnEf/2v710iy7pOD37AloF3h1EhdUzoO3joHx5/JwxfFQZ+YnZAlcz57uJTDLsg5ilx/FLe8SCHw+7LKLmaIwbJhZEgZMx1dbG8+7mMVVV7n5XVn4aax8dtzRWZO//a353dgYtwz9VFy2E7dW7G9+4/arrjYRfVlWpS925eVw+eUmFH3kSNdZicQ7WH//tI6+f/94lGFyAr0ln8jMfMbs/Hp07x53Y2ZN6s8SO79zt6m7Nm2KC2e+lp2th9+G5PWyomH9eliXuJ0SkyX4LVm3RUXxe9CjezHcdxcc9FPeHv0/cNYD8Odr6d37O6n1qKgwP59+mvseWE9DELtsgtgFCorddjO/rYh87Wv5H2s7hlwsWuREKwvfsvOxfxcXm+VfamvNumlJ/M7H4gufH3wjYhY8tdjOau1aV4/i4vTE2NXVTtz79zeCbbGdbXIeoC84fsfYu7fLm+m7U3NZdtbq9cUOmo//pV07K0jEX9W+rKzlbDZZbsyiorh1lSX4WUE6VshsZp8sV26a0CbFrtkYbWNXeGoyvzrjDE576D9h/Nncu+5VqP4v+GT7Zi7U8nIndlluTPs9CGKXTXBjBgqSQYPMP7Bd8WFLUV0d7+zS8McOLSIu+0ZRkfn7yCPjIuZfIzl2mC+2s1qzJl4PK3xdusQ7Obu+Wf/+8WkWaWNd/nZoLlB77mnKxcXp2Vuy3Gi+2CXnvfnXyLK0fOFLZrPxM8q0JiJVNX3cEbLFLim69n7mY93W1sbrYa+9cWP82r4AD6rvA/dOgxfP5LHlt8A5O8Get8fuX3l5fM5jWqBM8h4E0gliFyhYNieE+sgj42/qrcF/i/fx3Zi52ByxsxbIpk3pouvXq7oaTj3VpE075ZT4PqWlboqEXxe/7n65SxczBcSWfaHwLS37THwLzO9s+/bNFjvffesLji+Cffo48Ut29L7opo1XbbedE+n169OtU0i4Fb26+lMB/Mn7ZWXpguNbdnV1ccvOtkE1+x507w5sqIIZU3n6+Lfhg33hqNP5w4c/grKPP9vfPie/HiFApfUEN2agU2LH/MBML7B5G/PhuOPM2OEFF8Bdd7nt1rW63365jz/llPTUaD7jx8cnv1tOO80kEL74Yrj2WrOtqclZkP4UiOpqs4SRv6bZs88ai1jEiW7addI45xyzVNKYMS49VXl5fK6bFd6KCpexo6wMDjvMLDJ6/vnZ1qMvunZ7ZWW8fsOGOasv2dH7gSu+VWO3b7+9Wzm8oSHbus1KLpBM3eaLnX9tW6ekK9e+CHTtmi34afega1fYo99AuOd+OPI73FF8BZz7K3jgVsrLJ8bugR1XzgpQ8dsTiBPELtDpaa2FV1xsVpKG+BSIQw81C2nala+z+PrXW77GjBnp28vL4brrTDnNjQnxjj7JgQe6ctq8w1yIGNGCuFDYjr6kxIldSYmxnmydt9sOfvrT5ufM6uiLi02bktl3ioqc2JWWxsXOP0+aK7e+3gQ5WbIsuyzhS2bb8d2YWYJvXdvdu7tyLldush22nuXlmPya993DzEsvYuzU0+DYk3j2k+voUnwSUJLzHtj6DRpEIIPgxgwEcnDccSYf4vnnm79bErotie3o/XmHScsuF/m4U594Al54ofl2f8zOiq5dOQ3MNn/R1izSOnf/b3ud3/0OnnrKlK3YrV6dLnZJF55dDqi+Pj4GlxZRmjxX0lVun3NVVbpll7Su7D2oq3PBVaefnp8r12+DH7R0+B570X3mdFiyB9csOIX3jhkKA55sdm3/+MVRFsrP8/vZ0egQYicilSLykoh8pb3rEti2qK83bkV/OaHW4Hd0/jhXPmSN2Q0fbqYp7L577uPzsewOOcSlXvNJs+xUXV1EnGWX6xp+e5NjnWVl7jonneTmOlo3cY8eTgRKSlxHnwzOsGNt1oV58slmOkc+ll2Sq6+GWbNMsE4+lp0Vu9paM06saiKIW2PZ+WOIQ4ea33XFfeGWWVw9cjpdmrrCCRN5vWEGin5WJ/8eLIpWgRs4MLtt2zpbVexE5BYRWSoirye2jxORt0XkHRG5KI9T/QCzREQg0KFYssQt1Ll8eXy9spY49VQ4+GAzluZbdv37w0svxaMH09h3X9h777bVe/hwM363yy7pYtelC1x6KRx0EEyc2Pz422+Hu+/OfY3kXDjLuefC00/DuHFx69ZSWhq3aq68Eh5+2Inkrbea6Rw2m01S7Hx3ZZIuXUzOVH+/oqJ4kE6a2FVWxiNzszLmpLlQ7T345z/hxRdNubYW0C4cWH8UOz7zKHzSlx8vOJJ/HLwf9JnbzI1p3bdB7LLZ2mN2twFTgTvsBhEpwizTfhhmpdo5IjIds5x70ut/CjAcsw5SG+PbAoH2wx9Xy+XuS6NXL9Ppg8sq01JwjM+UKa27nk///vBGtLKYL3a+6A4eDM88k368jezMhW/Z+YgYkYf0OY9JV255efp8R/u5H0EJza3rHXZIP94eYwN+bJ19sfPHLZNtsGSJXUmJ2c9adv5429ix5oWmpgbKGvrDb1/me3fczpR5P4ZvHcq/G2dSXv6Fz9r4m9/A2WfHI0oDcbaq2KnqMyIyILF5FPCOqi4AEJG7gQmq+lOgmZtSREYDlcCuwDoRmREt+57c73TgdIBSP8dTINAJGDcOPvywZWsuH5YujY8RtUSWZbe5nHaaEdVc2HomJ/jnCtLxsWKXNh/S8u9/p2+3IrVxozu+uNgJfmmpGaebNStbZMaMyXahWtFOE/zLLzeBTsOGRYK/qYzjB53BjOvG8tZ+B3Hu66MYVjYR6q6iunoIVVVtX6JrW6E9xuy2B97z/n4/2paKql6iqucBfwBuTBO6aL8bVHUfVd2nuDX/yYFAB2FzhO7FF+GVV0y5V6/4pO6WsFbWXnu5/J9+1Gdb+f734YQTcu9jxTAZUm//9sfG0thxRzMloS1cd52ZRjJuXLbg//KXZrqHHS/0aWyExx6Lj1UmA2IqK9OnCxQVudU07PEiULp2VlZByQAADM5JREFUAFz/Cqfu9N8slKfgtH1Z2jS/+QkCzWgPVUh7x9KUbfEdVG9r8cQiRwFHdc3llA8EtkHaOnYH8NWvmgAIu56atvjfGmfWrLYvPXPppSY46Oij4Q9/cNsnTDAL97YUaj99euusWJ++feHmm005S+zKyrKFP836TVqYN93kglKy8F25qsC6Hnxn18n0XT6Jy9fsx8QZe3PeR+dx4RcvpLashfRA2zDtYdm9D+zg/d0PWLQlThzWswsEtg7+wqGt5YADzKoVAG++CQsX5n9saSlMmmREwgaODB5sth9+eMvH19SkZxX59a/h0Ufzr4cvdv4ivpvLhAnxuYFpHH20+e2v6CEC504azNQRzzNh2ASu/OuVDJs6jH99/K/Nr1QnRbS1r2mtvYAZs3tIVXeP/i4G/g6MAT4A5gDfUNU3ttQ1Kysrdc2aNVvqdIFAoABQhb//ve3TQK691qwMkRY92hIvvWREd/ZsE1E7ZYqJAs33vfqGG4yrc/RoI1T19W7h4JZoajL79uljBP+552DevPiiwXM+mMOYO8ZQWVrJ/V+7nwN2OKD1jQREZK2qdsqkY1tV7ETkLuDLQE9gCfDfqnqziBwBXIuJwLxFVa/YQtezbszT1tswqUAgECgg/vEPMwm9pfHGNN57z7g+J09u7hJ9adFLXPzExfz+2N9TX9m2xLBB7DoYwbILBAKB1tOZxa5ThS2GAJVAIBAIpBEsu0AgEAgAnduy6xC5MQOBQCAQ2ByC2AUCgUCg09OpxE5EjhKRGxqTuYUCgUAgsNURkbOjJP9viMhV3vaLo8T/b4vIWG97axcFaHvdwphdIBAIBGDzxuyiPMaXAEeqaoOI1KvqUhHZFbgLkxe5L/A4YPPG/B1vUQDgRFV9c3PbkUanisYMBAKBQLtxJvAzVW0AUNVoWV0mAHdH298VkXcwwgcpiwJgVrnZ4nRKsaurq+Mpu+xxIBAIBPKlWERe9P6+QVVvyPPYocBBInIFsB64QFXnYBL9z/b285P/JxcF2Ldt1W6ZTiV2dp4doKNHj17XxtMUA5u2XK3ahY7eho5ef+j4bejo9YeO34b2qH+5qu6T9aGIPA6kLWh0Caa+3YH9gC8A00RkENnJ/9NiRrbauFqnEjtVfRB4kGhdu7YgIi/metgdgY7eho5ef+j4bejo9YeO34ZCrL+qHpr1mYicCfxRTSDICyLShEkVmSv5/1ZZFCCNThWNGQgEAoF240/AIQAiMhQoBZYD04ETRKSriAwEhgAvYAJShojIQBEpBU6I9t0qdCrLLhAIBALtxi3ALSLyOrAB+I/IyntDRKZhAk82AWepaiOAiHwXmIlbFGCLrX6TJIhdc/IdjC1kOnobOnr9oeO3oaPXHzp+GzpU/VV1A3BSxmdXAM1Wt1HVGcCMrVw1oJPOswsEAoFAwCeM2QUCgUCg0xPELhAIBAKdnm1W7FrKyRZFDt0Tff68iAz4/GuZTR71P1lElonIK9HPqe1RzyxE5BYRWRoNZqd9LiIyJWrfqyIy8vOuY0vk0YYvi8gq7xlc+nnXMRcisoOIPCkib0W5DM9N2aegn0OebSjY5yAiZSLygojMi+p/Wco+Bd0XdRhUdZv7wUT+/BMYhAmPnQfsmtjnO8D1UfkE4J72rncr638yMLW965qjDQcDI4HXMz4/AngEMyF1P+D59q5zG9rwZeCh9q5njvr3AUZG5WpMnsLk96ign0OebSjY5xDd16qoXAI8D+yX2Kdg+6KO9LOtWnajiHKyqYkgsjnZfCYAt0fl+4AxIpKWCaA9yKf+BY2qPgN8lGOXCcAdapgN1IpIn8+ndvmRRxsKGlVdrKpzo/InwFu4NE6Wgn4OebahYInu66fRnyXRTzJqsJD7og7Dtip229M8J1vyH+SzfVR1E7AK6PG51K5l8qk/wFcj19N9IrJDyueFTL5tLHT2j1xUj4jIbu1dmSwi19heGMvCp8M8hxxtgAJ+DiJSJCKvAEuBx1Q18xkUYF/UYdhWxS4rV1tr92kv8qnbg8AAVR2OWVLj9uaHFDSFfP/zZS6wo6ruCVyHyTBRcIhIFXA/cJ6qrk5+nHJIwT2HFtpQ0M9BVRtVdQQmXdYoEdk9sUuHeAaFzrYqdrlytTXbR0SKgRoKx2XVYv1VdYVGS20ANwJ7f05121Lk84wKGlVdbV1UaibPlohIz3auVgwRKcGIxJ2q+seUXQr+ObTUho7wHABU9WPgKWBc4qNC7os6DNuq2OWTk2068B9R+TjgL6paKG9TLdY/Ma5yNGYsoyMxHfhWFA24H7BKVRe3d6Vag4hsZ8dWRGQU5v9tRfvWyhHV7WbgLVW9JmO3gn4O+bShkJ+DiPQSkdqoXA4cCsxP7FbIfVGHYZtMF6aqmyQlJ5uIXA68qKrTMf9AvxOz0OBHGEEpCPKs/zkicjQmF91HmOjMgkFE7sJEyfUUkfeB/8YMzqOq12NSCB0BvAOsBf5f+9Q0mzzacBxwpohsAtYBJxRYJ/VFYBLwWjRmBPBDoD90mOeQTxsK+Tn0AW4XkSKMCE9T1Yc6Sl/UkQjpwgKBQCDQ6dlW3ZiBQCAQ2IYIYhcIBAKBTk8Qu0AgEAh0eoLYBQKBQKDTE8QuEAgEAp2eIHaBdkdEGr2M9K90tqzuIrKXiNy0mee4TUSO8/4+UUQu2fzataoOAyRjhQdvn14i8ufPq06BQL5sk/PsAgXHuihdUioiUhzlBOyo/BD4SXLjZrZrHDBls2q1FVDVZSKyWES+qKqz2rs+gYAlWHaBgkTMenz3isiDwKPRtgtFZE6U3Poyb99LxKzt97iI3CUiF0TbnxKRfaJyTxFZGJWLROR/vHOdEW3/cnTMfSIyX0Tu9DJvfEFE/hYlE35BRKpF5FkRGeHVY5aIDE+0oxoYrqrzor8ni8gNIvIocEdkLT0rInOjnwOi/UREporImyLyMFDvnVOAEcBcEfmSZxG/HNWrSkSeiM73mohMiI4bELXrJhF5PWrfoVG9/xFlF7F1/J2I/CXaflrK80m9hxF/Ar7ZhsceCGw1gmUXKATKvewX76rqMVF5f4xQfCQihwNDMMsbCTBdRA4G1mAySuyF+T7PBV5q4Xr/iUl79QUR6QrMisSH6Dy7YfI/zgK+KCIvAPcAX1fVOSLSDZOJ4yZMZprzRGQo0FVVX01cax8g6frbGzhQVdeJSAVwmKquF5EhwF3RMccAOwN7AL2BN4FbvDrOU1WNhP0sVZ0lJhny+mifY1R1tZgckLNFxKaT2wk4Hjgdk3buG8CBmJRyPwQmRvsNx6xfVwm8HAlui/dQVd8FXiTFkg0E2pMgdoFCIMuN+Ziq2oS3h0c/L0d/V2HErxr4P1VdC+B16rk4HBjujYHVROfaALygqu9H53oFGIBZUmWxqs4Bk1g4+vxe4L9E5ELgFOC2lGv1AZYltk1X1XVRuQSYGlmIjcDQaPvBwF2q2ggsEpG/eMePwyyoCkaQrxGRO4E/qur7YhIjXxm9DDRhlojpHe3/rqq+FtX/DeCJSDRfi9pqeSCq4zoReRLzkvGK93nWPXwXs1RN35R7EQi0G0HsAoXMGq8swE9V9bf+DiJyHtnLnWzCuerLEuc6W1VnJs71ZaDB29SI+R+RtGuo6loReQyzuObXMBZZknWJa0O8XecDS4A9o7qu9z7LatfhwFejOvwssrqOwFhwh2Issl7A3qq6MXLf2jr47Wvy/m4i3h8kr522BFazexhRhml3IFAwhDG7QEdhJnBK5KpDRLYXkXrgGeAYESmPxseO8o5ZiFva6LjEuc6MLCBEZKiIVOa49nygr4h8Idq/WsxSK2BcmVOAOZ4V6vMWxnWYRQ3GamzCJDQuirY/A5wQjY31AUZH164BilV1RfT3YFV9TVV/jnEfDovOuTQSutHAjjmun8UEESkTkR6YZNdzEp/nuodDae66DQTalWDZBToEqvqoiOwCPBfFjHwKnKSqc0XkHoyL7V/As95hVwPTRGQS4LsBb8K47OZGwR7LcGNVadfeICJfB64TswzLOsxSLJ+q6ksishq4NePY+SJSIyLVqvpJyi6/Bu4XkeOBJ3FW3/8BhwCvAX8Hno62H4ZZjNdyXiRojZhxvUcwrt0HReTF6L4kl4zJhxeAhzGrB/xYVRdJfEpIrns4Ojo2ECgYwqoHgU6FiEzGiNDVn9P1+mIW3BwWWWdp+5wPfKKqmzXXLjrXTcBNqjp7c8+V4xqT2Yx7KCLPABNUdeUWrVggsBkEN2Yg0EZE5FvA88AlWUIX8RviY2VtRlVP3ZpCt7mISC/gmiB0gUIjWHaBQCAQ6PQEyy4QCAQCnZ4gdoFAIBDo9ASxCwQCgUCnJ4hdIBAIBDo9QewCgUAg0On5/7wVc4U/Nf1mAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = pl.figure()\n", + "pl.title('Digital filter frequency response')\n", + "ax1 = fig.add_subplot(111)\n", + "pl.semilogy(w, np.abs(h), 'b')\n", + "pl.ylabel('Amplitude (dB)', color='b')\n", + "pl.xlabel('Frequency (rad/sample)')\n", + "ax2 = ax1.twinx()\n", + "angles = np.unwrap(np.angle(h))\n", + "pl.plot(w, angles, 'g')\n", + "pl.ylabel('Angle (radians)', color='g')\n", + "pl.grid()\n", + "pl.axis('tight')\n", + "pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "ts_imp = sps.filtfilt(a=a,b=b,x=ts)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c20dcb1d0>]" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYXGWVP/DvW/vaVd3pJenu7AsJJGFrAggEBwEDOqCiuKPjwvgTt1HHfXR0xhkdZ8ZlVBwURtxFUXEDBRRZBJKQQEjInnSSTnqv7q6tq27dqvf3x71vdXV1LXeppPvePp/nyUNSXX1zqXSfOn3e856Xcc5BCCHEPhyzfQOEEEIaiwI7IYTYDAV2QgixGQrshBBiMxTYCSHEZiiwE0KIzcxaYGeM3cUYG2KM7dbw3Hcxxp5njD3LGHucMXa2+vgb1cfErwJj7LzTf/eEEDJ3sdnqY2eMbQaQBPA9zvn6Os9t4pzH1d/fAODdnPMtZc/ZAOA+zvmK03XPhBBiBbOWsXPOHwUQK32MMbaSMfYAY+wZxthjjLG16nPjJU8LAqj0bvR6AD8+bTdMCCEW4ZrtGyhzB4B3cc4PMsYuBvBNAFcBAGPsNgAfBOARj5V5LYAbz9SNEkLIXDVrpRgAYIwtA/Bbzvl6xlgIwDCA/SVP8XLO15V9zhsAvJRz/paSxy4G8B3O+YbTf9eEEDK3zaWM3QFgnHNeb/HzJwBuL3vsdaAyDCGEAJhD7Y5qHf0oY+w1AMAU56q/X13y1JcBOCj+wBhzAHgNlIBPCCHz3qxl7IyxHwN4MYBWxlgfgM8AeCOA2xljnwLghhKsnwPwHsbY1QByAMYAvKXkUpsB9HHOj5zB2yeEkDlrVmvshBBCGm/OlGIIIYQ0xqyUYlpbW/myZctm468mhBDLeuaZZ0Y45231njcrgX3ZsmXYvn37bPzVhBBiWYyxY1qeR6UYQgixGQrshBBiMw0L7IwxJ2NsJ2Pst426JiGEEP0ambG/H8DeBl6PEEKIAQ0J7Iyxbig7Qr/TiOsRQggxrlEZ+1cAfARAodoTGGO3Msa2M8a2Dw8PN+ivJYQQUs50YGeMvRzAEOf8mVrP45zfwTnv4Zz3tLXVbcMkhBBiUCMy9ssA3MAY64Uy2+UqxtgPGnBdw37z3CmMpaTZvAVCCJk1pgM75/zjnPNuzvkyKONz/8Q5f5PpOzMolpLw3h/vxC92npytWyCEkFlluz72RCYHAIhP5mb5TgghZHY0dKQA5/wRAI808pp6pbJ59b/ybN4GIYTMGttl7GlJCehJCuyEkHnKdoFdBPQEBXZCyDxlu8CelpRSTDJDgZ0QMj/ZLrCL2jqVYggh85XtAjtl7ISQ+c52gT1JGTshZJ6zXWAXXTGin50QQuYb2wX2Yh+7lAfnfJbvhhBCzjwbBnYlY88XODK5qsMmCSHEtmwX2MXiKQAkslSOIYTMP7YL7ClpatGUOmMIIfOR/QJ7STcMdcYQQuYjGwb2PMJeZbYZZeyEkPnIdoE9Lclob/ICoHkxhJD5yXaBPZnNo6PJp/yeMnZCyDxku8CeluRiYC9dSCWEkPnCVoG9UOBIS1MZe6IBGftjB4cxQacxEUIsxFaBPZ1TetibA264ncx0V0wik8Mtd23FPdtONOL2CCHkjLBXYFcDedDrQsjrMl1jH0/nwDkwkso24vYIIeSMsFVgT6m7TkNeF0I+l+mMPU4HYxNCLMhegV0N5AGPE0GPy3SNXXz+eJoCOyHEOmwZ2INeF8I+F5ImZ8WITJ0COyHESmwV2MUAMFFjFyN8jYqLjJ1KMYQQC7FVYBc19aDHiZDP3ZCuGIBq7IQQa7FVYBenJwXUjN1sjT0+KWrskul7I4SQM8VWgV2UXkKeBtXY1Yw9JeUhyXRoByHEGmwV2EXG7vc4EfK6kMkVkMsbD8il56bS7lNCiFXYKrAns3l4nA54XA6E1NG9KRN1dlGKASiwE0Ksw1aBPS3JCHidAICQTwnsZurs8WkZO9XZCSHWYKvAnsrmEfQoAV1k7GY6YxIZGQuCHgDUy04IsQ6bBXYZQZGxN6IUk8mhuyUAgAI7IcQ67BXYJRkBkbGLUoypGnsOS9TATjV2QohV2Cqwp6V8MVM3e+4p5xyJjIyuqB+MNWb3aVqSUShw09chhJBabBXYU1kZAc/0xVOjNfbJXB5ygSPid6PJ58aEyU1KklzAZV/4E+7ZTrPdCSGnl70CuyQj6C1bPDWYsYtWxya/C9GA23QpZiwtYSydw4HBpKnrEEJIPbYK7Olsvrh4KrpjjNbYxeakJp8bUb/bdCkmllIy/pEkHdpBCDm9bBXYk1m5GNAdDmbqFCXRwx72udDkd5vuihmjwE4IOUNsE9jlfAFZuVDsigGAoNdpeF7MVCnGjWjAY7oUE0tTYCeEnBm2CeziIGtRigFgaiZ7vKwUY7rGXszYaQcrIeT0Mh3YGWOLGWN/ZoztZYztYYy9vxE3plfp6UlCyOc2XGMXh2w0+ZTF0/G0ZKpVMZZS3hjG0hJkE4PJCCGknkZk7DKAD3HO1wG4BMBtjLGzG3BdXURmLtodAaWXPZkxWopRM3a/GxG/GwUOJCXjm51iKaUEw/lUWYYQQk4H04Gdc97POd+h/j4BYC+ALrPX1UuM7A2VZuxel+E+9kRGhsfpgNflQMTvBgBMmFhAjZV87kiCAjsh5PRpaI2dMbYMwPkAnq7wsVsZY9sZY9uHh4cb+dcCmNqIVLp4GvKZ64oJ+1xgjCEaUAaBmamzj6UkOB0MAC2gEkJOr4YFdsZYCMC9AD7AOY+Xf5xzfgfnvIdz3tPW1taov7Yona28eGq4xj6ZQ5OaqYuM3UzLYywlYekCZe4MBXZCyOnUkMDOGHNDCeo/5Jz/ohHX1CslzczYlePxZHCuf9EzkZHRpI4liAbUwG5iJvtYWsKa9jAACuyEkNOrEV0xDMCdAPZyzv/b/C0Zk5bU8069pX3sLnA+9TE9lFKMEtCjJjN2zjliKQlLFgTgcTmo5ZEQclo1ImO/DMCbAVzFGHtW/XV9A66ri2h3DJSVYko/podSilE+X5RkjNbYJ3N5ZOUCWoIetIW8GEmYy9gLBY6X/NcjuPeZPlPXIYTYk6v+U2rjnD8OgDXgXkwptju6S9odS2ayt+u8nlKKUQK6z+2Ez+0wHNjFnJiWgAetIQ+GTZZiRlMSDg+n8MzxMdx0YbepaxFC7Mc+O08lGT63Ay7n1P+SmQmPoitGiPo9GDfYfy4Ce3PQg9aQ13QpZjCeAQCcGp80dR1CiD3ZJrCXDgATjJ57KskFZHKFYsYOQN19ajJjD7rRGvJi1GTGPpSgwE4Iqc42gT0t5afV14GS4/F0ZuzFkb3+qcAeMTEvZkzN9JsDHrSGPRhNmRtPMBhX3hj6xzOGr0EIsS/bBPZUhYw97FUCs96MXcyJKS3FmAnsYk5Mi1qKyRe4qfnuAxNKQE9k5eKwMkIIEewT2EtOTxKKx+PpDH7FOTENKsWIXadNPqUUA5jrZRelGIDKMYSQmewT2LP5aQPAgKldqPoz9pmlGDMz2WNpCc0BNxwOhgUhZTyBmZbHwXi2OJ6AAjshpJxtAntakqdtTgIAr8sJj9OBpM6Z7IkqpZjJXB6ZnP7NTmMpCc3qvJk2NWM30/I4GM9g7UJlF+tJqrMTQsrYJrArGfvMtvyQz6X7FKXSkb2CmBcTN5C1x1ISmoNKYJ8qxRhveRyMZ7G+MwK3k1HGTgiZwT6BXZKnDQATjJx7OnV6Ukkfe3FejP7APpaW0KJm7BG/Gy4HM1xjz+ULGE1lsTDiw8KID/0NCOz3bD+BI8NJ09chhMwNtgns6Wx+xuIpYGwmeyIjgzFM67KJ+o2P7i3N2EWd3Wgv+0gyC86BjiYfOiN+nDJZipmU8vjIz3fh/57oNXUdQsjcYYvALskFSPkCgp4KGbvPpbuPPT6ZQ9jrgsMxNSnB6OjeQoFjLJ1DS3CqrGNm96noYe9o8qIz6sdJkxn7ibE0AODICGXshNiFLQJ7usLIXiFsIGOPZ+Rp9XWgpBSjc6xAIiMjX+DFxVNABHZjGbsYJ9DR5ENn1IeBeAZ5E5udjo+qgX04ZfgahJC5xRaBPVVhZK8Q8hkpxeSm9bADQCRgbMKjON+0JVgW2A22Ow6pgb1dzdjzBT6tr12v4zElsPdPZAxNwSSEzD32COwVRvYKQa9Ld8CKT8rTWh0BJfN3Opj+wJ6qENjDHowkJUMHgAzEM3A6GBYElcAOmOtlF4EdAI6OUNZOiB3YKrCXjxQAlICsu8aeyc0oxTDG0ORz6a6xj1UK7EEvpHyhOLpAj8F4Fm0hL5wOhi41sJvpZT8eS8Ovjjo+TJ0xhNiCLQK7OCGpfOcpoJRnsnIBklzQfL3SWeylogGP7nbHWMkAMKE1rO4+NVBnH4xn0NGk9MIvivgAwFTL4/FYGpesaIGDAYepzk6ILdgisIsaesV2R5/+U5Tik7kZpRhA6YzRu3haMWMXm5QM1NmH4ll0NCkBPexzo8nnMlyKKRQ4TsTSWNUewuKWQEN62Q8OJmgwGSGzzBaBXXTFVOtjB7TPi8kXOBLZmV0xgBLY9e48jaUkeFyOaT9NmNl9OpjIFAM7ALXl0VgpZiiRRVYuYElLACtag6YzdjlfwCu+8QS++tBBU9chhJhji8AujsWr1Mce1jmTXbwBNFXI2KMBt/5STErZdaqc+a0QgX00pS9jz+TyGE/niqUYQAnsRjN2sXC6ZEEQK9pCODqSNDUn/uhICikpj2eOjRm+BiHEPFsE9toZu76Z7JVG9gpRv/7RvWPpqV2nQkvQAwfTX4oZVp/fPi1j9+HUhMnA3hLAyrYQMrmC4WsBwL6BBADghf44cnntaxqEkMayRWAX0xv97so7T5XnaAvIUyN7K9TYAx7EMzldWW0sJU3bdQoATgdDS9CDYZ2lmNLNSUJn1I/xdM5QD/rxWBqMAV1RP1a0BQGY26i0byAOQNkJvF8N8oSQM88WgT2dlRHwOKeNABBCxZns2sbtipJNpYw94neDc31H7SnjBLwzHjey+7R0nIAgWh77DWTax0dT6Iz44XE5sLItBACmFlD3DySKJaxdfROGr0MIMccWgT0lVR4ABpSUYjQGY1GKCVcpxQDA+KT2TFupsc+81oKQR3dgHxAZe3h6xg7A0DCw47E0lrQEAACtIQ/CPpepBdS9/QlsXtOGaMCN50+OG74OIcQcewT2rFxx4RQwUopRM/YKpZipeTHariXnC5iYzM2osQPGMvaheAYep6N4HwBM7T49HpssBnbGGFa0hQwPA4tncjg5Pol1i5qwoSuC506Yz9hv+9EO/HJnn+nrEDLf2CKwpyW54gAwAAi4nWBMe8aeyNRYPNU5k108r6VaYE/or7G3N3mnddh0hL1wMP2BPS3JGElmsWRBoPjYyrYgDg8Zy9gPqDX1tQvD2Ngdwf7BhKHTpoRT45P43a5+fP/JY4avQch8ZYvAnsrmKw4AA5T55yGPCwnNXTHK80JVNigB2geBic1JpbtOhdaQF5O5vK5Fz8GSzUmCy+lAR5NPdy+76IhZ3FIa2EMYiBsbBiY6YtYuasLG7ijyBY4X+uO6ryNs640BAJ49MY4Jg4eIEzJf2SOwS3LFAWBCyKf9FKV4JoeAxwm3c+ZLExGHbWjcfTpaYdep0BrSP1ZgMJHBwrLADhjrZRfjepeWBPYVrUpnjJFhYPsG4gj7XOiM+HBudxQAsOuE8Tr71qNKYC9w4InDI4avQ8h8ZI/AnpUrDgAT9JyiVGlkr6D3sI2aGXtY/+7ToXgW7U0zO2w6o37d/eelPezCynalM8bIMLD9AwmsXRgGYwwdTV60hb2mOmO29cZw+apWhH0u/GX/sOHrEDIf2SKwp6V8xfNOBT0z2SuN7BU8LgeCHqfmUkylWexCW3GsgLaMPZmVkczKM0oxgLJJqX88o6u//kQsjbDXNW0hdumCgKFhYJxz7BtI4KyFYQDKQuy53RHsOmkssI+lJBwYTOLSlQtw+apWPHpw2NCI49L7u/V72/H9J3sNX4MQK7FFYE9mqy+eAvoy9koje0tF/NrHChQz9uDM67XqDOxDxc1JMzP2rqgfUr5QLP1ocSyWxuKWwLSFWK/LicUtAd0Z+6mJDBIZGWsXNhUf29gdxeHhpO5DToCp+vpFy1qweU0b+icyODRkvL/+wGASf3xhEN985LCp06YIsQrLB3bOef2M3au9xq6M7K3+JhEJeDSXYmKpHEJeF7yumfcmsnitnTHFzUnhChl7RH/L4/FYGktLOmKEFa1B3btP96mLpGvVjB0ANnRHwDnwvIFyzLbeGDxOBzZ2R7B5TRsA4C8HjJdj7t/dD0A5JerxQ1SvJ/Zn+cCelQvIF3hDM/ZKm5OEqN+NCY0blJQ5MZWv5XE5EPG7tWfsCXEkXuXFU0B7YC8UOPpKethLGRkGJjpi1pQEdrGAamSj0tbeMZy7OAKf24muqB+r2kPmAvvzAzhvcRTNATfu2X7C8HWESSkPmWbhkDnM8oFdtOZVa3cEdHbFTOYqbk4SIn639hq7OtmxmlYdu08HJqqXYjqjSrA/qTGwDyYykPKFaa2OgpFhYPsGEuiK+qctOrcEPehu9uM5nRl7WpKx5+QELlrWUnxs8+o2bD0aM9QXf3g4if2DCdx4XidecX4XHtwzWCyRGSHJBbz0K4/iI/fuMnwNQk43ywf2WqcnCWGvC0lJrpuFcs6rnp4kRAPaJzxWmuxYSs/u08F4FgGPs+IbWMTvRsDj1DxW4NjozI4YwcgwsP0D8WllGGFjdwS7+vRl7DuPj0MucGxaXhLY17QiKxfw1JFRXdcCgAd2DwAAtqxfiNdcuBhSvoBfPXtS93WE3+46heOxNH6x4yR2G1wcJuR0s3xgT9UY2SuEfC5wDqTrZHyTuTzkAq9ZiomoM9m1dGnUzdjDXs3tjuKAjdLFToExpquXXbQ6Vqqxi2FgWhdQs3IeR4ZTWLuoUmCP4kRsUleGvPVoDA4GXLi0ufjYJSsWwOty4NED+uvj9+/ux/lLolgU8ePsTmXcwU+3nTDUZcM5x7cfO4oVbUFEA2588YF9uq9R7tT4ZHG3MyGNYv3AXuNYPEHrIDCx67RWKSbq90CSC8jk6tdYY6naGXubjox9KJ5Be3hmGUbojPo1T3g8EUvDwaZq86XEMDCtGfvhoRTkAsdZJR0xwsbuCADoanvcejSGdYuapr25+txObFregkcP6quzHx9NY/fJOK5fv6j42M093dg3kMCeU/p3xT5xaBR7++N415UrcduLV+GxgyP4q4nF2MF4Bi/9yqN49e1PYlIyPn6BkHI2COzVT08StA4CqzUnRtA6ViCTyyMt5Sv2sAutIQ8SGVlT7XgwnsXCyMyFU6Erqn2swPFYGp1Rf8XdtXqHge0fVALkugqlmPVdamDXuANVkgvYeWJsWn1duHJNGw4NJTWvIwDAA3uUbpgt6xcWH7vhvC54XQ5Di6h3PHYEbWEvbjyvE2++dCk6Iz588YF9hnvsP3PfHmRzBRwYSuBTv9ptqlcfUL4mzcznIfZh+cAuTk+q1RUTLp57WvuLXhyyUW2DElA6CKx2eWGsxuYkYeqIvNrX4pxjMJ6puDlJ6Iz4MZLMavrGPjaarlhfF/QMA9vXn4DH6cAydRxBqSafGyvagpoz9t2nJpDJFabV14Ur1bbHR3V0x/z++QFs6IpMWySO+N3Ysn4hfrXzpK4guLc/jkcPDOOtL1oGr8sJn9uJf7hmDZ7rm8D9ah1fjwd2D+CBPQP4wDWr8d6rVuPeHX2mOnYODydx1X8+guu/9hhOqKU2Mn9ZPrCLjL1WV4wo02gvxdRudwTqjxWI1RgnIBQ3KdU5Ii8+KSMrF+qWYoCp7plaTlTpYRfEMDAtLaL7BhJY1R6qmP0DwMYu7Quo245ObUwqt6o9hEURn+bAfmp8Es+eGJ+WrQs39yxGPCPjjy8MaroWAHznsaPwu51448VLio+96oJurOkI4Ut/2K/rKMB4JodP37cb6xY14Z1XrMD7X7Ial69qxafv24M9p/QvyPZPTOKWO7cCUL6Wbrr9r9hrYgCbJBfwtYcP4s7Hj9IRhxbVkMDOGNvCGNvPGDvEGPtYI66plVg8rTkEzKutFBPXUorROJN9LFV9ZK+wQOMgsMHEzCPxyi1SWx7rLaAmszJGU1LFVkdhpdoZc1RDnX1flY4YYWN3FIPxbPFYv1q29cawojWItgpvYIwxbF7dhscPjWjqIRfdMNdVCOyXrliArqgfP9OYIQ/GM/j1cyfx2osWI1ryRu10MPzjS9fi6EhKV7b9xfv3YSSZxRdv2gC30wGng+ErrzsP0YAb7/7hjuLXoRZjKQm33LkVE5M53P22Tfj5/3sRnA6Gm7/1JJ48rL+L6EQsjZv/90n894MH8C+/fQEv+9pjhrqRhFRWxnefOIq7/9qLcY3D84h5pgM7Y8wJ4BsArgNwNoDXM8bONntdraZq7DVKMWpppd6RdsVDNmrtPFUz9nidGvvUnJjqbxJaxwpUOuu0nDgir14N+kSF4V/lVohj8urU2cdSEgbj2YodMcK5i9U6e51+9kKBY1tv5fq6cOVZbUhkZDyroWb/wO4BrF0YLv6/lHI4GF7T043HD42gb6x+2eK7f+1FvsDxtsuWz/jY1eva0bO0GV996KCmBdBtvTH88Onj+LvLlmOjuokLUL4WvvGGC9A3NomP/GyXpnp7WpLxtru34VgsjW/f0oP1XRGs6Qjj3v/3InREfHjLXVvx++f7615HuP/5flz/tcdweCiJb7zhAnznlh6kpTxed8dT+MBPdhY3yWmRyOTwjT8fwuVf/BP++Tcv4DO/3oNN//YwPvCTnXj6yKju9YTBeAbff7IXt9y1FW/6ztP4+p8OYntvDJJs7CeKeCaHp46M4vGDI+ifmDS9vjHXVI9g2m0CcIhzfgQAGGM/AXAjgBcacO260pIMBwN87urvUVMZe71SjDjIulYfu5Kx1a2xayjFtGmc8FjprNNyYmG1Xi97rR52oTgMrM58FrHjtFJHjHD2ogicDoZdfeO45uyOqs87MJTAxGQOF1WorwuXrWyFgyl19p4abwBDiQy2HYvhAy9ZU/U5r76wG199+CB+/kwfPnB19eclszJ++NQxXLd+0bRDSQTGGD563Vq85ltP4q4njuK2v1lV9VpZOY+P3bsL3c1+fOjamX9nz7IWfGzLWnz+93tx5+NH8Y4rVlS9liQX8K4f7MBzJ8Zx+5suxKUrFxQ/1hn14+fvuhRvv3s7bvvRDnz2hnNwy6XLql4rk8vj87/bi+8/dQzndkfwP6+/oPj/etmqVnzzkUP4378cwcN7h/DBa9fgzZcshatK6W1iMofvPtGLOx8/gnhGxlVr2/Heq1bB63LiJ9uO45c7T+JXz57CirYgXn/REtx0YXfVn2p7R1J4YM8A/rBnADuPK2/mK1qD8Lqd+M8/HgCgHGDfs6wZl6xYgEtXLsCGrsiMsuDEZA57Tk1g98kJPH8yjt0nJ2aMpg54nFjRFsTKttDUr/Ygli0Iwud2olDgGE5m0Tc2iZPjkzg1PomT6u9Pjil/lgscrWEP2kJetIaUCafl/20LedER8VYcM9JIjQjsXQBKfw7tA3Bx+ZMYY7cCuBUAlixZUv5hw5LqyN5K/d2C1hp7IiPD43TA66r+JhH0OOFyME01dsamMvxKfG5lw9FwnRq7yNjbK8yJEbwuJ9rC3rotjyJjX9oyc7Gz9FqLWwI4XGcu+/6B6h0xgt/jxOr2UN0dqKK+vqlGwI4E3Dh/STP+cmAYH7z2rKrP+8OeQXAOXLdhZhlG6G4O4LKVrfjZ9j6876rVFQ9CB4B7tp1APCPjHVfMzNaFi5a14Op17fjWI4fxhk1Lqra4fuPPh3F4OIW737ap6mL/O65Yjm29MXzh/n04f0kUFy6d+XoUChwf/tlzePTAML540wa89JyZ/5/RgAc/fMfFeM+PduLT9+3BYDyDD1971ozvkyPDSdz2o53Y2x/HO69Yjn986Vp4Sr7+/R4nPnTtWXjl+V34zK/34LO/eQE/296Hf3nF+ml7DcbTEu56/Cj+74leJLIyrjm7A++7ajU2qC2vAPC5G9fj49etw++e78ePtx7H53+/F1/6w35ce04H3rBpCS5ZsQB7B+L4w55B/GH3APYPKonD+q4mfPjaNXjpOQuxqj0ExhjGUhKePjqKp47E8OThUXzpD/sBKN+fPctasKErgqOjKew+OVFMZgDlJ9v1XU246YIurO+KwON04PBICkeGkzg8nML23jHc9+yp4vMZU9qSx9M5SGUlwIjfjc6oH4tbArh05QK4HAwjySyGk1n0jqaw/dhYca2t1J1v6cFL1lVPchqhEYG90nfEjJ9rOOd3ALgDAHp6ehr2c086m69ZXweUuSxel6N+xp7JIeyr/SbBGNM04TGWkhDxu6tmNoKWsQKD8QyafC74a7R0AkqmVq8UczyWRpPPVVwrqEbLMLB9Awk0B9wVa+Klzu2O4o8vDIBzXvW13do7ho4mLxa3zOytL7V5dRu+8vABZfNXlQB6//P9WNkWxOr2mWWYUjdftBjv+/FOPHlkFJetap3xcTlfwJ2PH8VFy5px/pLmCleY8o8vXYstX30U33zkED75spmVyAODCdz+yCG88vyuYodPJYwxfOk15+Jv/+dx3PbDnfjd+y7HgtDU68s5x2d/swe/fu4UPrplLV57UfUkyed24ltvugD/dN9ufOPPhzEUz+LfX7Wh+DX5y519+OQvd8PrcuCut/bgqrXVg82KthC+97ZNuH/3AD73mxdw0+1/xc093bh180r8Ykcf7v5rL1JSHtetX4j3XLUK53RGKl7H73Hi1Rd249UXduPAYAI/3nocv9hxEr/d1Y+gx4mUlIeDKT+9fPrlZ+PaczrQ3TzzJ6XmoAdb1i/CFnWPwkgyi6ePxPDUkVE8eWQUfzkwjK6oHxu6Iri5ZzHWd0WwvrNp2mspvKjs335SyuPISBJHhlM4PJzEybFJLAh50dXsR1fUh65oAJ1RX82NjEIuX0AsJWE4oQT84US22AaotgSdAAAcZElEQVR8OjUisPcBWFzy524Ap6o8t+FSklxzc5IQ9tU/Hk+ZE1P/HysSqD8vJpauvetUaA15MVq3FFO71VHoivqwXy2PVHM8lq5YUii3oi2EJ4+MolDgVbPZfQMJrF3YVPONEFAmPf50+wn0jU1WXLTlnGPb0RguWtZS91qb17Tiyw8dwOOHRnDDuZ0zPj6azOKpI6N494tX1b3WtWd3oMnnwj3bT1QM7PfvHsDJ8Ul85m/rLxmdtTCMmy7oxt1PHsNbL1teXPMAlAz7Y/fuQsjrwqdetq7utSJ+N775xgvwqtv/ig/89Fl89+82wan+G3zt4UO4+8ljeOcVy/GuK6uXagSX04F/e+UGtIV9+NrDBzGakvClV2/EF+7fh58904dNy1rw1defh0WR2m+ogPKmc/2GRbhyTVuxa+ae7X1gDHjZhkV471WrizP5tVjTEcZn/vYcfHTLWjywewBPHBrBhUubcfXZHcX1J61aQ168bOMivGyjEugluTDtJw89/B4nzumMVH1z0sOtHl2p5fu3kRrRFbMNwGrG2HLGmAfA6wD8ugHX1aTe6UlCyOuqe5ZnvZG9QtTvrnsO51iNjLKUlnkxlc46raQz4sep8UzNhaDjsdo97EK9YWCFAseBwYSmb2Qx6fG5Km2PfWOTGIhncHGN+rqwsTuKaMBd9VSlB18YRKFOGUbwuZ14xflduH/3wIx/T2V8wBEsbw3iao0/Nv/DNUrd/MsPHpj2+A+ePoYdx8fxTy8/u2LGWMn6rgg+d8M5eOzgCP7nTwcBAN9/6hi+/NAB3HRBNz5x/bq6b1wCYwwfvGYN/vUV6/Hn/UO49N//hJ/v6MP7rlqFH73zYk1BvVTQ68LHr1+H37//CnzomjV48B824+tvuEBXUC8l/h2+9Jpz8bpNS3QH9UqMBnW7MP1/zzmXAbwHwB8A7AVwD+d8j9nrapWS8jUHgAlBDTPZ643sFaIBT93F03rjBITWcP1SzFA8U/FIvHKdUT8mc/mq9f98gaNvLI0lNerrghgGVu00pRNjaaSlPNbV6IgRzloYhsfpqDqb/WnRv64hsDsdDJevasVjVU5V+v3uASxpCeDsRdUXdEvd3LMYklzAr3dN/yFz69EYdvVN4O2XL6/6E0u5rqgft1yyFL/Y0YcDan341Pgkvnj/PlyxuhWvPL9L03WE1160GK+6oAtfffgg/uW3L+DT9+3G1eva8cWbNmgO6qXedMlS3P7GC3FOVxN+8PaL8cFrz6pbKqxlTUcY733JaqxqNxbQyenTkLc1zvnvOedrOOcrOeefb8Q1tUprLMWEvFpLMfWvFfHXn/A4pqMUM5bOVd0IUihwDCWyFQ+xLldvfO9APINcnmvO2AFlca2Svf31O2IEj8uBdYvCVTP2bUdjiPjdWKMxQGxe04ahRLbYlSNMpHP466ERXLdhoebAd05nE9YtaprR0/7tx46gJejBTRd0a7qOcNvfrELQ48J/PLAfnHP80692o8CBf3ul/mDMGMO/vmI91rSHlVr/0hZ8/Q0XmArGW9YvxC/ffVnF0hOxD8v/vJLK5jXX2LV0xdTanCTUm8nOOcdYKqcpYxc/mldaPQeUWr1c4NpKMXUO3DiuodVRqDcMbP9AAowBazpqL1AKG7uj2H0yXnF08rbeGHqWNmvOjK+scqrSg3sHIRc4risZ+lUPYww393RjV99EcbfmoaEkHto7hDdfsrTugnW55qAH73rxSjy0dxD/+ru9eHjfED507ZqaG8JqCXhcuOOWC3Hr5hX49lt64HOf3jY5Yg82COxyzQFggpZTlERXTD3RgBuJjFx1B2RKykPKF2puThLa1N2n1VoeB2ucdVpOBPb+KmMFjseUIK0lsIthYNXG9+4fjGNpS6DmjJ5SG7sjSGZlHClroRxOZHFkJKWpDCN0NPmwdmF4xniBB3b3ozPiw7nd+ha9XnFeFzzOqcFgdz5+BF6XA2++dKmu6wh/d9kytIW9uPPxo9jQFcFbX7TM0HWEpQuC+MT162q2zhJSyvKBPS3lNQWXkK92YBejeLVk7GJeTLzKTwBaNicJ9XafDqmbkyodiVduQdADj8tRPWOPpeF0sGLJpp6VbdVbHvf1J6YdXl2P2GVZPjdmu3pwdaXBX7VsXtOG7b1jxQXxRCaHRw+MYMv6RbpLHs1BD645pwO/2nkSp8Ynce+Ok7jpwm7Di3gBjwsf3bIWYZ8LX7hpg6nSCSFGWPorjnOOlCQjVKePHVBmstcqxRRH9mpsdwSqj+4VZRWtXTFA9d2nWsYJCIwxdNXoZT8em0RX1K850FQbBjYp5dE7mtLVBbGqPYSAxzljtMDW3hh8bgfW62wtu3JNG6T81KlKf9o3BClfwPUaumEqublnMcbSOfz995+BJBfw9surb0jS4tUXduOZT13TkJY5QvSydGCfzOXBORDQWGOX8gVk5crzPET2rakU41fHClQZalSc7KipK6Z2xj6gBvY2jdljZ9RXM2PXUoYRqg0DOziUQIFDU0eM4HQwrO+cOelx69EYzl/crLs9rWdZM/xuZ7Ecc//zA2gPe3FBnY1E1Vy+qhWLIj48f3ICV6/rKC4emzHfW+7I7LH0V56WQzYEMS8mVWUme3FOjJbF0+JM9joZu4ZSTNDjhM/twGiVwD4YzxZLLFqIXvZKjo+mdC3iVRsGpmVGTCUbuiPYcype7ABKZHLY2x/XVV8XvC4nLlnRgkcPjiAtyXjkwBC2rF+oeQG2nNPB8OoLlQ6Yd9YYH0CIFVg8sNc/Fk+oNy9GTH7UVIoRpyhVaXksHrIRqh/YGWPqJqXK2b/Sw65919qiqB+DicyM9sl4JoexdK7mHPZy1YaB7etPwO926sr+AWUBNSsXij3ezxwbQ4HXng9Ty5Vr2nB0JIXvPXkMmVyh4ux1Pd794lX4/ts34eIVC+o/mZA5zNqBXcPpSYLI2BNVZrJrOT1JiNY5Hi+WkuBysOLJTfXU2n2qHGKtfRGvK+oD5zMP3NAyrrdctWFg+wfjWNMRKm5z10rsQBUblbb1xuB0MJy/JFrr06rarLY9fu3hg1gQ9Bh+gxD8HieuWF19jgshVmHpwJ5W518HNSyeioBdLWPXMrJXiNQ5RWksrew61dqd0Rry1mh3zKKjxlTHctVaHo0EdkAZBlYpY9fTESMsXRBAk89VnPS47egY1ndFNP3EVcny1iC6m/1IS3lce04HdZ8QorL0d0JSRymm3kz2hIZDNgSX04Gw11V1rEAspW3XqaBMeJx5LTlfwEgyi44ah1iXq7ZJSYwu1btRZmVbCL2jqeLGouFEFqMpydBcEMYYNnZH8fzJcWRyeTx7Yhyblhlb7BTXE5uV9GxKIsTuLB3Y0xpOTxJCvtqBPZ7JgTFt1wKUzL5qjT2VQ7OGzUlCa8iLWCqLfNmuzJGkBM61bU4SOiOVT1I6HksjGnDr3uSyomwY2D51Bnut4/Bq2dgdwb7+BLb3jkHKF2qemKTFmy9ditdvWjLtoAlC5jtLB/apGruGUoyosdcoxYS9Ls1dFdEao3tjaW2THYXWkAcFPrXoKhR72HWUYvweJ1qCnhkZu95WR6F8GNj+YkeM8cAuFzjufrIXQOWDq/VYu7AJ//6qDVUP0yZkPrL0d0Nazb5DWkoxPtHuWL0Uo6W+LkQD1Q/biKUkTbtOhWq97Ho2J5Wq1Mt+IpY2NK+kfBjY3v4E2sJezeNny4kdqA/tHcTq9pCmXn9CiD6WDuwpdfG03glKgHI2ooPVLsVoGdkrRP2eihuU8gWOcd0ZuxrYE2UZe6L+WaeVlPeyy/kC+sYmDWXsYhiYmBmzfzBuuAwDAIsiPrSGvOBc25heQoh+1g7sWRkuB4NHw4/hjDEEva4apRhth2wITVUmPMYncyhwbeMEBBHYR1NlGftEBg4G3dlxZ9Q/LWPvn8hALnAsNRDYxTCwI8MpyPkCDgwmTQV2ZQFV2Wav5WANQoh+lg7saUkZ2au1rTBcY8JjPKPtWDxB1NjLD3uIpbXPiRHEuIDylsfBeAZtYa/ufvHOqA+JrFzszTfa6iiIYWC9o2lIcsFQq2Op8xcr5Riz9XVCSGWWDuxJjSN7hVCNmeyJjKxpc5IQ9buRy/NiL72gZ7Kj0OR3we1kM1oeBxPajsQrV+xlV8sxx2PGWh0FMQxsx7ExAMYXToW3XrYMP3rnxcX7JIQ0lqUDe1qSNQ0AE2rNZI9P5jTNiRGiVebF6JnsKDDGsCA4c/fpUDyDdh0dMUJ5L/uxWBouB8MiHf3wpcQwsN/v7ofTwbCq3dyArLDPjRetpBN8CDldLB3YU9m8zozdXfF4vEKBIynp64qZ2n06PcsWLYt6uz0qnX06GNc3TkDoik7vZT8eS6O7Wfu43nJiGNgTh0awvDVIp/gQMsdZPLBrO+9UCHtdSGZmLngmsjI417brVIioo3vLF1BjKeXPenaeAjPnxWTlPMbSOU1nnZZrC3nhdrJixm601VEQw8ByeW5q4ZQQcmZYO7BrPD1JCHldFcf26hnZK4hSTPnu07G0BJ/bofuszNaQd1q7ozg5yUiN3eFgWBiZ6mU3ujlJEMPAAOM7TgkhZ46lA3takjUNABOqHY83NbJXT8ZeucY+mtQ3J0ZoDXkxmsoWu2yGEsrCZ7uBUgwALIr4cWoig4nJHMbTOVOBHVCGgQEw3RFDCDn9LB3Y9ZZixOJpoWwmy9TIXgMZ++TMjF3LHPZyrSEPcnmO+KTyJjNoImMHlDr7qfHJYqujnjnslYgdqGY7Ygghp5+xealzhO7FU3GKkiRPC+JGSjF+txMep2PG6F694wSENnWswHAyi0jAbXicgNAZ9WFgIoOj6ix1MzV2AHjVBd1wOR3obqYWRULmOssG9nyBYzKns8ZeMuGxNLAbKcUwxhAJuDExObMrxkh2PHWodRar2pW+cbeToTmgbxqj0Bn1Qy5wPKP2npsN7Gd3NuHsTirDEGIFli3FpCXtA8CEUJXj8YyUYgClzt6ojL00sAPK4ml72Kd5V2050cv+1JFRNAfcun4aIYRYm4UDu/YBYILI2Mt72UVdW8/OU0DZfVpaY8/lC0hkZF2bk4QFal1+RB0rYLSHXRC97PsGEliyIGj4OoQQ67FsYC8eZK2jFBOukrEnMjkEPE7dM72jgekZu9HNSYAygsDBUBwroAR2Y/V1ANN2mZrtiCGEWIuFA7s471R/jb18Jrsyslf/ckPE75mWsY8Z3JwEAE4HQ0vJWIGhuLE5MULY5y5uuFrSQguehMwn1g3sksjY9XfFVCrFGKlBKzX2qcVTMXZXz7F4pZSzT7NIZWUksrKpwA5M1dkpYydkfrFsYBeLp3qGgIW9SsCttHiqZ06MEA24kZLyyOULAKYy9gVBY7XxtrAXw0kJQwYP2Cg3Fdipxk7IfGLZwJ5USzEhHYunYpdq+e5TvSN7hfJNSrFijd1oxu7FaDJruodd6Iwqn7/E5OYkQoi1WDawi/NO9fSxu5wO+NyOGYE9ntE3sleYmvCoBHYjs9hLiVLMVGA3l7FvWr4AaxeGDQ0SI4RYl2U3KInzTvV0xQBAyOuecTxefDKna3OSIAK72KQUS0kI+1y6u2uE1pAXmVwBR4aV3aLtJgPyDed24oZzO01dgxBiPdbP2HWUYgClV700Y+ecq6UYIzX26aN7x3QeYl1OnG2651Qcfrez2J5JCCF6WDawJyUZHpdDd3asjO6dCuyTuTzkAjdUiomWlWKM7joVWtVNSntOTaCjyWt41ykhZH6zbGBP6xwAJoS80889FbtOzZRiijV2kxm7GCvQP5ExXYYhhMxflg3sKUnWtXAqhHyuaX3sCYNzYgAUWyTFTPaxVM5Uxi4mPALmO2IIIfOXdQN7VtY1AEwIe11IZqd2i4oBYHqOxROcDoYmn6s49nc0lS3OfDGiNNvvCJvriCGEzF+mAjtj7EuMsX2MsV2MsV8yxqKNurF60lJe98IpoIwgqFyKMdZ7Hg14MJ6WMCnlkckVTGXsbqejOKaXMnZCiFFmM/YHAaznnG8EcADAx83fkjaprKy71RGYOh5PHEFnJmMH1LECk7ni5qQWg5uTBFFn74hQYCeEGGMqsHPO/8g5F+nvUwC6zd+SNqlsXtd5p0LI60Iuz5GVlTEAcXHIhsF55WLCo9nNSUIxsFMphhBiUCNr7G8DcH+1DzLGbmWMbWeMbR8eHjb9l6UkYxl7uOQUJaDkWDyDpZiI3434ZA6xlMjYTQZ2NaBTKYYQYlTdwM4Ye4gxtrvCrxtLnvNJADKAH1a7Duf8Ds55D+e8p62tzfSNG62xF889VQN7IiPD7WTwuoy9x0UDSinGzCz2UgvUz283OU6AEDJ/1U15OedX1/o4Y+wtAF4O4CVcFK7PgGRW1jWLXSiO7lVLMGJOjNHNQBH1FKVR9YAMI7PYS914XieCXqehVk5CCAFMzophjG0B8FEAV3LO0425pfpy+QIkuWB48RSYXooxWoYBgKjfg3yB48RYGg42tWnJqPOXNOP8Jc2mrkEImd/M1ti/DiAM4EHG2LOMsW814J7qKp53amDnaflMdqMje4WI2p54ZDilHG/noDEAhJDZZSpj55yvatSN6CHq40Y2KJXPZDc6slcQGfrRkZTp+johhDSCJXeeGjk9SRClmMS0Uozx9zcxCKxvLG26vk4IIY1gycBePMi6UaUYr4kauxrMC9z4yUmEENJIFg3s+k9PEnxuB5wOVpwXo5x3aiJjD0wFc7M97IQQ0gjWDOySOO9Uf0BmjKkz2fOQ5AIyuUJDauyA+V2nhBDSCJYM7FM1dv2lGEB5Q0hk5JKRvcYzdp/bWdzcRBk7IWQusGRgn6qxGwvIyvF4uak5MSZ7z0U5hjJ2QshcYNHArgRkI0PAAPUUpaw8NSfGRCkGUDYpAZSxE0LmBmsGdsn44ikwNZNdjBUwU4oBpursFNgJIXOBJQN7WsoXu1uMEMfjFWexmyzFiN2nFNgJIXOBJQN70uCxeEJYzdjNjuwVxCYl2nlKCJkLLBnY01ljB1kLosbeqFJMR5MPIa/L0IYpQghpNEvOhk1JeUMDwISQz4W0lMdYWgJjQMjkiNx3XrECL9u4yPDoX0IIaSRrBnaTpRjxuQMTGYS9LtMTGSMBd7HOTgghs82SpZiUlDc0AEwQpZdTE5MIm2x1JISQucaSgT2dlU3Vs0Pq0K9T4xnTC6eEEDLXWDKwpwweiyeI0b39E5NoMrlwSgghc401A7uUN5mxK5+by3MqxRBCbMeSgT0tyaZq7KGS+etmRvYSQshcZLnAnpXzyOW5uYy9pPxidk4MIYTMNZYL7Gkx2bEB7Y4AqMZOCLEdywV2MQDM6MheoCywU1cMIcRmrBfY1Yzd6CEbAOB0sOLOVSrFEELsxnqBXWTsJkoxwFTWbnZODCGEzDWWC+xpk6cnCWIBlUoxhBC7sVxgT2bFIRvmJimKjJ1KMYQQu7FcYBcHWZsZAlb6+VSKIYTYjeUCe0oyv3gKlGTsVIohhNiM5QJ7Omu+3RGYqrFTxk4IsRvLBfZUVgZjgN9tLmOP+j0Ie11wOy33EhBCSE2WS1dTUh4Bt9P04Rjv3Lwc15zd0aC7IoSQucNygd3sADBhUcSPRRF/A+6IEELmFsvVIZLZvOmOGEIIsTPLBfZ0Vjbdw04IIXZmucCekmTTHTGEEGJn1gvs2TyCJnvYCSHEzqwX2Bu0eEoIIXZlucCezpo775QQQuzOcoE9lZURoBo7IYRUZanAzjlHSpKp3ZEQQmpoSGBnjH2YMcYZY62NuF41WbmAAjc/AIwQQuzMdGBnjC0GcA2A4+Zvp7ZkgwaAEUKInTUiY/8ygI8A4A24Vk3F05OoFEMIIVWZCuyMsRsAnOScP6fhubcyxrYzxrYPDw8b+vuK551SVwwhhFRVN/VljD0EYGGFD30SwCcAXKvlL+Kc3wHgDgDo6ekxlN2nxLF4lLETQkhVdSMk5/zqSo8zxjYAWA7gOcYYAHQD2MEY28Q5H2joXarE6UkhWjwlhJCqDKe+nPPnAbSLPzPGegH0cM5HGnBfFaWLB1lTxk4IIdVYqo9dZOzUFUMIIdU1LEJyzpc16lrViBo7DQEjhJDqLJaxi8BOGTshhFRjqcCezubhYIDXZanbJoSQM8pSETKZlRH0uqB24RBCCKnAUoF97cIwrltfqaWeEEKIYKli9es2LcHrNi2Z7dsghJA5zVIZOyGEkPoosBNCiM1QYCeEEJuhwE4IITZDgZ0QQmyGAjshhNgMBXZCCLEZCuyEEGIzjPPTflTpzL+UsWEAxwx+eiuA0zbz/Qyw8v1b+d4Ba9+/le8doPtvlKWc87Z6T5qVwG4GY2w757xntu/DKCvfv5XvHbD2/Vv53gG6/zONSjGEEGIzFNgJIcRmrBjY75jtGzDJyvdv5XsHrH3/Vr53gO7/jLJcjZ0QQkhtVszYCSGE1ECBnRBCbMZSgZ0xtoUxtp8xdogx9rHZvh89GGO9jLHnGWPPMsa2z/b91MMYu4sxNsQY213yWAtj7EHG2EH1v82zeY+1VLn/f2aMnVT/DZ5ljF0/m/dYDWNsMWPsz4yxvYyxPYyx96uPz/nXv8a9W+W19zHGtjLGnlPv/7Pq48sZY0+rr/1PGWOe2b7XWixTY2eMOQEcAHANgD4A2wC8nnP+wqzemEaMsV4APZzzubDJoS7G2GYASQDf45yvVx/7DwAxzvkX1DfWZs75R2fzPqupcv//DCDJOf/P2by3ehhjiwAs4pzvYIyFATwD4BUA3oo5/vrXuPebYY3XngEIcs6TjDE3gMcBvB/ABwH8gnP+E8bYtwA8xzm/fTbvtRYrZeybABzinB/hnEsAfgLgxlm+J9vinD8KIFb28I0A7lZ/fzeUb9g5qcr9WwLnvJ9zvkP9fQLAXgBdsMDrX+PeLYErkuof3eovDuAqAD9XH5+Tr30pKwX2LgAnSv7cBwt9wUD54vgjY+wZxtits30zBnVwzvsB5RsYQPss348R72GM7VJLNXOulFGOMbYMwPkAnobFXv+yewcs8tozxpyMsWcBDAF4EMBhAOOcc1l9ypyPPVYK7KzCY9aoIyku45xfAOA6ALeppQJyZt0OYCWA8wD0A/iv2b2d2hhjIQD3AvgA5zw+2/ejR4V7t8xrzznPc87PA9ANpVKwrtLTzuxd6WOlwN4HYHHJn7sBnJqle9GNc35K/e8QgF9C+YKxmkG1hipqqUOzfD+6cM4H1W/aAoBvYw7/G6j13XsB/JBz/gv1YUu8/pXu3UqvvcA5HwfwCIBLAEQZYy71Q3M+9lgpsG8DsFpdnfYAeB2AX8/yPWnCGAuqC0lgjAUBXAtgd+3PmpN+DeAt6u/fAuC+WbwX3URQVL0Sc/TfQF3AuxPAXs75f5d8aM6//tXu3UKvfRtjLKr+3g/gaijrBH8G8Gr1aXPytS9lma4YAFBbpL4CwAngLs7552f5ljRhjK2AkqUDgAvAj+b6vTPGfgzgxVDGlQ4C+AyAXwG4B8ASAMcBvIZzPicXKKvc/4uhlAI4gF4Afy9q1nMJY+xyAI8BeB5AQX34E1Bq1XP69a9x76+HNV77jVAWR51QEt97OOefU7+HfwKgBcBOAG/inGdn705rs1RgJ4QQUp+VSjGEEEI0oMBOCCE2Q4GdEEJshgI7IYTYDAV2QgixGQrshBBiMxTYCSHEZv4/WHE1hgkob1cAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(ts_imp)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'numpy' has no attribute 'epsilon'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-89-56c419ae92da>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mepsilon\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: module 'numpy' has no attribute 'epsilon'" + ] + } + ], + "source": [ + "np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aclaycomb/anaconda3/envs/geomagenv36/lib/python3.6/site-packages/scipy/signal/filter_design.py:536: UserWarning: The group delay is singular at frequencies [3.074, 3.080, 3.086, 3.093, 3.099, 3.105, 3.111, 3.117, 3.123, 3.129, 3.135], setting to 0\n", + " format(\", \".join(\"{0:.3f}\".format(ws) for ws in w[singular]))\n" + ] + } + ], + "source": [ + "w, gd = sps.group_delay((a,b))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x1c2019c630>" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8lOW5//HPNdmByBpERY2oULbIvggKWgRtKWpFrbVVSyuetoq1P+3B9rh1ObU//VnEtRy1eqpHrFvV2p6iCCIUyyK4sFTUoqIom+yEkMz1+2OeDJOQZUgyMyTP9/165ZWZZ57lmohzzX3fz33d5u6IiEh4RTIdgIiIZJYSgYhIyCkRiIiEnBKBiEjIKRGIiIScEoGISMgpEYiIhJwSgYhIyCkRiIiEXHamA0hGp06dvLi4ONNhiIg0K0uXLt3k7kX17dcsEkFxcTFLlizJdBgiIs2KmX2YzH7qGhIRCTklAhGRkFMiEBEJuWYxRiByKNm3bx/r1q2jtLQ006GIAJCfn0/Xrl3Jyclp0PFKBCIHad26dRQWFlJcXIyZZTocCTl3Z/Pmzaxbt47jjjuuQedQ15DIQSotLaVjx45KAnJIMDM6duzYqBaqEoFIAygJyKGksf8elQgSvPv5Dhav3ZLpMERE0kqJIMHY387j/PsXZjoMkXplZWXRr18/TjrpJAYMGMDf//73eo+ZNm0au3fvjj//z//8z1SGWK8//elPrFy5Mv589OjR9U4cXbt2LQUFBfTv35+ePXsyZMgQHnnkkQbHcPLJJzf42JZEiUCkGSooKGD58uW8+eab/PrXv+b666+v95imSAQVFRUHfUxNysvLD0gEyTr++ONZtmwZq1atYubMmfz2t7/l97//fYPiSCaBhoESgUgzt337dtq3bw/A3LlzGT9+fPy1K6+8kocffpjp06fz6aefctppp3HaaacxdepU9uzZQ79+/bj44osBePTRRxkyZAj9+vXjiiuuiH/ot2nThhtvvJGhQ4eyYMECvv71rwPw3HPPUVBQQFlZGaWlpXTr1g2A5cuXM2zYMEpKSjj33HP54osvgNg3/p/+9KeMGjWK3/zmNzz//PNcd9119OvXj/fffx+AJ598kiFDhtC9e3dee+21et97t27duOOOO5g+fToAu3btYtKkSQwePJj+/fvz3HPPAbBixYr4eyspKWHNmjXx9wYQjUb5wQ9+QO/evRk/fjxf+cpXeOqpp4BYiZubbrqJAQMG0LdvX1avXt3Q/1SHLN0+KtIIt7ywgpWfbm/Sc/Y68jBu+lrvOvep/BAvLS1l/fr1vPLKK3XuP2XKFO644w7mzJlDp06dALj77rtZvnw5AKtWreKJJ55gwYIF5OTk8IMf/IDHHnuMSy65hF27dtGnTx9+/vOfU15ezqWXXgrAa6+9Rp8+fVi8eDHl5eUMHToUgEsuuYS77rqLUaNGceONN3LLLbcwbdo0ALZu3cqrr74KwJo1axg/fjwTJ06Mx1leXs6iRYv4y1/+wi233MLLL79c799rwIAB8Q/nX/3qV5x++uk89NBDbN26lSFDhjBmzBjuv/9+rr76ai6++GLKysoOaNk888wzrF27lrfffpsNGzbQs2dPJk2aFH+9U6dOvPHGG9x7773cfvvtPPDAA/XG1ZwoEYg0Q5VdQwALFy7kkksu4Z133mnw+WbPns3SpUsZPHgwEEs0nTt3BmLjEeeddx4A2dnZnHDCCaxatYpFixbx4x//mHnz5lFRUcEpp5zCtm3b2Lp1K6NGjQLg0ksv5fzzz49f58ILL6wzjsrWxsCBA1m7dm1Ssbt7/PGsWbN4/vnnuf3224HYrb4fffQRw4cP51e/+hXr1q3j61//OieeeGKVc8yfP5/zzz+fSCRCly5dOO2002qN65lnnkkqruZEiUCkEer75p4Ow4cPZ9OmTWzcuJHs7Gyi0Wj8tWTvLXd3Lr30Un79618f8Fp+fj5ZWVnx56eccgp//etfycnJYcyYMVx22WVUVFTEP3zr0rp16zpfz8vLA2LJp7y8PKnYly1bRs+ePePv4+mnn6ZHjx5V9unZsydDhw7lxRdfZNy4cTzwwAOcfvrp8dcTk0lTxdWcaIxApJlbvXo1FRUVdOzYkWOPPZaVK1eyd+9etm3bxuzZs+P7FRYWsmPHjvjznJwc9u3bB8CXv/xlnnrqKTZs2ADAli1b+PDDmisYn3rqqUybNo3hw4dTVFTE5s2bWb16Nb1796Zt27a0b98+3r//hz/8Id46qK56PA2xdu1arr32Wq666ioAxo0bx1133RX/YF+2bBkAH3zwAd26dWPKlClMmDCBt956q8p5Ro4cydNPP000GuXzzz9n7ty5jYqruVGLQKQZqhwjgNi32UceeYSsrCyOPvpoLrjgAkpKSjjxxBPp379//JjJkydz1llnccQRRzBnzhwmT55MSUkJAwYM4LHHHuOXv/wlY8eOJRqNkpOTwz333MOxxx57wLWHDh3K559/zqmnngpASUkJnTt3jk9qeuSRR/i3f/s3du/eTbdu3Wq9o+cb3/gGl19+OdOnT48PzCbj/fffp3///pSWllJYWMhVV13Fd77zHQBuuOEGfvSjH1FSUoK7U1xczJ///GeeeOIJHn30UXJycujSpQs33nhjlXOed955zJ49mz59+tC9e3eGDh1K27Ztk46pubP6mkSHgkGDBnk6FqYpnvoiAGtv/WrKryXN16pVq+JdEdJy7Ny5kzZt2rB582aGDBnCggUL6NKlS6bDSlpN/y7NbKm7D6rv2JS1CMzsIWA8sMHd+1R77VrgNqDI3TelKgYRkWSNHz+erVu3UlZWxg033NCskkBjpbJr6GHgbuC/Ezea2dHAGcBHKby2iMhBCdu4QKKUDRa7+zygpsI9vwV+Ahz6fVIiIiGQ1ruGzGwC8Im7v5nEvpPNbImZLdm4cWMaohMRCae0JQIzawX8DLixvn0B3H2Guw9y90FFRUWpDU5EJMTS2SI4HjgOeNPM1gJdgTfMLDwjMiIih6C0JQJ3f9vdO7t7sbsXA+uAAe7+WbpiEGkpKoul1aV6tdHmZuvWrdx77721vl5ZirtPnz587WtfY+vWrU0ew5IlS5gyZUqTn7ch6vt7NEbKEoGZPQ4sBHqY2Toz+26qriUiB2pIImiqMtNNob4Pvsp6S++88w4dOnTgnnvuafIYBg0aFK9smigTZSaaZSJw94vc/Qh3z3H3ru7+YLXXizWHQKRx5s6dy+jRo5k4cSJf+tKXuPjii3H3A8pOQ6wg2/DhwxkwYADnn38+O3fuBGJlln/+858zcuRInnzySUaPHs0111zDqaeeSs+ePVm8eHG8UNt//Md/xK99zjnnMHDgQHr37s2MGTPi2x988EG6d+/O6NGjufzyy7nyyisBuOyyy5gyZQonn3wy3bp1qzKb+LbbbmPw4MGUlJRw0003ATB16lTef/99+vXrx3XXXVfn32H48OF88skndZ4PYtVJe/TowZgxY7jooovi9ZESF8XZtGkTxcXF8b9vZVnvm2++mcmTJzN27FguueQSKioquO666+LX+d3vfhc/ZtSoUVxwwQV0796dqVOn8thjjzFkyBD69u0bL7m9ceNGzjvvPAYPHszgwYNZsGBB/DqTJk1i9OjRdOvWLZ6IDubvcbBUYkKkMf46FT57u2nP2aUvnHVr0rsvW7aMFStWcOSRRzJixAgWLFhwQNnpTZs28ctf/pKXX36Z1q1b85vf/IY77rgjXmohPz+f+fPnA3D//feTm5vLvHnzuPPOOzn77LNZunQpHTp04Pjjj+eaa66hY8eOPPTQQ3To0IE9e/YwePBgzjvvPPbu3csvfvEL3njjDQoLCzn99NM56aST4rGuX7+e+fPns3r1aiZMmMDEiROZNWsWa9asYdGiRbg7EyZMYN68edx6662888478SqrtamoqGD27Nl897uxTofazte6dWtmzpzJsmXLKC8vZ8CAAQwcOPCg/tMsXbqU+fPnU1BQwIwZM2jbti2LFy9m7969jBgxgrFjxwLw5ptvsmrVKjp06EC3bt343ve+x6JFi7jzzju56667mDZtGldffTXXXHMNI0eO5KOPPmLcuHGsWrUKiNWPmjNnDjt27KBHjx58//vfT/rv0RBKBCLN3JAhQ+jatSsA/fr1Y+3atYwcObLKPq+//jorV65kxIgRAJSVlTF8+PD469XLQ0+YMAGAvn370rt3b4444gggthDMxx9/TMeOHZk+fTrPPvssAB9//DFr1qzhs88+Y9SoUXTo0AGA888/n3fffTd+3nPOOYdIJEKvXr34/PPPgdgH96xZs+J1kXbu3MmaNWs45phj6nzflfWW1q5dy8CBAznjjDPqPN+OHTs499xzadWqVZX3eDAmTJhAQUFB/DpvvfVWvGWzbds21qxZQ25uLoMHD47/zY4//vh4gujbty9z5swB4OWXX66yQtv27dvjRfi++tWvkpeXR15eHp07d47/rVJFiUCkMQ7im3uqVJZIhtrLJLs7Z5xxBo8//niN56heHrrynJFIpMr5I5EI5eXlzJ07l5dffpmFCxfSqlUrRo8eTWlpadLlnCtjqvx9/fXXc8UVV1TZt771CCrHCLZt28b48eO55557mDJlSq3nmzZtWrwwXnWJ5bvrKt2d+Hdyd+666y7GjRtXZZ+5c+ce8DdL/HtW/veJRqMsXLgwnlgSJfPftCmpDLVIC5VY5nnYsGEsWLCA9957D4Ddu3dX+aZ+sLZt20b79u1p1aoVq1ev5vXXXwdirZNXX32VL774gvLycp5++ul6zzVu3Dgeeuih+JjFJ598woYNG5IuU922bVumT5/O7bffzr59+2o936mnnsqzzz7Lnj172LFjBy+88EL8HMXFxSxduhQg6Uqo48aN47777ouX8n733XfZtWtXUscCjB07lrvvvjv+vL4un6Yo210bJQKRFqqy7PRpp51GUVERDz/8MBdddBElJSUMGzasUWvvnnnmmZSXl1NSUsINN9zAsGHDADjqqKP46U9/ytChQxkzZgy9evWqt5zz2LFj+eY3v8nw4cPp27cvEydOZMeOHXTs2JERI0bQp0+fegdH+/fvz0knncTMmTNrPd+AAQO48MIL6devH+eddx6nnHJK/Phrr72W++67j5NPPplNm5K7h+V73/sevXr1YsCAAfTp04crrrjioL65T58+nSVLllBSUkKvXr24//7769z/YP4eB0tlqBOoDLUkQ2Wo61ZZzrm8vJxzzz2XSZMmce6552Y6rAPcfPPNtGnThmuvvTbToTSJxpShVotARJrUzTffHJ/oddxxx3HOOedkOiSphwaLRaRJJbN28aHg5ptvznQIhwy1CEQaoDl0qUp4NPbfoxKByEHKz89n8+bNSgZySHB3Nm/eTH5+foPPoa6hGrh7rfcbi3Tt2pV169ahdTLkUJGfnx+fVNgQSgQ1cAflAalNTk4Oxx13XKbDEGky6hoKRKP7m/lq8ItImCgRBCoS+nuj6vsVkRBRIghUJLYIlAdEJESUCAJRtQhEJKSUCAKJLQIRkTBJ5VKVD5nZBjN7J2HbbWa22szeMrNnzaxdqq5/sBLzgFoEIhImqWwRPAycWW3bS0Afdy8B3gWuT+H1D0pUYwQiElKpXLN4HrCl2rZZ7l5Zp/V1oOEzIJqY7hoSkbDK5BjBJOCvGbx+FZpHICJhlZFEYGY/A8qBx+rYZ7KZLTGzJemYyp/YIvBoyi8nInLISHsiMLNLgfHAxV5H1S53n+Hug9x9UFFRUcrjqjKPQG0CEQmRtNYaMrMzgX8HRrn77nReuz5e5a6hzMUhIpJuqbx99HFgIdDDzNaZ2XeBu4FC4CUzW25mdS/SmUZVZxYrE4hIeKSsReDuF9Ww+cFUXa+xqt41lMFARETSTDOLA1G1CEQkpJQIAlXuGspgHCIi6aZEEEgcI9CEMhEJEyWCQDRh7oDygIiEiRJBQGWoRSSslAgCVcYIlAdEJESUCAKqPioiYaVEEFCJCREJKyWCgCaUiUhYKREEqt41pEwgIuGhRBCIqkUgIiGlRBCoesuoMoGIhIcSQUBlqEUkrJQIAlHNIxCRkFIiCESrtAiUCUQkPJQIAmoRiEhYKREEoqo+KiIhpUQQSOwaUh4QkTCpc6lKM8sHxgOnAEcCe4B3gBfdfUU9xz4UHLvB3fsE2zoATwDFwFrgAnf/onFvoWlU6RrS7aMiEiK1tgjM7GZgATAc+AfwO+CPQDlwq5m9ZGYldZz7YeDMatumArPd/URgdvD8kKAJZSISVnW1CBa7+821vHaHmXUGjqntYHefZ2bF1TafDYwOHj8CzAX+PYk4U86rdA0pE4hIeNTaInD3F6tvM7OImR0WvL7B3Zcc5PUOd/f1wfHrgc617Whmk81siZkt2bhx40Fe5uCpRSAiYVXvYLGZ/Y+ZHWZmrYGVwD/N7LpUB+buM9x9kLsPKioqSvXlqn34KxOISHgkc9dQL3ffDpwD/IVYd9C3G3i9z83sCIDg94YGnqfJVb19NIOBiIikWTKJIMfMcoglgufcfR8N/8r8PHBp8PhS4LkGnqfJaUKZiIRVMongd8Ru9WwNzDOzY4Ht9R1kZo8DC4EeZrbOzL4L3AqcYWZrgDOC54cElZgQkbCqcx4BgLtPB6ZXPjezj4DTkjjuolpe+nLS0aWRWgQiElZ1zSP4lpkd8LrHlJvZ8WY2MrXhpY9XSQTKBCISHnW1CDoCy8xsKbAU2AjkAycAo4BNHEITwhqrSomJzIUhIpJ2tSYCd7/TzO4GTgdGACXESkysAr7t7h+lJ8T0qDqPQKlARMKjzjECd68AXgp+WrSKqMYIRCScVH004LprSERCSokgoLuGRCSskikxkZWOQDKt6mCxMoGIhEcyLYL3zOw2M+uV8mgyqMpgcTSDgYiIpFkyiaAEeBd4wMxeD6qCHpbiuNKuyjyCDMYhIpJu9SYCd9/h7v/l7icDPwFuAtab2SNmdkLKI0wTlZgQkbBKaozAzCaY2bPAncD/A7oBLxCrRtoiaLBYRMKq3lpDwBpgDnCbu/89YftTZnZqasJKv2hUJSZEJJySSQQl7r6zphfcfUoTx5MxKjEhImGVTCIoN7MfAr2J1RoCwN0npSyqDFCJCREJq2TuGvoD0AUYB7wKdAV2pDKoTKjSIlAeEJEQSSYRnODuNwC73P0R4KtA39SGlX6uFoGIhFQyiWBf8HurmfUB2gLFKYsoQ/ThLyJhlUwimGFm7YEbiK05vBL4v425qJldY2YrzOwdM3vczPLrPyq1NI9ARMIqmaUqHwgevkps/kCjmNlRwBSgl7vvMbM/At8AHm7suRtDZahFJKxqTQRm9uO6DnT3Oxp53QIz2we0Aj5txLmaRNUxggwGIiKSZnW1CApTcUF3/8TMbgc+Irbi2Sx3n5WKax2MqncNKROISHjUtVTlLam4YDDecDZwHLAVeNLMvuXuj1bbbzIwGeCYY45JRShVqMSEiIRVMrWGupvZbDN7J3heYmb/0YhrjgH+5e4b3X0f8AxwcvWd3H2Guw9y90FFRUWNuFxyNFgsImGVzF1D/wVcT3Abqbu/RWxwt6E+AoaZWSszM+DLwKpGnK9JqAy1iIRVMomglbsvqratvKEXdPd/AE8BbwBvBzHMaOj5mkrUnYjtfywiEhbJ1BraZGbHE3xRNrOJwPrGXNTdbyK2rsEhoyIK2ZEIZRVRjRGISKgkkwh+SOwb+5fM7BPgX8DFKY0qA9ydrIhBhe4aEpFwSWZC2QfAGDNrDUTcvcUVnINYd1B20DekNCAiYVJnIjCzHsRu4fxSsGmVmc1w93dTHlmaRR0iQSKIakaZiIRIrYPFZjYcmEus5PQMYncP7QLmmtmwtESXRlF3crJiiaBCeUBEQqSuFsGNwEXuPjdh25/M7BViA71npTKwdHOPDRaDWgQiEi513T56fLUkAIC7N0nxuUNN1J3seItAiUBEwqOuRFDXoPCupg4k0yqiTm5WJP5YRCQs6uoaOtrMptew3YCjUhRPxkSdeItAXUMiEiZ1JYLr6nhtSVMHkmnuHh8jUNeQiIRJXdVHH0lnIJmWOEagFoGIhEkytYZCIepgZmRFTC0CEQkVJYJAZdG5LDMqopmORkQkfZQIAu4QMSMSUfVREQmXZBam6WZmL5jZJjPbYGbPmVmLm0dQEU1sESgRiEh4JNMi+B/gj0AX4EjgSeDxVAaVCVF3zIxIRIlARMIlmURg7v4Hdy8Pfh6lBRbodI+1BrIipq4hEQmVZNYjmGNmU4GZxBLAhcCLZtYBwN23pDC+tIm6kxMxdQ2JSOgkkwguDH5fUW37JGKJoVmOFzy3/BOunrmcFbeMo3VednDXUKxrSC0CEQmTZBamOa6pL2pm7YAHgD7Ekskkd1/Y1Nepy+9e/QCAdz/fQf9j2u+fR6AWgYiETL2JwMwuqWm7u/93I657J/C/7j7RzHKBVo04V4N0aZvPyvXb+XDzbvof0x6vnEcQ0TwCEQmXZLqGBic8zge+DLwBNCgRmNlhwKnAZQDuXgaUNeRcjdGhdS4A723YCcTqC2kegYiEUTJdQ1clPjeztsAfGnHNbsBG4PdmdhKwFLja3auUtjazycSWyeSYY45pxOVqtrc89rV/7ebYZaNRNI9AREKpITOLdwMnNuKa2cAA4D53709sbYOp1Xdy9xnuPsjdBxUVFTXicjXbUboPgF17ywGqDBar1pCIhEkyYwQvsH/eQBbQk9gEs4ZaB6xz938Ez5+ihkSQajtLYwlgV1kFsL/ERJaZqo+KSKgkM0Zwe8LjcuBDd1/X0Au6+2dm9rGZ9XD3fxIbc1jZ0PM11I4gEewuS2gRRCoHi5UIRCQ8khkjeNXMDmf/oPGaJrjuVcBjwR1DHwDfaYJzHpSdeysTQaxFEC8xYZpHICLhkkzX0AXAbcBcYstU3mVm17n7Uw29qLsvBwY19PimsD0YI9i9t1rXkFoEIhIyyXQN/QwY7O4bAMysCHiZWN9+sxSNerxFsCuxa8gIBoszGZ2ISHolc9dQpDIJBDYnedwhq7S8AnfIjhh7yipwd/ZVOFkRI8u0VKWIhEsyLYL/NbO/sb/09IXAX1IXUurtCcYFOrXJ47PtpZRVRCmriJKXHVHXkIiETjKDxdeZ2deBkcTGCGa4+7MpjyyF9uyLJYIOrXP5bHspu/dWUFYeJTcrQsQ0j0BEwqXORGBmWcDf3H0M8Ex6Qmo6S9Zu4f2NO7lwcNWZyaVBIujYJlZmYldZeSwRBC2CsnIVGxKR8Kizr9/dK4DdQVmJZufPb63n5y+sxKt9w99TFvug79QmL3heQVnF/kSgFoGIhEkyYwSlwNtm9hKxchAAuPuUlEXVRLoVtWZXWQUbd+yl82H58e2JXUMA20vLqYg6uVlZsXkEGiMQkRBJJhG8GPw0O8d1ag3AB5t21ZgIKruGtu2JFT9Vi0BEwiiZweJH0hFIKlQmgn9t2sWwbh3j2+N3DbWOdQ1t3R2bXJaTFZtZrPUIRCRMah0jMLOzzeyHCc//YWYfBD8T0xNe4xzZtoCcLOOjLburbK8+WPxFkAhit49qHoGIhEtdg8U/AZ5PeJ5HrN7QaOD7KYypyUQiRtuCnPg3/krVxwi27lbXkIiEV11dQ7nu/nHC8/nuvhnYbGatUxxXk2lbkMP2PdUSQcKEMtjfNZSbHdFgsYiETl0tgvaJT9z9yoSnTb9STIq0a5XL1j1VV8Ks3iL4orJFkJWlFoGIhE5dieAfZnZ59Y1mdgWwKHUhNa12NXUNlVUQMWiVm0VuVqRKiyDLjHJVnROREKmra+ga4E9m9k1ii9UDDCQ2VnBOqgNrKm1b5bD6sx1Vtu3ZV0FBThZmRqu8rHiLITc7QiSi9QhEJFxqTQRBxdGTzex0oHew+UV3fyUtkTWRdgW5bKs+RrCvgoLcLABa52bvbxFkRbR4vYiETjLzCF4BmtWHf6K2BTns3FvOvoooOVmxnrDSsgrysmOJoFVuFuu3lQKQm21qEYhI6GRsXQEzyzKzZWb251Rep12rHIAqdw7t3FtOm7xYDmyVmxVfpCY2WIxaBCISKplcYOZqYFWqL1KZCLYmJILdZRW0zqtsEexvFOVmR8iORJQIRCRUMpIIzKwr8FXggVRfq21BkAgS7hzaVVZO66BFUJkQIGEegfKAiIRIploE04jNXE55VZ92raoWlgPYtbec1rmViaBqi0BdQyISNmlPBGY2Htjg7kvr2W+ymS0xsyUbN25s8PUqWwSJdw7t2ltBq6Al0DEoPAexu4YimlAmIiGTiRbBCGCCma0FZgKnm9mj1Xdy9xnuPsjdBxUVNXwic7tauoYqB4s7H5aQCIIJZSoxISJhkvZE4O7Xu3tXdy8GvgG84u7fStX1DqshEezeWxEfJO5cuD8RtMpViQkRCZ9M3jWUFlkR47D87HjXUFl5lLKKKG2CrqHOhfsXrMkJFq9354DlLUVEWqpkVihLGXefC8xN9XXatcqNl5reXRabMxBvESR0DUEscUBswDg7y1IdmohIxrX4FgHE5hJUziOonDxWOUZweNAiOKPX4cD+RFCucQIRCYmMtgjSpW1BTrxraHewFkHlXUNtW+XwzA9OpmeXw4DYKmUAZRVR8nOyajibiEjLEooWQduCHLbtrtoiSJw/MOCY9vEidJWJYO8+LVwsIuEQikSQ2DVUOVbQPphoVl1lMbq95RXpCU5EJMPCkQgKYoPF0aizZVcsIXSoLRHkBC2CcrUIRCQcwpEIWuUQddhZVs4Xu2Itgnatc2rcNz5GoEQgIiERikRQOals2+59bNldRnbEKMyreZx8f9eQEoGIhEMoEkG7hHpDW3eX0b51LmY1zxHIjQ8Wa4xARMIhHIkgGA/4YncZW3aV1To+AAl3DalFICIhEYpEUFlP6LNtpXyxax/taxkfgP1dQxojEJGwCEUiOKp9ARGDj7bs5vMdpXRqk1frvrprSETCJhSJICcrwpHtCljz+U4+3rKbbp1a17pvblZlItAYgYiEQygSAcCxHVvx2pqNRB26FbWpdT+1CEQkbEKTCE4oasOuoM7EIAvaAAALf0lEQVTQ8XUlgsrbR3XXkIiERGgSwdjeXeKPT+hcVyLYX3RORCQMQlF9FGBYt46M6Xk4EwceFS8wV5NcFZ0TkZAJTSLIihgPXDqo3v2yI0bENEYgIuERmq6hZJkZedlZumtIREIj7YnAzI42szlmtsrMVpjZ1emOoT55ORFNKBOR0MhE11A58H/c/Q0zKwSWmtlL7r4yA7HUKC87QqnGCEQkJNLeInD39e7+RvB4B7AKOCrdcdSldV52fCUzEZGWLqNjBGZWDPQH/lHDa5PNbImZLdm4cWNa4zosP4ftpfvSek0RkUzJWCIwszbA08CP3H179dfdfYa7D3L3QUVFRWmNLXGxexGRli4jicDMcoglgcfc/ZlMxFAXJQIRCZNM3DVkwIPAKne/I93XT4YSgYiESSZaBCOAbwOnm9ny4OcrGYijVocVZLN9zz6iUc90KCIiKZf220fdfT5Q8zqRh4i2BbHF7neVlVOYX/siNiIiLYFmFtegbcIaxyIiLZ0SQQ2UCEQkTJQIalAUrHG8YfveDEciIpJ6SgQ1OLJdAQCfbN2T4UhERFJPiaAGnQvzyY6YEoGIhIISQQ2yIsYR7fL55AslAhFp+ZQIanFUuwK1CEQkFJQIanF8URve/XwH7ppUJiItmxJBLfoc1ZYdpeV8vEWtAhFp2ZQIatHnyLYAvP3JtgxHIiKSWkoEtejRpZA2edkseH9TpkMREUkpJYJa5GZHGHlCJ+as3qDicyLSoikR1OGsvl1Yv61UrQIRadGUCOpwZp8udGqTy71z3tfdQyLSYikR1CEvO4srTzuBhR9sZubijzMdjohISigR1OPbw4s55cRO3PTcCl59d2OmwxERaXJKBPXIihh3XdSfbkWt+c7vF3HHrH+yp6wi02GJiDSZTC1ef6aZ/dPM3jOzqZmI4WC0a5XL098/mQknHcn0V95j+K2z+cWfV7L0wy/YVxHNdHgiIo1i6R4ENbMs4F3gDGAdsBi4yN1X1nbMoEGDfMmSJWmKsG5LP9zCQwvWMmvFZ+yrcFrnZjHg2Pac0LkNJ3YupLhTKzoX5nP4YXm0ycvG7JBelVNEWjAzW+rug+rbL+1rFgNDgPfc/QMAM5sJnA3UmggOJQOP7cDAYzvwxa4yFn6wmQXvbeLNdVuZuehj9uyr2mVUkJNFp8JcCvNyKMzPpjA/mzZ52RTm59AqL4u87CzysiPkZkXIzQ5+gsd5wfPsSIRIBLLMyIrs/4lYDY/NiESockzEDDMwDIzgMZhZ8Dv2WmW+Snx+wH5KaiItUiYSwVFA4i0464ChKbnSX6fCZ2+n5NTtga8EP7QBb+OUlUcp3RdlX0WUsooo+8pjjyv2OOW7nIpowo87B9MYc6A8+DlUWA1PrNortaaORuSUpk5HNZ/PktmpEedvWs09Rx98+Cl+w4fQ6Q/vPpguF05LWSyQmURQ09/ggI9EM5sMTAY45phjUh1ToxkWfMPPSvoYJ5YMHIhGnWjwPOpVf3ts5/j+wdP43Ib4PsE2D7ZVXqP6X7f6H/vAhOT79/Eqvw48T+J1qr2Yik7HpM9Z444Hbkx1x2hT97w2i9ksB/mmm8V7qkOq48/JSn2Wz0QiWAccnfC8K/Bp9Z3cfQYwA2JjBA260lm3NuiwdDH2Z8Xk04eISNPKxF1Di4ETzew4M8sFvgE8n4E4RESEDLQI3L3czK4E/kbsi/BD7r4i3XGIiEhMJrqGcPe/AH/JxLVFRKQqzSwWEQk5JQIRkZBTIhARCTklAhGRkFMiEBEJubQXnWsIM9sIfNjAwzsBYVtrUu85HPSew6Ex7/lYdy+qb6dmkQgaw8yWJFN9ryXRew4HvedwSMd7VteQiEjIKRGIiIRcGBLBjEwHkAF6z+Gg9xwOKX/PLX6MQERE6haGFoGIiNShRScCMzvTzP5pZu+Z2dRMx5NqZvaQmW0ws3cyHUu6mNnRZjbHzFaZ2QozuzrTMaWameWb2SIzezN4z7dkOqZ0MLMsM1tmZn/OdCzpYmZrzextM1tuZilbuL3Fdg2ZWRbwLnAGscVwFgMXuXuzWBu5IczsVGAn8N/u3ifT8aSDmR0BHOHub5hZIbAUOKeF/3c2oLW77zSzHGA+cLW7v57h0FLKzH4MDAIOc/fxmY4nHcxsLTDI3VM6d6IltwiGAO+5+wfuXgbMBM7OcEwp5e7zgC2ZjiOd3H29u78RPN4BrCK2LnaL5TE7g6c5wU/L/EYXMLOuwFeBBzIdS0vUkhPBUcDHCc/X0cI/IMLOzIqB/sA/MhtJ6gXdJMuBDcBL7t7S3/M04CdANNOBpJkDs8xsabCOe0q05ERQ04rPLfpbU5iZWRvgaeBH7r490/GkmrtXuHs/Ymt+DzGzFtsVaGbjgQ3uvjTTsWTACHcfAJwF/DDo/m1yLTkRrAOOTnjeFfg0Q7FICgX95E8Dj7n7M5mOJ53cfSswFzgzw6Gk0ghgQtBfPhM43cwezWxI6eHunwa/NwDPEuvybnItOREsBk40s+PMLBf4BvB8hmOSJhYMnD4IrHL3OzIdTzqYWZGZtQseFwBjgNWZjSp13P16d+/q7sXE/j9+xd2/leGwUs7MWgc3QGBmrYGxQEruCGyxicDdy4Ergb8RG0D8o7uvyGxUqWVmjwMLgR5mts7MvpvpmNJgBPBtYt8Slwc/X8l0UCl2BDDHzN4i9oXnJXcPzS2VIXI4MN/M3gQWAS+6+/+m4kIt9vZRERFJTottEYiISHKUCEREQk6JQEQk5JQIRERCTolARCTklAik2TCzioRbRJcHJSVaDDPrb2YPBI8vM7O7q70+18xqXbvWzGaa2YmpjlNanuxMByByEPYEZRVqZGbZwfyR5uqnwC8bcfx9xOrxXN404UhYqEUgzVrwzflJM3sBmBVsu87MFpvZW4m1+s3sZ8H6FC+b2eNmdm2wPf5N28w6BaUMKgu73ZZwriuC7aODY54ys9Vm9lgwwxkzG2xmfw/WClhkZoVm9pqZ9UuIY4GZlVR7H4VAibu/mcR7npDQKvqnmf0reOk1YIyZ6QueHBT9g5HmpCCouAnwL3c/N3g8nNiH6BYzGwucSKwmiwHPB4W6dhErT9Cf2L/7N4itXVCX7wLb3H2wmeUBC8xsVvBaf6A3sfpVC4ARZrYIeAK40N0Xm9lhwB5ipZMvA35kZt2BPHd/q9q1BnFg+YALzWxkwvMTANz9eYJyKWb2R+DVYHvUzN4DTkrivYnEKRFIc1Jb19BL7l65DsPY4GdZ8LwNscRQCDzr7rsBzCyZulNjgRIzmxg8bxucqwxY5O7rgnMtB4qBbcB6d18MUFkF1cyeBG4ws+uAScDDNVzrCGBjtW1PuPuVlU/MbG7ii2b2E2J/k3sSNm8AjkSJQA6CEoG0BLsSHhvwa3f/XeIOZvYjai9DXs7+btL8aue6yt3/Vu1co4G9CZsqiP2/ZDVdw913m9lLxBZGuoDYt//q9lS7dp3M7MvA+UD1ssT5wblEkqYxAmlp/gZMCtYnwMyOMrPOwDzgXDMrCPrjv5ZwzFpgYPB4YrVzfT8oc42ZdQ+qQNZmNXCkmQ0O9i9M6K9/AJgOLE5ovSRaRdD1Ux8zOxa4F7jA3at/6HcHWnRxRWl6ahFIi+Lus8ysJ7AwGL/dCXwrWNP4CWA58CGxgdVKtwN/NLNvA68kbH+AWJfPG8Fg8EbgnDquXWZmFwJ3BeWh9xArEb3T3Zea2Xbg97Ucu9rM2ppZYbDkZl0uAzoCzwbv8VN3/4qZHU6sq2h9PceLVKHqoxJKZnYzsQ/o29N0vSOJLSDzJXevcblFM7sG2OHuDVqXNzh+u7s/2OBAJZTUNSSSYmZ2CbF1lH9WWxII3EfVsYeDtRV4pBHHS0ipRSAiEnJqEYiIhJwSgYhIyCkRiIiEnBKBiEjIKRGIiIScEoGISMj9f1NuAINXeDvWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(w*sample_rate/2/np.pi, gd/sample_rate, w*sample_rate/2/np.pi, 0.01*np.ones_like(w))\n", + "pl.xlabel('Frequency (Hz)')\n", + "pl.ylabel('Group Delay (s)')\n", + "pl.legend(('Butterworth Design', 'Intermagnet Requirement'))" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "a,b = sps.iirdesign(cutoff, cutoff+width, gpass=3.0, gstop=50.0, analog=False, ftype='cheby1')" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aclaycomb/anaconda3/envs/geomagenv36/lib/python3.6/site-packages/scipy/signal/filter_design.py:536: UserWarning: The group delay is singular at frequencies [3.129, 3.135], setting to 0\n", + " format(\", \".join(\"{0:.3f}\".format(ws) for ws in w[singular]))\n" + ] + } + ], + "source": [ + "w, gd = sps.group_delay((a,b))" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([5.92719812e-08, 2.96359906e-07, 5.92719812e-07, 5.92719812e-07,\n", + " 2.96359906e-07, 5.92719812e-08])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1. , -4.9082771 , 9.65633587, -9.51809429, 4.70039227,\n", + " -0.93035486])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x1c200cd0f0>" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4lPW5//H3PVnZEYi4oA0goGwBWZSliqhAK0WsKKXSalGxtm78ftLqsT16eo7Xj3O0LqjFUkVttWLVUvW0KiKLVVEWRWUrqKWKouyQsIVk7t8f82RIQhKGJDMDeT6v68rFzDPP83zvGSD3fHdzd0REJLwi6Q5ARETSS4lARCTklAhEREJOiUBEJOSUCEREQk6JQEQk5JQIRERCTolARCTklAhEREIuM90BJKJNmzaen5+f7jBERI4qS5cu3ezueYc676hIBPn5+SxZsiTdYYiIHFXM7F+JnKemIRGRkFMiEBEJOSUCEZGQOyr6CESOJPv372f9+vXs3bs33aGIAJCbm0u7du3Iysqq1fVKBCKHaf369TRr1oz8/HzMLN3hSMi5O1u2bGH9+vW0b9++VvdQ05DIYdq7dy+tW7dWEpAjgpnRunXrOtVQlQhEakFJQI4kdf33qERQzpqvC1m8bmu6wxARSSklgnKG3fsGlzy8MN1hiBzSV199xfe+9z06duxI165d+fa3v82aNWuYP38+I0eOPKx7DRkypM4TNtetW0f37t3rdI/K7rzzTnr16kWvXr3IyMiIP546dWq9llMmGo0yfPhwWrZsyejRo6s9b/z48bRv356CggI6d+7M5ZdfzpdfflmrMh966CGeeuqp2oZcb9RZLHKUcXcuuugiLr/8cmbOnAnAsmXL+Prrr9McWf267bbbuO222wBo2rQpy5YtS2p5ZsbPfvYzCgsLefzxx2s8995772X06NFEo1Huuecehg4dykcffXTYo3Z++tOf1iHi+qMagchRZt68eWRlZfHjH/84fqxXr15885vfBKCoqIgxY8Zw6qmnctlll+HuACxdupSzzz6bPn36MHz4cDZs2BC//sknn2TgwIF0796dRYsWEY1G6dSpE5s2bQJi35ZPOeUUNm/ezNdff81FF11EQUEBBQUFvP322wCUlpZy9dVX061bN4YNG8aePXsA+OSTTxgxYgR9+vThm9/8JqtXr2bHjh3k5+cTjUYB2L17NyeddBL79+8/5Pvfvn07HTp0oKSkJP68ffv2lJaWMnjwYG666SYGDBhAjx494jWdoqIirrjiCvr370/v3r156aWXDrqvmXHuuefStGnThP8uIpEIN998M61atWL27NkAvPzyywwYMIDTTz+dsWPHsmvXLgAmT55M165d6dmzJz//+c8B+MUvfsF9990HwDvvvEPPnj0ZOHAgkydPplevXgA88sgjjBkzhuHDh9OpUyduvfXWhONLlGoEInXwHy+tYOWXO+v1nl1PaM7t3+lW7evLly+nT58+1b7+/vvvs2LFCk444QQGDRrEW2+9xRlnnMH111/PCy+8QF5eHs888wy33XYbM2bMAGDXrl28/fbbvPHGG0yYMIHly5czfvx4nnrqKW666SbmzJlDQUEBbdq0YezYsZx99tnMmjWL0tJSioqK2LZtG2vXruXpp5/md7/7HZdeeinPP/8848ePZ+LEiTz88MN06tSJd999l5/85CfMnTuXgoICFixYwDnnnMNLL73E8OHDE/pG3bJlSwYNGsQrr7zCyJEj+eMf/8ill15KRkYGAPv27WPhwoXMnTuXq666imXLlvGrX/2KESNG8Pjjj7Nt2zbOOOMMzj//fHJzcw/zb6dqp59+OqtXr6Zfv35MmTKF119/ncaNG3PnnXdy//33c+WVV/K3v/2NFStWYGZs3779oHv86Ec/4oknnqB///7cfPPNFV774IMPeO+998jMzKRz585cf/31nHDCCfUSOygRiDQ4/fv3p127dkCsprBu3TpatmzJ8uXLOf/884HYt/fjjz8+fs24ceMAOOuss9i5cyfbt29nwoQJXHjhhdx0003MmDGDH/3oRwDMnTuX3//+9wBkZGTQokULtm3bRvv27ePfYvv06cO6desoKiri7bff5pJLLomXtW/fPgDGjh3LM888wznnnMPMmTP5yU9+kvB7vOqqq5g6dSojR47kscce4w9/+MNB72Xo0KFs3LiRoqIiZs+ezcsvv8yUKVOA2BDgzz77jM6dOx/GJ1u9slrX22+/zcqVKxk4cCAAxcXFDB48mFatWhGJRLj66qu54IILDurH2bx5M8XFxfTv3x+A73//+8yZMyf++nnnnUezZs0AOPXUU/nss8+UCESOFDV9c0+Wbt268dxzz1X7ek5OTvxxRkYGJSUluDvdunVj4cKqB0NUHn5oZpx00km0bduWuXPn8u677x6yU7NyuXv27CEajdKyZcsq2/dHjRrFrbfeytatW1m6dClDhw6t8f7lnX322Vx33XXxZrJTTz21xvfi7vzlL3+hY8eOCZdxOJYtW8YFF1zAvn37GDFiRIXEVGbJkiW89tprzJw5k2nTpsWbkuBAIqlOVX+n9Ul9BCJHmaFDh7Jv3z5+97vfxY8tXryYBQsWVHtNly5d2LRpUzwR7N+/nxUrVsRff+aZZwB48803adGiBS1atABi37zHjx9foenl3HPPZdq0aUCsZrFzZ/VNY82bN6d9+/Y8++yzQOwX3gcffADEOoD79+/PjTfeyMiRI+P3T9T48eO57LLL4jWVyu9l/vz5tG3bliZNmjB8+PAKo43ef//9wyqrOu7Ovffey5YtWzj//PMZOHAgCxYs4NNPPwViTW5r166lsLCQnTt3MnLkSO69996Dys/LyyMrKyvep1E2CCBVlAhEjjJmxqxZs3jttdfo2LEj3bp144477qixqSA7O5vnnnuOn//85xQUFNCrV694Jy/AMcccw8CBA/nxj3/Mo48+Gj8+atQoioqKKvyyvf/++5k3bx49evSgT58+FRJKVZ566ikeffRRCgoK6NatGy+88EL8tbFjx/Lkk08yduzYw/4cLrvsMnbs2HHQtc2bN2fgwIFcf/318WR5++23s3v3bnr06BH/vKoyYMAAxo0bx6uvvkq7du14/fXXqzxv0qRJFBQU0KVLF5YtW8bcuXPJysqibdu2PProo4wdO5aCggIGDhzImjVr2LFjBxdccAEFBQUMHTqUe+6556B7ljW/DRw4kEgkEk/GqWCHqpIcCfr27eup2Jgm/5a/ArBuygVJL0uOXqtWreK0005LdxgpsWTJEiZNmsTf//73dIdykJkzZ/Lqq6/y2GOPxY8NHjyYBx98MN5XcTQpKiqKj1i688472bp1K7/+9a8Tvr6qf5dmttTd+x7q2qT1EZjZDGAksNHdu1d67WbgLiDP3TcnKwYRqb0pU6Ywbdq0I2LCU2XXXnstc+bM4ZVXXkl3KPXmxRdf5H/+538oKSkhPz//kHMZ6lPSagRmdhZQBPy+fCIws5OAR4BTgT6JJALVCORIEqYagRw96lIjSFofgbu/AVS1cM+9wM+AI79NSkQkBFLaWWxmo4Av3P2DBM6daGZLzGxJ2exGERGpfylLBGbWGLgN+PdEznf36e7e19375uXlJTc4EZEQS2WNoCPQHvjAzNYB7YD3zOy4FMYgIiKVpCwRuPtH7n6su+e7ez6wHjjd3b9KVQwiDUUiC6Pdd9997N69OwXRJMf27dv5zW9+U+3rZUtTd+/ene985ztVrt9TV0uWLOGGG26o9/vWxqE+j7pIWiIws6eBhUAXM1tvZlcmqywROVhtEkFpaWmSojl8h/rF16hRI5YtW8by5ctp1aoVDz30UL3H0Ldv3yr3P6jvJR4ScVQmAncf5+7Hu3uWu7dz90crvZ6vOQQidTN//nyGDBly0LLTU6dO5csvv+Scc87hnHPOAWD27Nnx5ZEvueQSioqKAMjPz+dXv/oVgwcP5tlnn2XIkCFMmjSJs846i9NOO43Fixfz3e9+l06dOvGLX/wiXvbo0aPp06cP3bp1Y/r06fHjjz76KJ07d2bIkCFcffXVXHfddQBcccUV3HDDDQwcOJAOHTpUWC/prrvuol+/fvTs2ZPbb78dgFtuuYVPPvmEXr16MXny5Bo/hwEDBvDFF1/UeD+ITdTq0qUL5513HuPGjePuu+8GKm7Os3nzZvLz8+Ofb9kCcXfccQcTJ05k2LBh/PCHP6S0tJTJkyfHy/ntb38bv+bss8/m0ksvpXPnztxyyy089dRT9O/fnx49evDJJ58AsGnTJi6++GL69etHv379eOutt+LlTJgwgSFDhtChQ4d4Ijqcz+NwadE5kbp4+Rb46qP6vedxPeBbUxI+vaplp2+44Qbuuece5s2bR5s2bdi8eTP/9V//xZw5c2jSpAn//d//zT333MO//3ts7EZubi5vvvkmAA8//DDZ2dm88cYb3H///Vx44YUsXbqUVq1a0bFjRyZNmkTr1q2ZMWMGrVq1Ys+ePfTr14+LL76Yffv28Z//+Z+89957NGvWjKFDh1JQUBCPdcOGDbz55pusXr2aUaNGMWbMGGbPns3atWtZtGgR7s6oUaN44403mDJlCsuXLz/khjSlpaW8/vrrXHllrNGhuvs1adKEmTNn8v7771NSUsLpp59e43LeVVm6dClvvvkmjRo1Yvr06bRo0YLFixezb98+Bg0axLBhw4DYstGrVq2iVatWdOjQgauuuopFixZx//3388ADD3Dfffdx4403MmnSJAYPHsxnn33G8OHDWbVqFQCrV69m3rx5FBYW0qVLF6699tqEP4/aUCIQOcpVtez04MGDK5zzzjvvsHLlSgYNGgTElkceMGBA/PXK6/WMGjUKIL42T9mS1R06dODzzz+ndevWTJ06lVmzZgHw+eefs3btWr766ivOPvtsWrVqBcAll1zCmjVr4vcdPXo0kUiErl27xndUmz17NrNnz6Z3795AbKmFtWvXcvLJJ9f4vvfs2RN/v3369IkvsV3d/QoLC7noooto3Lhxhfd4OEaNGkWjRo3i5Xz44Yfxms2OHTtYu3Yt2dnZ9OvXL/6ZdezYMZ4gevTowbx58wCYM2cOK1eujN97586dFBYWAnDBBReQk5NDTk4Oxx57bNJ3n1MiEKmLw/jmniyJLFHs7px//vk8/fTTVd6jSZMmVd4zEolUuH8kEqGkpIT58+czZ84cFi5cSOPGjRkyZAh79+49rOWUy851d2699VauueaaCueuW7euxnuV9RHs2LGDkSNH8tBDD3HDDTdUe7/77rvvoCWqy2RmZsZ3S9u7d2+1ZZb/nNydBx54gOHDh1c4Z/78+Qd9ZuU/z7K/n2g0ysKFC+OJpbxkLztdmVYfFWmgmjVrFv+GeeaZZ/LWW2/x8ccfA7GtIct/Uz9cO3bs4JhjjqFx48asXr2ad955B4jVThYsWMC2bdsoKSnh+eefP+S9hg8fzowZM+J9Fl988QUbN26sEH9NWrRowdSpU7n77rvZv39/tfc766yzmDVrFnv27KGwsLDCdpX5+fksXboUoMa9HirHPW3atPj2mmvWrIlvS5mIYcOG8eCDD8afH6rJJ9HPozaUCEQaqIkTJ/Ktb32Lc845h7y8PB5//HHGjRtHz549OfPMM1m9enWt7z1ixAhKSkro2bMnv/zlLznzzDMBOPHEE/m3f/s3zjjjDM477zy6du16yOWUhw0bxve///34PsNjxoyhsLCQ1q1bM2jQILp3737IztHevXtTUFDAzJkzq71f2R7CvXr14uKLL47v8Qxw8803M23aNAYOHMjmzYmNYbnqqqvo2rUrp59+Ot27d+eaa645rG/uU6dOZcmSJfTs2ZOuXbvy8MMP13j+4Xweh0vLUJejReckEVp0rmZlyymXlJRw0UUXMWHCBC666KJ0h3WQO+64g6ZNmx60P/DR6ohcdE5EwumOO+6IT/Rq3749o0ePTndIcgjqLBaRelU2Nv9IV90uZWGkGoFILRwNTaoSHnX996hEIHKYcnNz2bJli5KBHBHcnS1btpCbm1vre6hpqAruXu14Y5F27dqxfv16tE+GHClyc3PjkwprQ4mgCu6gPCDVycrKon379ukOQ6TeqGkoEI0eqOarwi8iYaJEECgt194bVduviISIEkGgtHyNQHlAREJEiSAQVY1AREJKiSBQvkYgIhImydyqcoaZbTSz5eWO3WVmq83sQzObZWYtk1X+4SqfB1QjEJEwSWaN4HFgRKVjrwHd3b0nsAa4NYnlH5ao+ghEJKSSuWfxG8DWSsdmu3vZOq3vALWfAVHPNGpIRMIqnX0EE4CX01h+BZpHICJhlZZEYGa3ASXAUzWcM9HMlpjZklRM5S9fI/Bo0osTETlipDwRmNnlwEjgMq9h1S53n+7ufd29b15eXtLjqjCPQHUCEQmRlK41ZGYjgJ8DZ7v77lSWfSheYdRQ+uIQEUm1ZA4ffRpYCHQxs/VmdiXwINAMeM3MlplZzZt0plDFmcXKBCISHkmrEbj7uCoOP5qs8uqq4qihNAYiIpJimlkciKpGICIhpUQQqDBqKI1xiIikmhJBoHwfgSaUiUiYKBEEouXmDigPiEiYKBEEtAy1iISVEkGgQh+B8oCIhIgSQUCrj4pIWCkRBLTEhIiElRJBQBPKRCSslAgCFUcNKROISHgoEQSiqhGISEgpEQQqDhlVJhCR8FAiCGgZahEJKyWCQFTzCEQkpJQIAtEKNQJlAhEJDyWCgGoEIhJWSgSBqFYfFZGQUiIIlG8aUh4QkTCpcatKM8sFRgLfBE4A9gDLgb+6+4pDXDsjuHaju3cPjrUCngHygXXApe6+rW5voX5UaBrS8FERCZFqawRmdgfwFjAAeBf4LfAnoASYYmavmVnPGu79ODCi0rFbgNfdvRPwevD8iKAJZSISVjXVCBa7+x3VvHaPmR0LnFzdxe7+hpnlVzp8ITAkePwEMB/4eQJxJp1XaBpSJhCR8Ki2RuDuf618zMwiZtY8eH2juy85zPLauvuG4PoNwLHVnWhmE81siZkt2bRp02EWc/hUIxCRsDpkZ7GZ/dHMmptZE2Al8A8zm5zswNx9urv3dfe+eXl5yS6u0i9/ZQIRCY9ERg11dfedwGjgb8Sag35Qy/K+NrPjAYI/N9byPvWu4vDRNAYiIpJiiSSCLDPLIpYIXnD3/dT+K/OLwOXB48uBF2p5n3qnCWUiElaJJILfEhvq2QR4w8y+Aew81EVm9jSwEOhiZuvN7EpgCnC+ma0Fzg+eHxG0xISIhFWN8wgA3H0qMLXsuZl9BpyTwHXjqnnp3ISjSyHVCEQkrGqaRzDezA563WNKzKyjmQ1Obnip4xUSgTKBiIRHTTWC1sD7ZrYUWApsAnKBU4Czgc0cQRPC6qrCEhPpC0NEJOWqTQTufr+ZPQgMBQYBPYktMbEK+IG7f5aaEFOj4jwCpQIRCY8a+wjcvRR4Lfhp0Eqj6iMQkXDS6qMB16ghEQkpJYKARg2JSFglssRERioCSbeKncXKBCISHonUCD42s7vMrGvSo0mjCp3F0TQGIiKSYokkgp7AGuARM3snWBW0eZLjSrkK8wjSGIeISKodMhG4e6G7/87dBwI/A24HNpjZE2Z2StIjTBEtMSEiYZVQH4GZjTKzWcD9wK+BDsBLxFYjbRDUWSwiYXXItYaAtcA84C53f7vc8efM7KzkhJV60aiWmBCRcEokEfR096KqXnD3G+o5nrTREhMiElaJJIISM/sp0I3YWkMAuPuEpEWVBlpiQkTCKpFRQ38AjgOGAwuAdkBhMoNKhwo1AuUBEQmRRBLBKe7+S2CXuz8BXAD0SG5YqeeqEYhISCWSCPYHf243s+5ACyA/aRGliX75i0hYJZIIppvZMcAvie05vBL4n7oUamaTzGyFmS03s6fNLPfQVyWX5hGISFglslXlI8HDBcTmD9SJmZ0I3AB0dfc9ZvYn4HvA43W9d11oGWoRCatqE4GZ/Z+aLnT3e+pYbiMz2w80Br6sw73qRcU+gjQGIiKSYjXVCJolo0B3/8LM7gY+I7bj2Wx3n52Msg5HxVFDygQiEh41bVX5H8koMOhvuBBoD2wHnjWz8e7+ZKXzJgITAU4++eRkhFKBlpgQkbBKZK2hzmb2upktD573NLNf1KHM84B/uvsmd98P/BkYWPkkd5/u7n3dvW9eXl4dikuMOotFJKwSGTX0O+BWgmGk7v4hsc7d2voMONPMGpuZAecCq+pwv3qhZahFJKwSSQSN3X1RpWMltS3Q3d8FngPeAz4KYphe2/vVl6g7ETvwWEQkLBJZa2izmXUk+KJsZmOADXUp1N1vJ7avwRGjNAqZkQjFpVH1EYhIqCSSCH5K7Bv7qWb2BfBP4LKkRpUG7k5GxKBUo4ZEJFwSmVD2KXCemTUBIu7e4Bacg1hzUGbQNqQ0ICJhUmMiMLMuxIZwnhocWmVm0919TdIjS7GoQyRIBFHNKBOREKm2s9jMBgDziS05PZ3Y6KFdwHwzOzMl0aVQ1J2sjFgiKFUeEJEQqalG8O/AOHefX+7YX8xsLrGO3m8lM7BUc491FoNqBCISLjUNH+1YKQkA4O71svjckSbqTma8RqBEICLhUVMiqKlTeFd9B5JupVEnOyMSfywiEhY1NQ2dZGZTqzhuwIlJiidtok68RqCmIREJk5oSweQaXltS34Gkm7vH+wjUNCQiYVLT6qNPpDKQdCvfR6AagYiESSJrDYVC1MHMyIiYagQiEipKBIGyRecyzCiNpjsaEZHUUSIIuEPEjEhEq4+KSLgksjFNBzN7ycw2m9lGM3vBzBrcPILSaPkagRKBiIRHIjWCPwJ/Ao4DTgCeBZ5OZlDpEHXHzIhElAhEJFwSSQTm7n9w95Lg50ka4AKd7rHaQEbE1DQkIqGSyH4E88zsFmAmsQQwFvirmbUCcPetSYwvZaLuZEVMTUMiEjqJJIKxwZ/XVDo+gVhiOCr7C15Y9gU3zlzGiv8YTpOczGDUUKxpSDUCEQmTRDamaV/fhZpZS+ARoDuxZDLB3RfWdzk1+e2CTwFY83UhvU8+5sA8AtUIRCRkDpkIzOyHVR1399/Xodz7gVfcfYyZZQON63CvWjmuRS4rN+zkX1t20/vkY/CyeQQRzSMQkXBJpGmoX7nHucC5wHtArRKBmTUHzgKuAHD3YqC4Nveqi1ZNsgH4eGMREFtfSPMIRCSMEmkaur78czNrAfyhDmV2ADYBj5lZAbAUuNHdKyxtbWYTiW2Tycknn1yH4qq2ryT2tX/dllix0SiaRyAioVSbmcW7gU51KDMTOB2Y5u69ie1tcEvlk9x9urv3dfe+eXl5dSiuaoV79wOwa18JQIXOYq01JCJhkkgfwUscmDeQAZxGbIJZba0H1rv7u8Hz56giESRb0d5YAthVXAocWGIiw0yrj4pIqCTSR3B3ucclwL/cfX1tC3T3r8zsczPr4u7/INbnsLK296utwiAR7C4uVyOIlHUWKxGISHgk0kewwMzacqDTeG09lHs98FQwYuhT4Ef1cM/DUrSvLBHEagTxJSZM8whEJFwSaRq6FLgLmE9sm8oHzGyyuz9X20LdfRnQt7bX14edQR/B7n2VmoZUIxCRkEmkaeg2oJ+7bwQwszxgDrG2/aNSNOrxGsGu8k1DRtBZnM7oRERSK5FRQ5GyJBDYkuB1R6y9JaW4Q2bE2FNciruzv9TJiBgZpq0qRSRcEqkRvGJmr3Jg6emxwN+SF1Ly7Qn6Bdo0zeGrnXspLo1SXBolJzOipiERCZ1EOosnm9l3gcHE+gimu/uspEeWRHv2xxJBqybZfLVzL7v3lVJcEiU7I0LENI9ARMKlxkRgZhnAq+5+HvDn1IRUf5as28onm4oY26/izOS9QSJo3TS2zMSu4pJYIghqBMUlWmxIRMKjxrZ+dy8FdgfLShx1/vfDDfzqpZV4pW/4e4pjv+jbNM0JnpdSXHogEahGICJhkkgfwV7gIzN7jdhyEAC4+w1Ji6qedMhrwq7iUjYV7uPY5rnx4+WbhgB27i2hNOpkZ2TE5hGoj0BEQiSRRPDX4Oeo075NEwA+3byrykRQ1jS0Y09s8VPVCEQkjBLpLH4iFYEkQ1ki+OfmXZzZoXX8eHzUUJNY09D23bHJZVkZsZnF2o9ARMKk2j4CM7vQzH5a7vm7ZvZp8DMmNeHVzQktGpGVYXy2dXeF45U7i7cFiSA2fFTzCEQkXGrqLP4Z8GK55znE1hsaAlybxJjqTSRitGiUFf/GX6ZyH8H23WoaEpHwqqlpKNvdPy/3/E133wJsMbMmSY6r3rRolMXOPZUSQbkJZXCgaSg7M6LOYhEJnZpqBMeUf+Lu15V7Wv87xSRJy8bZbN9TcSfMyjWCbWU1gowM1QhEJHRqSgTvmtnVlQ+a2TXAouSFVL9aVtU0VFxKxKBxdgbZGZEKNYIMM0q06pyIhEhNTUOTgL+Y2feJbVYP0IdYX8HoZAdWX1o0zmL1V4UVju3ZX0qjrAzMjMY5GfEaQ3ZmhEhE+xGISLhUmwiCFUcHmtlQoFtw+K/uPjclkdWTlo2y2VG5j2B/KY2yMwBokp15oEaQEdHm9SISOonMI5gLHFW//Mtr0SiLon0l7C+NkpURawnbW1xKTmYsETTOzmDDjr0AZGeaagQiEjpp21fAzDLM7H0z+99kltOycRZAhZFDRftKaJoTy4GNszPim9TEOotRjUBEQiWdG8zcCKxKdiFliWB7uUSwu7iUJjllNYIDlaLszAiZkYgSgYiESloSgZm1Ay4AHkl2WS0aBYmg3MihXcUlNAlqBGUJAcrNI1AeEJEQSVeN4D5iM5eTvqpPy8YVF5YD2LWvhCbZZYmgYo1ATUMiEjYpTwRmNhLY6O5LD3HeRDNbYmZLNm3aVOvyymoE5UcO7dpXSuOgJtA6WHgOYqOGIppQJiIhk44awSBglJmtA2YCQ83syconuft0d+/r7n3z8mo/kbllNU1DZZ3FxzYvlwiCCWVaYkJEwiTlicDdb3X3du6eD3wPmOvu45NVXvMqEsHufaXxTuJjmx1IBI2ztcSEiIRPOkcNpURGxGjlufbqAAANZUlEQVSemxlvGiouiVJcGqVp0DR0bLMDG9ZkBZvXu3PQ9pYiIg1VIjuUJY27zwfmJ7uclo2z40tN7y6OzRmI1wjKNQ1BLHFArMM4M8OSHZqISNo1+BoBxOYSlM0jKJs8VtZH0DaoEZzftS1wIBGUqJ9AREIirTWCVGnRKCveNLQ72IugbNRQi8ZZ/PknAzntuOZAbJcygOLSKLlZGVXcTUSkYQlFjaBFoyx27K5YIyg/f+D0k4+JL0JXlgj27dfGxSISDqFIBOWbhsr6Co4JJppVVrYY3b6S0tQEJyKSZuFIBI1incXRqLN1VywhtKouEWQFNYIS1QhEJBzCkQgaZxF1KCouYduuWI2gZZOsKs+N9xEoEYhISIQiEZRNKtuxez9bdxeTGTGa5VTdT36gaUiJQETCIRSJoGW59Ya27y7mmCbZmFU9RyA73lmsPgIRCYdwJIKgP2Db7mK27iqutn8Ayo0aUo1AREIiFImgbD2hr3bsZduu/RxTTf8AHGgaUh+BiIRFKBLBicc0ImLw2dbdfF24lzZNc6o9V6OGRCRsQpEIsjIinNCyEWu/LuLzrbvp0KZJtedmZ5QlAvURiEg4hCIRAHyjdWP+vnYTUYcOeU2rPU81AhEJm9AkglPymrIrWGeoY02JoGz4qEYNiUhIhCYRDOt2XPzxKcfWlAgOLDonIhIGoVh9FODMDq0577S2jOlzYnyBuapka9E5EQmZ0CSCjIjxyOV9D3leZsSImPoIRCQ8QtM0lCgzIyczQ6OGRCQ0Up4IzOwkM5tnZqvMbIWZ3ZjqGA4lJyuiCWUiEhrpaBoqAf6vu79nZs2ApWb2mruvTEMsVcrJjLBXfQQiEhIprxG4+wZ3fy94XAisAk5MdRw1aZKTGd/JTESkoUtrH4GZ5QO9gXereG2imS0xsyWbNm1KaVzNc7PYuXd/SssUEUmXtCUCM2sKPA/c5O47K7/u7tPdva+7983Ly0tpbOU3uxcRaejSkgjMLItYEnjK3f+cjhhqokQgImGSjlFDBjwKrHL3e1JdfiKUCEQkTNJRIxgE/AAYambLgp9vpyGOajVvlMnOPfuJRj3doYiIJF3Kh4+6+5tA1ftEHiFaNIptdr+ruIRmudVvYiMi0hBoZnEVWpTb41hEpKFTIqiCEoGIhIkSQRXygj2ON+7cl+ZIRESST4mgCie0bATAF9v3pDkSEZHkUyKowrHNcsmMmBKBiISCEkEVMiLG8S1z+WKbEoGINHxKBNU4sWUj1QhEJBSUCKrRMa8pa74uxF2TykSkYVMiqEb3E1tQuLeEz7eqViAiDZsSQTW6n9ACgI++2JHmSEREkkuJoBpdjmtG05xM3vpkc7pDERFJKiWCamRnRhh8Shvmrd6oxedEpEFTIqjBt3ocx4Yde1UrEJEGTYmgBiO6H0ebptn8Zt4nGj0kIg2WEkENcjIzuO6cU1j46RZmLv483eGIiCSFEsEh/GBAPt/s1IbbX1jBgjWb0h2OiEi9UyI4hIyI8cC43nTIa8KPHlvEPbP/wZ7i0nSHJSJSb9K1ef0IM/uHmX1sZrekI4bD0bJxNs9fO5BRBScwde7HDJjyOv/5vytZ+q9t7C+Npjs8EZE6sVR3gppZBrAGOB9YDywGxrn7yuqu6du3ry9ZsiRFEdZs6b+2MuOtdcxe8RX7S50m2Rmc/o1jOOXYpnQ6thn5bRpzbLNc2jbPoWlOJmZH9K6cItKAmdlSd+97qPNSvmcx0B/42N0/BTCzmcCFQLWJ4EjS5xut6PONVmzbVczCT7fw1seb+WD9dmYu+pw9+ys2GTXKyqBNs2ya5WTRLDeTZrmZNM3JpFluFo1zMsjJzCAnM0J2RoTszOAneJwTPM+MRIhEIMOMjMiBn4hV8diMSIQK10TMMAPDwAgeg5kFf8ZeK8tX5Z8fdJ6SmkiDlI5EcCJQfgjOeuCMpJT08i3w1UdJufUxwLeDH5qCN3WKS6Ls3R9lf2mU4tIo+0tij0v3OCW7nNJouR93Dqcy5kBJ8HOksCqeWKVXqk0ddcgp9Z2Oqr6fJXJSHe5fv472HH344Sf5DR9Bt2/buR/Hjb0vabFAehJBVZ/BQb8SzWwiMBHg5JNPTnZMdWZY8A0/I+FrnFgycCAadaLB86hX/NNjJ8fPD57G5zbEzwmOeXCsrIzKn27lD/vghOQHzvEKfxx8n/LlVHoxGY2OCd+zyhMPPpjshtH6bnk9KmazHOabPireUw2SHX9WRvKzfDoSwXrgpHLP2wFfVj7J3acD0yHWR1Crkr41pVaXpYpxICsmnj5EROpXOkYNLQY6mVl7M8sGvge8mIY4RESENNQI3L3EzK4DXiX2RXiGu69IdRwiIhKTjqYh3P1vwN/SUbaIiFSkmcUiIiGnRCAiEnJKBCIiIadEICISckoEIiIhl/JF52rDzDYB/6rl5W2AsO01qfccDnrP4VCX9/wNd8871ElHRSKoCzNbksjqew2J3nM46D2HQyres5qGRERCTolARCTkwpAIpqc7gDTQew4HvedwSPp7bvB9BCIiUrMw1AhERKQGDToRmNkIM/uHmX1sZrekO55kM7MZZrbRzJanO5ZUMbOTzGyema0ysxVmdmO6Y0o2M8s1s0Vm9kHwnv8j3TGlgpllmNn7Zva/6Y4lVcxsnZl9ZGbLzCxpG7c32KYhM8sA1gDnE9sMZzEwzt2Pir2Ra8PMzgKKgN+7e/d0x5MKZnY8cLy7v2dmzYClwOgG/vdsQBN3LzKzLOBN4EZ3fyfNoSWVmf0foC/Q3N1HpjueVDCzdUBfd0/q3ImGXCPoD3zs7p+6ezEwE7gwzTEllbu/AWxNdxyp5O4b3P294HEhsIrYvtgNlscUBU+zgp+G+Y0uYGbtgAuAR9IdS0PUkBPBicDn5Z6vp4H/ggg7M8sHegPvpjeS5AuaSZYBG4HX3L2hv+f7gJ8B0XQHkmIOzDazpcE+7knRkBNBVTs+N+hvTWFmZk2B54Gb3H1nuuNJNncvdfdexPb87m9mDbYp0MxGAhvdfWm6Y0mDQe5+OvAt4KdB82+9a8iJYD1wUrnn7YAv0xSLJFHQTv488JS7/znd8aSSu28H5gMj0hxKMg0CRgXt5TOBoWb2ZHpDSg13/zL4cyMwi1iTd71ryIlgMdDJzNqbWTbwPeDFNMck9SzoOH0UWOXu96Q7nlQwszwzaxk8bgScB6xOb1TJ4+63uns7d88n9v94rruPT3NYSWdmTYIBEJhZE2AYkJQRgQ02Ebh7CXAd8CqxDsQ/ufuK9EaVXGb2NLAQ6GJm683synTHlAKDgB8Q+5a4LPj5drqDSrLjgXlm9iGxLzyvuXtohlSGSFvgTTP7AFgE/NXdX0lGQQ12+KiIiCSmwdYIREQkMUoEIiIhp0QgIhJySgQiIiGnRCAiEnJKBHLUMLPSckNElwVLSjQYZtbbzB4JHl9hZg9Wen2+mVW7d62ZzTSzTsmOUxqezHQHIHIY9gTLKlTJzDKD+SNHq38D/qsO108jth7P1fUTjoSFagRyVAu+OT9rZi8Bs4Njk81ssZl9WH6tfjO7LdifYo6ZPW1mNwfH49+0zaxNsJRB2cJud5W71zXB8SHBNc+Z2WozeyqY4YyZ9TOzt4O9AhaZWTMz+7uZ9SoXx1tm1rPS+2gG9HT3DxJ4z6PK1Yr+YWb/DF76O3CemekLnhwW/YORo0mjYMVNgH+6+0XB4wHEfoluNbNhQCdia7IY8GKwUNcuYssT9Cb27/49YnsX1ORKYIe79zOzHOAtM5sdvNYb6EZs/aq3gEFmtgh4Bhjr7ovNrDmwh9jSyVcAN5lZZyDH3T+sVFZfDl4+YKyZDS73/BQAd3+RYLkUM/sTsCA4HjWzj4GCBN6bSJwSgRxNqmsaes3dy/ZhGBb8vB88b0osMTQDZrn7bgAzS2TdqWFATzMbEzxvEdyrGFjk7uuDey0D8oEdwAZ3XwxQtgqqmT0L/NLMJgMTgMerKOt4YFOlY8+4+3VlT8xsfvkXzexnxD6Th8od3gicgBKBHAYlAmkIdpV7bMD/c/fflj/BzG6i+mXISzjQTJpb6V7Xu/urle41BNhX7lApsf9LVlUZ7r7bzF4jtjHSpcS+/Ve2p1LZNTKzc4FLgMrLEucG9xJJmPoIpKF5FZgQ7E+AmZ1oZscCbwAXmVmjoD3+O+WuWQf0CR6PqXSva4NlrjGzzsEqkNVZDZxgZv2C85uVa69/BJgKLC5XeylvFUHTz6GY2TeA3wCXunvlX/qdgQa9uKLUP9UIpEFx99lmdhqwMOi/LQLGB3saPwMsA/5FrGO1zN3An8zsB8DccscfIdbk817QGbwJGF1D2cVmNhZ4IFgeeg+xJaKL3H2pme0EHqvm2tVm1sLMmgVbbtbkCqA1MCt4j1+6+7fNrC2xpqINh7hepAKtPiqhZGZ3EPsFfXeKyjuB2AYyp7p7ldstmtkkoNDda7Uvb3D9Tnd/tNaBSiipaUgkyczsh8T2Ub6tuiQQmEbFvofDtR14og7XS0ipRiAiEnKqEYiIhJwSgYhIyCkRiIiEnBKBiEjIKRGIiIScEoGISMj9fx+MvheHZAfIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(w*sample_rate/2/np.pi, gd/sample_rate, w*sample_rate/2/np.pi, 0.01*np.ones_like(w))\n", + "pl.xlabel('Frequency (Hz)')\n", + "pl.ylabel('Group Delay (s)')\n", + "pl.legend(('Chebychev Type 1 Design', 'Intermagnet Requirement'))" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x1c26bdec50>" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8lNX1+PHPmclkDwmBgKyyyCJbwqoElKUIVBChIrjQ1qJitW58f1K1tpX22/5+tFoU1GJRrLZScStVWxdENhGUNSoCglpkEQgBsu/J/f3xzAwhy2SyTCaZ57xfziszz3pmiGduznOfe8UYg1JKqdDnCHYASimlmoYmfKWUsglN+EopZROa8JVSyiY04SullE1owldKKZvQhK+UUjahCV8ppWxCE75SStlEWLADqKht27amW7duwQ5DKaVajJ07d2YYY5L82bZZJfxu3bqxY8eOYIehlFIthoh86++2WtJRSimb0ISvlFI2oQlfKaVsolnV8JVqLkpKSjh69CiFhYXBDkUpACIjI+ncuTMul6vex9CEr1Q1jh49SlxcHN26dUNEgh2OsjljDKdPn+bo0aN079693sfRko5S1SgsLKRNmzaa7FWzICK0adOmwX9xasJXqgaa7FVz0hi/j7ZL+MYY3kg7RnqO1maVUvZiu4T/6dEs7lmVxv/9z75gh6KUTydOnOC6666jZ8+e9OvXjyuvvJIDBw6wYcMGpk6dWqdjjR07tsE3NR46dIgBAwY06BiV/f73vyclJYWUlBScTqf3+dKlSxv1PB47d+7k0ksvZcCAAQwaNIjXXnut2u3mzJlD9+7dSU5Opnfv3vz4xz/mu+++q9c5n3rqKVauXNmQsBuN7S7avplm/aM59M911YwZY5gxYwY//vGPWbVqFQBpaWmcPHkyyJE1roceeoiHHnoIgNjYWNLS0gJ6vtjYWFauXEnPnj05evQow4YNY9KkScTFxVXZ9rHHHmP69OmUl5ezePFixo8fz+eff17nXjI/+9nPGiv8BrNdC//wmXwAisrKgxyJUjVbv349LpeLn/70p95lKSkpXHbZZQDk5uYyc+ZM+vbty4033ogxBrBasGPGjGHo0KFMmjSJ48ePe/d/8cUXSU1NZcCAAWzbto3y8nJ69erFqVOnACgvL+eiiy4iIyODkydPMmPGDJKTk0lOTmbLli0AlJWVceutt9K/f38mTpxIQUEBAF9//TWTJ09m6NChXHbZZezfv5+srCy6detGebn1/1p+fj5dunShpKSk1vefmZlJjx49KC0t9b7u3r07ZWVljB49mnvvvZeRI0cycOBA718uubm53HTTTYwYMYLBgwfz1ltvVTlunz596NmzJwCdO3emTZs2ZGRk+IzF4XBw3333kZiYyJo1awB45513GDlyJEOGDGH27Nnk5eUBsGDBAvr168egQYO4//77AfjlL3/J448/DsDHH3/MoEGDSE1NZcGCBaSkpADw7LPPMnPmTCZNmkSvXr148MEHa/2M6sN2LfysgmIATucWBTkS1VL85q0v2PtddqMes1/HVjx8Vf8a1+/Zs4ehQ4fWuH737t188cUXdOzYkVGjRvHRRx9xySWXcNddd/HGG2+QlJTEyy+/zEMPPcRzzz0HQF5eHlu2bGHTpk3MnTuXPXv2MGfOHFauXMm9997L2rVrSU5Opm3btsyePZsxY8awevVqysrKyM3N5ezZsxw8eJCXXnqJZ555hlmzZvH6668zZ84c5s2bx9NPP02vXr345JNPuOOOO1i3bh3Jycls3LiRcePG8dZbbzFp0iS/WsgJCQmMGjWKd999l6lTp/KPf/yDWbNm4XQ6ASgqKmLr1q2sW7eOW265hbS0NH77298yefJknn/+ec6ePcsll1zCFVdcQWRkZLXn8HyJ+Ttg45AhQ9i/fz/Dhw9n0aJFfPDBB0RHR/P73/+eJUuWcPPNN/P222/zxRdfICJkZmZWOcZPfvITXnjhBUaMGMF999133rpPP/2UXbt2ERYWRu/evbnrrrvo2LGjX7H5y3YJPzPfal1k5BYHORKl6m/EiBF07twZsFr+hw4dIiEhgT179nDFFVcAVmu8Q4cO3n2uv/56AC6//HKys7PJzMxk7ty5XH311dx7770899xz/OQnPwFg3bp1/O1vfwPA6XQSHx/P2bNn6d69u7dVOnToUA4dOkRubi5btmzh2muv9Z6rqMhqUM2ePZuXX36ZcePGsWrVKu644w6/3+Mtt9zC0qVLmTp1Kn/961/5+9//XuW9jB8/nvT0dHJzc1mzZg3vvPMOixYtAqyutYcPH6Z3795Vjn3s2DFuuukmVq5c6XfvF89fUVu2bGHv3r2kpqYCUFxczOjRo0lMTMThcHDrrbcyZcqUKtdZMjIyKC4uZsSIEQDccMMNrF271rt+woQJ3tJS3759OXz4sCb8hsos8CR8beEr//hqiQdK//79a7ygCBAREeF97nQ6KS0txRhD//792bp1a7X7VE5sIkKXLl1o374969at45NPPqn14mLl8xYUFFBeXk5CQkK19fdp06bx4IMPcubMGXbu3Mn48eN9Hr+iMWPGcOedd3rLW3379vX5Xowx/Otf//KWbGqSlZXFlClT+MMf/sDw4cP9jictLY0pU6ZQVFTE5MmTz/sC8tixYwfvv/8+q1atYtmyZd4SEJz7wqhJdf+mjc1WNXxjDFnuFn5mfgklWsdXzdT48eMpKirimWee8S7bvn07GzdurHGfPn36cOrUKW/CLykp4YsvvvCuf/nllwHYvHkz8fHxxMfHA1ZLes6cOeeVTL73ve+xbNkywPpLITu75pJWq1at6N69O6+++ipg/X/26aefAtZF0hEjRnDPPfcwdepU7/H9NWfOHG688UbvXx6V38uGDRto3749MTExTJo06bzePbt3765yvKKiIq6++mpuvvlmZsyY4VcMxhgee+wxTp8+zRVXXEFqaiobN27km2++AaxS2cGDB8nJySE7O5upU6fy2GOPVTl/UlISLpfLe83BczG+Kdkq4ReUlFFcVk7HeKuml1PY+N+gSjUGEWH16tW8//779OzZk/79+7Nw4UKff+KHh4fz2muvcf/995OcnExKSoq3Tg3QunVrUlNT+elPf8qKFSu8y6dNm0Zubu55SXXJkiWsX7+egQMHMnTo0PO+OKqzcuVKVqxYQXJyMv379+eNN97wrps9ezYvvvgis2fPrvPncOONN5KVlVVl31atWpGamspdd93l/VJ8+OGHyc/PZ+DAgd7Pq7KXXnqJLVu2sGLFCm8X0M8//7zac8+fP5/k5GT69OlDWloa69atw+Vy0b59e1asWMHs2bNJTk4mNTWVAwcOeP9ySE5OZvz48SxevLjKMT1ls9TUVBwOh/dLt6lIbX9mNKVhw4aZQE6A8l1mAamL1jH0wtbs/PYsm+8fR+fW0QE7n2q59u3bx8UXXxzsMJrEjh07mD9/Ph9++GGwQ6li1apVvPfee/z1r3/1Lhs9ejRPPvmk91pCS5Kbm0tsbCxg3YNw5swZ/vSnP/m9f3W/lyKy0xgzzJ/9bVXD91yw7eBu4RcUlwUzHKWCbtGiRSxbtqzZ3BhU0e23387atWt59913gx1Ko3nzzTf54x//SGlpKd26deP5559v0vPbKuFnuS/YXtDKSvj5mvCVzT3wwAM88MADwQ6jWp5rCJVt3ry5iSNpPDfccAM33HBD0M5vqxp+frFVs2/XKsL9WhO+Uso+bJXw89wJvm2sJ+HrRVullH3YKuHnF1kJ/lzC1xa+Uso+bJXwK7fw9aKtUspObJXwvS38uHDrtZZ0VDPm6b7ny+OPP05+fn4TRBMYmZmZ/PnPf65xvWfI5AEDBnDVVVdVOz5NQ+3YsYO777670Y9bH7V9Hg0V8IQvIk4R2S0i/w70uWqTV1xGeJiDVpHW4E35JdrCVy1bfRJ+WVnz+b2vLcFFRUWRlpbGnj17SExM5Kmnnmr0GIYNG1bt+PuBGNqgNi0+4QP3AM1itpH84lJiwp1EhDlwCOQXNZ9ffKVqsmHDBsaOHVtlOOSlS5fy3XffMW7cOMaNGwfAmjVrvMP2XnvtteTm5gLWiJC//e1vGT16NK+++ipjx45l/vz5XH755Vx88cVs376dH/zgB/Tq1Ytf/vKX3nNPnz6doUOH0r9/f5YvX+5dvmLFCnr37s3YsWO59dZbufPOOwG46aabuPvuu0lNTaVHjx7njQf0yCOPMHz4cAYNGsTDDz8MWN1Cv/76a1JSUliwYIHPz2HkyJEcO3bM5/HAuqGpT58+TJgwgeuvv55HH30UOH8SmIyMDO8omRUnlFm4cCHz5s1j4sSJ/OhHP6KsrIwFCxZ4z/OXv/zFu8+YMWOYNWsWvXv35oEHHmDlypWMGDGCgQMH8vXXXwNw6tQprrnmGoYPH87w4cP56KOPvOeZO3cuY8eOpUePHt4vnLp8HvUR0H74ItIZmAL8HvifQJ7LH3lFZUSHhyEiRIeH6UVb5Z93HoAT1d9+X28XDITvL/J78+qGQ7777rtZvHgx69evp23btmRkZPC73/2OtWvXEhMTwx/+8AcWL17Mr3/9awAiIyO9fdiffvppwsPD2bRpE0uWLOHqq69m586dJCYm0rNnT+bPn0+bNm147rnnSExMpKCggOHDh3PNNddQVFTE//7v/7Jr1y7i4uIYP348ycnJ3liPHz/O5s2b2b9/P9OmTWPmzJmsWbOGgwcPsm3bNowxTJs2jU2bNrFo0SL27NlT68QnZWVlfPDBB9x8880ANR4vJiaGVatWsXv3bkpLSxkyZIjPYaars3PnTjZv3kxUVBTLly8nPj6e7du3U1RUxKhRo5g4cSJgDWe8b98+EhMT6dGjB7fccgvbtm1jyZIlPPHEEzz++OPcc889zJ8/n9GjR3P48GEmTZrEvn1W+3f//v2sX7+enJwc+vTpw+233+7351Ffgb7x6nHg50DV6WSCIL+4lJgIa/Cm6HAnBSVaw1ctQ3XDIY8ePfq8bT7++GP27t3LqFGjAGvY3pEjR3rXVx6PZtq0aQDesWc8Qyn36NGDI0eO0KZNG5YuXcrq1asBOHLkCAcPHuTEiROMGTOGxMREAK699loOHDjgPe706dNxOBz069fPO0PXmjVrWLNmDYMHDwasIQYOHjxI165dfb7vgoIC7/sdOnSod+jnmo6Xk5PDjBkziI6OPu891sW0adOIiorynuezzz7z/qWSlZXFwYMHCQ8PZ/jw4d7PrGfPnt4vgoEDB7J+/XoA1q5dy969e73Hzs7OJicnB4ApU6YQERFBREQE7dq1a5LZzAKW8EVkKpBujNkpImN9bDcPmAfU+o/fUHnFVgsfrISvLXzllzq0xAPFn6FzjTFcccUVvPTSS9UeIyYmptpjOhyO847vcDgoLS1lw4YNrF27lq1btxIdHc3YsWMpLCys0zC/nm2NMTz44IPcdttt52176NAhn8fy1PCzsrKYOnUqTz31FHfffXeNx3v88cdrHN8+LCzMO/tWYWFhjees+DkZY3jiiSeYNGnSedts2LChymdW8fP0/PuUl5ezdetW7xdIRU0xHHJlgazhjwKmicghYBUwXkRerLyRMWa5MWaYMWZYUlJSAMOxeul4WviRLqd2y1QtXlxcnLfFeOmll/LRRx/x1VdfAdaUghVb3nWVlZVF69atiY6OZv/+/Xz88ceA9dfGxo0bOXv2LKWlpbz++uu1HmvSpEk899xz3msKx44dIz09/bz4fYmPj2fp0qU8+uijlJSU1Hi8yy+/nNWrV1NQUEBOTs550xx269aNnTt3Avica6By3MuWLfNOy3jgwAHvdIb+mDhxIk8++aT3dW2lGn8/j/oKWMI3xjxojOlsjOkGXAesM8bMCdT5/FGxhR/pclJYquPhq5Zt3rx5fP/732fcuHEkJSXx/PPPc/311zNo0CAuvfRS9u/fX+9jT548mdLSUgYNGsSvfvUrLr30UgA6derEL37xCy655BImTJhAv379ah3md+LEidxwww3eeWhnzpxJTk4Obdq0YdSoUQwYMKDWi5SDBw8mOTmZVatW1Xg8zxyzKSkpXHPNNd45gAHuu+8+li1bRmpqaq3z2Hrccsst9OvXjyFDhjBgwABuu+22OrXEly5dyo4dOxg0aBD9+vXj6aef9rl9XT6P+miS4ZHdJZ37jDFTfW0X6OGRxzyynsFdEnj8usFct3wr5QZeuW1k7Tsq27HT8Mj14Rnmt7S0lBkzZjB37ly/JxRpSgsXLiQ2NrbK/LEtVUOHR26SG6+MMRtqS/ZNIa+ojOiIcy38Iu2Hr1S9LFy40HtDVPfu3Zk+fXqwQ1J+sNXwyJ5++ACRYU4KNOErVS+evu3NXXWzXtmZbYZWKC835Feo4UeFOyks0Rq+qllzmg1Oqcb4fbRNwve05s/10nFQqC18VYPIyEhOnz6tSV81C8YYTp8+TWRkZIOOY5uSTp57oDRPCz9CSzrKh86dO3P06FFOnToV7FCUAqxGiOfmu/qyTcL3jJtTsR9+kZZ0VA1cLhfdu3cPdhhKNSrblHQqt/CjXE6Ky8opK9c/2ZVS9mCbhO8ZRiHGe+OV9daLSrWso5SyB9sk/Dz35CfRFUo6oLNeKaXswzYJv3ILP8qd8HV4BaWUXdgm4Xtb+O4bryLcJR3tmqmUsgvbJHxPC9+T8D0lHU34Sim7sE3Cz3W38GMjz42lA5rwlVL2YauEH+50EBFmJXpvDV/74iulbMI+Cb/w3OQncK5bprbwlVJ2YZuEn1dU6i3nQIVumZrwlVI2YZuEn1NUSmyEy/taSzpKKbuxTcLPLSwltkJJR7tlKqXsxjYJP6+4lNiIqiUdTfhKKbuwTcK3LtpWSPhhmvCVUvZin4RfVEpchYu2LqfgdIjW8JVStmGrhO8ZRwdARIgM01mvlFL2YYuEX+aez7Zit0yw6vjaLVMpZRe2SPieyU8qXrQFK+FrSUcpZRe2SPi5hTUlfAeFOgGKUsombJHw8yoNnOZhzWurCV8pZQ+2SPg57oQfU01JR2v4Sim7sEXC95R04iol/Cit4SulbMQWCb/mko52y1RK2YctEr63pBN+fsKP0JKOUspGbJHwPS38uMiqJZ0iLekopWzCFgnfU8OvetFWSzpKKfuwR8IvKiUizIHLef7bjQxzasJXStmGbRJ+5Zuu4Fy3TGNMEKJSSqmmZYuEn11YWqV+DxAV7qTcQEmZJnylVOizRcLPKighPjq8yvKIMPesVzq8glLKBuyR8POLSYhyVVnunfWqWBO+Uir0BSzhi0ikiGwTkU9F5AsR+U2gzlWbzIISEqKrJnydyFwpZSdVC9sViEgkMBW4DOgIFAB7gP8YY76o5dhFwHhjTK6IuIDNIvKOMebjRoi7TjLzS3y38LWko5SygRoTvogsBK4CNgCfAOlAJNAbWOT+Mvg/xpjPqtvfWF1fct0vXe5Hk18dLSs3ZBdWX8OPdLlr+No1UyllA75a+NuNMQtrWLdYRNoBXX0dXEScwE7gIuApY8wn1WwzD5gH0LWrz8PVS05hCcbgs4VfoDV8pZQN1FjDN8b8p/IyEXGISCv3+nRjzA5fBzfGlBljUoDOwAgRGVDNNsuNMcOMMcOSkpLq/g5qkVVQAkC8z5KO1vCVUqGv1ou2IvIPEWklIjHAXuBLEVlQl5MYYzKxSkOT6xVlA5zNtxJ+dRdttaSjlLITf3rp9DPGZAPTgbexyjg/rG0nEUkSkQT38yhgArC/AbHWy5m8IgASY6qr4Xt66WjCV0qFPp+9dNxc7l4204EnjTElIuLPxdcOwAvuOr4DeMUY8+8GxFovGbnFALSNjaiyThO+UspO/En4fwEOAZ8Cm0TkQiC7tp3cvXcGNyi6RnDanfDbxFZt4Ws/fKWUndRa0jHGLDXGdDLGXOnuankYGBf40BrH6dwiosOdRIdXN3ia1vCVUvZRY8IXkTkiUmW9sZSKSE8RGR3Y8BrudF5xta17sIZHBnTWK6WULfgq6bQBdovITqy+9Kewbry6CBgDZAAPBDzCBsrILaJNTNX6PYDDIYSHObSko5SyhRoTvjFmiYg8CYwHRgGDsIZW2Af80BhzuGlCbJiM3GI6JUTWuD4yTGe9UkrZg8+LtsaYMuB996NFOpldyJCuCTWuj3TprFdKKXsI6eGRC0vKOJNXzAWtfLTwNeErpWwipBN+erZ101X7+JoTfpTLqTV8pZQt+DO0grMpAgmEE9mFAHTwkfAjXQ4dHlkpZQv+tPC/EpFHRKRfwKNpZMezCgB8lnQiXE4dLVMpZQv+JPxBwAHgWRH5WETmeUbMbO6+y3S38BOiatwmyuXU0TKVUrbgz522OcaYZ4wxqcDPgYeB4yLygohcFPAIG+DwmXwSY8KJjai5M1Kky0GRXrRVStmAXzV8EZkmIquBJcCfgB7AW1ijZzZbR87k0yUx2uc22ktHKWUX/gyedhBYDzxijNlSYflrInJ5YMJqHEfO5jOoc8198MEaXkGHVlBK2YE/CX+QMSa3uhXGmLsbOZ5GU1JWzrGzBUwZ2MHndlHh2i1TKWUP/iT8UhH5GdAfaywdAIwxcwMWVSP49nQ+peWGnkmxPreLcOnQCkope/Cnl87fgQuAScBGrPlpcwIZVGP4Kt0KsVd73wk/MsxJUWk55eX+zOmilFItlz8J/yJjzK+APGPMC8AUYGBgw2q4r9KtKlRtLfzocB0iWSllD/4k/BL3z0wRGQDEA90CFlEj2X8ih04JUcT46JIJeNfnFZU2RVhKKRU0/iT85SLSGvgV8CawF/hjQKNqBHuOZTGgU+33h8VFWgk/VxO+UirE1XrR1hjzrPvpRqz+981edmEJh07nM3No51q3jQnXhK+UsocaE76I/I+vHY0xixs/nMbx2ZEsAAbW0gcfIFZb+Eopm/DVwo9rsiga2bb/nsYhMPTC1rVu6xl2IbdQE75SKrT5muLwN00ZSGP6+Jsz9O8Y73MMHQ/PNnnFmvCVUqHNn7F0eovIByKyx/16kIj8MvCh1U9WQQk7D5/lsl5t/do+Rlv4Simb8KeXzjPAg7i7ZxpjPgOuC2RQDbHhy3TKyg3fu7idX9uf66Wj/fCVUqHNn4QfbYzZVmlZs20Or959jI7xkQzuUnv9HiAizIHTIeQWldS+sVJKtWD+JPwMEekJGAARmQkcD2hU9fTt6Tw2HTjFD4Z0xuEQv/YREWLCneRpC18pFeL8GTztZ8ByoK+IHAP+C9wY0Kjqacnag4Q5HPxo5IV12i8u0kWO1vCVUiHOnxuvvgEmiEgM4DDGNLuB04wxvLLjCP/cfYw7xvaknY85bKsTE+HUoRWUUiHPZ8IXkT7APKCve9E+EVlujDkQ8Mj8VFRaxqhF68nILSK1ZxvumdCrzseIjQjTbplKqZDn607bkcA/gb9glXQEGAxsEJEfGGM+bpoQfYsIc3Ld8C5c2Caa6YM74XL6c1nifDERYVrSUUqFPF8t/F8D1xtjNlRY9i8RWYc1kfn3AxlYXdw3qU+D9o+LDONEVmEjRaOUUs2Tr+Zwz0rJHgBjTIsZRM1fMeFhOpaOUirk+Ur4vi7O5jV2IMEUG6kJXykV+nyVdLqIyNJqlgvQKUDxBEVsRBh5RaUYYxDxr/++Ukq1NL4S/gIf63bUdmAR6QL8DWs+3HJguTFmSd3CaxqxEWGUG2uaw+hwf25NUEqplsfXaJkvNPDYpcD/McbsEpE4YKeIvG+M2dvA4za6igOoacJXSoWquvdh9JMx5rgxZpf7eQ6wj2ZaCtJpDpVSdhCwhF+RiHTD6sP/SVOcr650mkOllB0EPOGLSCzwOnCvMSa7mvXzRGSHiOw4depUoMOpVny0C7DG0ldKqVDlzwQoPUTkLRHJEJF0EXlDRPzqhy8iLqxkv9IY88/qtjHGLDfGDDPGDEtKSqpb9I2ktTvhn83XhK+UCl3+tPD/AbyC1dumI/Aq8FJtO4nVv3EFsK85T3gOEB8VDkBmfnGQI1FKqcDxJ+GLMebvxphS9+NF3GPj12IU8ENgvIikuR9XNijaAEnwtPDztIWvlApd/vRBXC8iDwCrsBL9bOA/IpIIYIw5U91OxpjNWDdpNXsup4O4iDDOagtfKRXC/En4s90/b6u0fC7WF0BIjKuTEOPSko5SKqT5MwFK96YIJNhaR4frRVulVEirNeGLyI+qW26M+VvjhxM8CdHh2sJXSoU0f0o6wys8jwS+B+zCGicnZLSOdnEoI6QGAVVKqfP4U9K5q+JrEYkH/h6wiILEKuloC18pFbrqc6dtPlD3iWObufgoFzmFpZSWlQc7FKWUCgh/avhvca7fvRO4GOtGrJDiuds2s6CEtrERQY5GKaUanz81/EcrPC8FvjXGHA1QPEHTOsZzt60mfKVUaKq1pOOew3Y/EAe0BkKy0J0QrcMrKKVCmz+Dp80CtgHXArOAT0RkZqADa2o6gJpSKtT5U9J5CBhujEkHEJEkYC3wWiADa2qt3S187amjlApV/vTScXiSvdtpP/drUdrEWgk/I7coyJEopVRg+NPCf1dE3uPckMizgbcDF1JwRIeHERcRRnq2JnylVGjy58arBSLyA2A01uiXy40xqwMeWRC0axXByezCYIehlFIB4TPhi4gTeM8YMwGodsaqUNK+VSTpOdrCV0qFJp+1eGNMGZDvHk4h5LVvFaktfKVUyPKnhl8IfC4i7wPe0cWMMXcHLKogadcqgvTsIowxWDM0KqVU6PAn4f/H/Qh57eMiKS4rJzO/xHvnrVJKhQp/Ltq+0BSBNAftW0UCcDKnUBO+Uirk1FjDF5GrReRnFV5/IiLfuB8hd6ctQPtW1hg6J7VrplIqBPm6aPtz4M0KryOwJkMZC9wewJiCxtvC1wu3SqkQ5KukE26MOVLh9WZjzGngtIjEBDiuoEiKs1r4p7RrplIqBPlq4beu+MIYc2eFl0mBCSe4Il1OEqJdnMjSFr5SKvT4SvifiMitlReKyG1Yo2eGpE4JURw9mx/sMJRSqtH5KunMB/4lIjdgTVoOMBSrlj890IEFS9fEaL48mRPsMJRSqtHVmPDdI2Smish4oL+fUfGTAAAPUUlEQVR78X+MMeuaJLIg6dommg/2pVNebnA49OYrpVTo8Kcf/jogpJN8RV0ToykuK+dkTiEd4qOCHY5SSjWakBvXvqG6JkYD8O1preMrpUKLJvxKLky0epwePqMJXykVWjThV9IhIRKnQziiCV8pFWI04VficjromBCpJR2lVMjRhF+NCxNj+PZ0Xu0bKqVUC6IJvxoXtYvlq/RcystNsENRSqlGowm/Gn0uiCOvuIxjmQXBDkUppRqNJvxq9G4fB8ABveNWKRVCNOFXo3f7WAAdYkEpFVIClvBF5DkRSReRPYE6R6DERbrolBDFgROa8JVSoSOQLfzngckBPH5A9W4fy5cnc4MdhlJKNZqAJXxjzCbgTKCOH2i9L4jj6/RcikvLgx2KUko1Cq3h1yC5cwLFZeXsO54d7FCUUqpRBD3hi8g8EdkhIjtOnToV7HC8UrokAJB2JDPIkSilVOMIesI3xiw3xgwzxgxLSmo+Myd2iI+kXVyEJnylVMgIesJvrkSElC4J7D58NtihKKVUowhkt8yXgK1AHxE5KiI3B+pcgZLSNYFDp/M5m1cc7FCUUqrBap3xqr6MMdcH6thNZdiFiQBsO3SGSf0vCHI0SinVMFrS8SGlSwJRLicffZUR7FCUUqrBNOH7EB7m4JIeiZrwlVIhQRN+LUZf1JavT+VxPEtHzlRKtWya8Gsx6qK2AHx4QFv5SqmWTRN+LfpeEEenhCjW7D0R7FCUUqpBNOHXQkSY2L89mw5mkFdUGuxwlFKq3jTh+2FS/wsoLi1nw5fNZ+gHpZSqK034fhjeLZG2seG89el3wQ5FKaXqTRO+H5wO4eqUTnyw/yRn9K5bpVQLpQnfTzOHdqakzPBG2rFgh6KUUvWiCd9PF3doxYBOrVi17QjGmGCHo5RSdaYJvw5+PLIbX57M4aOvTgc7FKWUqjNN+HUwLaUjbWMjeObDb4IdilJK1Zkm/DqICHNyU+qFbDxwSsfJV0q1OJrw6+gno7rTJiacP7y7X2v5SqkWRRN+HcVEhHHX+Iv4+JszbDqo4+sopVoOTfj1cMMlF9IlMYrf/XsvRaVlwQ5HKaX8ogm/HsLDHPx22gAOpufy1Lqvgh2OUkr5RRN+PY3r244fDO7Enzd8zZ5jWcEORymlaqUJvwF+fVU/EmPCufMfu8gqKAl2OEop5ZMm/AZIiA7nqRuHcPRsAfNfTqO8XHvtKKWaL034DTS8WyK/vqof6/ans/CtL7SrplKq2QoLdgCh4IeXXsiRM/k88+F/iYkI4+eT+iAiwQ5LKaXOowm/EYgIv7jyYvKKy1i24Wvyikp5+Kr+OB2a9JVSzYcm/EYiIvzu6gHERoSxfNM3fJdZyJ9mJRMf5Qp2aEopBWgNv1E5HFZLf+FV/djwZTpTln5I2pHMYIellFKAJvyAuGlUd1756UiMgZnLtvDIe/spKNY7cpVSwaUJP0CGdG3N23dfxrSUjjy1/msmLN7I258f166bSqmg0YQfQPHRLhbPSuHleZcSE+HkjpW7mPLEZt7dc4IyTfxKqSYmzanf+LBhw8yOHTuCHUZAlJUb3vz0GEvWHuTQ6Xw6t45izqUXMmtYFxJjwoMdnlKqhRKRncaYYX5tqwm/aZWWlbNm70le2HKIT/57BpdTuLxXElcld2RCv/bERmjHKaWU/+qS8DW7NLEwp4MrB3bgyoEd+PJEDq/tPMK/PzvOB/vTCXc6GNatNWN6J3F57yT6XhCnN3AppRqNtvCbgfJyw67DZ3nvixNsOpDBlydzAGgd7WJw19YM6ZrAkAtbM7BTPHGR2q9fKXWOlnRauONZBXx4IIMd355h57dn+fpUnnddp4Qo+l4QRx/3o2dSLF0So/UGL6VsShN+iMnML2b3kUz2fpfN/hM5fHkim29O5VFaoadPQrSLronR3keHhCjax0XQvlUk7VpF0DY2ApdTO2UpFWq0hh9iEqLDGdenHeP6tPMuKy4t55uMXA5l5HP4TB6Hz+Tz7el8Pj+Wxbt7Tpz3ZQAgAm1iImjfKoLEmHBaR4eTEO0iITqc1tGuCs/DSYhyERcZRkxEGBFhDr2OoFSICGjCF5HJwBLACTxrjFkUyPPZSXiYg74XtKLvBa2qrCsrN5zOLSI9p4iT2YWczLZ+pudYz8/kFXPkTD5n80vILizB1x95YQ4hNjKMmPAwYiPCiIlwEhNhPbdehxHpchIR5iDS5STSVeFnmJMI78+K66ztw8MchDsdhDkEp0P0i0WpAAtYwhcRJ/AUcAVwFNguIm8aY/YG6pzK4nQI7VpF0q5VJAM6xfvctqzckFVQQmZ+MWfzz/3MLSwhr7iM3KJS8opKvT/zisrIKSzlRFahd3lhaTnFpeUNilkEXA4HLqcQ5nTgcjoI9z4XXO5lYe7n4RWeu5yC0+HAKVg/HdZn4BAhzCE4HIJTrC8Vz8NR6bVTrO3O3/7c8Tzbh7m/mARrmcMBgiBiva7yE2uMJWvgVOtn5e0E6zie7UWs7Tw/He4vQs9xhPPXV/zp+c70HOfcc8/yc9tQw/Ia99Uv5BYvkC38EcBXxphvAERkFXA10PgJ/50H4MTnjX5YO3ACie6H3ztEux8VGAzlBsqNsR7lYEzVZd7n5tx6g8EYMO5tDdY649mmFEyJexnubdzbV9zX89yKB+9kNNY6a737vyZjgDL3I5RV+SqQ6p5KTZtUc4BqF1VYLjVv4OdxAq0u349HIi5i2v1/C1wwboFM+J2AIxVeHwUuqbyRiMwD5gF07do1gOGoQBLEamF7fsudwY2nNoZKXwaeLwf3Mjj3BXPuS8ScV/6quLzyMs+xqLTN+cvO7WSovOz8L6aKnSvMud3OfzeVz12Nmst3FeKr5iC+viQrn7tSVNXuUNuXbtU4qonPD4Huk9JYh09qorvtA5nwq/t+q/L5GGOWA8vB6qVTrzN9Xy8NqLqRSj+VCqaLmug8geyndxToUuF1Z+C7AJ5PKaWUD4FM+NuBXiLSXUTCgeuANwN4PqWUUj4ErKRjjCkVkTuB97Aqus8ZY74I1PmUUkr5FtB++MaYt4G3A3kOpZRS/tF77ZVSyiY04SullE1owldKKZvQhK+UUjbRrIZHFpFTwLf13L0tkNGI4bQE+p7tQd+zPdT3PV9ojEnyZ8NmlfAbQkR2+DsmdKjQ92wP+p7toSnes5Z0lFLKJjThK6WUTYRSwl8e7ACCQN+zPeh7toeAv+eQqeErpZTyLZRa+EoppXxo8QlfRCaLyJci8pWIPBDseJqCiDwnIukisifYsTQFEekiIutFZJ+IfCEi9wQ7pkATkUgR2SYin7rf82+CHVNTERGniOwWkX8HO5amICKHRORzEUkTkR0BPVdLLum45809QIV5c4HrQ33eXBG5HMgF/maMGRDseAJNRDoAHYwxu0QkDtgJTA/lf2exJpCNMcbkiogL2AzcY4z5OMihBZyI/A8wDGhljJka7HgCTUQOAcOMMQG/76Clt/C98+YaY4oBz7y5Ic0Yswk4E+w4moox5rgxZpf7eQ6wD2sKzZBlLLnuly73o+W2zvwkIp2BKcCzwY4lFLX0hF/dvLkhnQjsTkS6AYOBT4IbSeC5SxtpQDrwvjEm5N8z8Djwc6A82IE0IQOsEZGd7jm+A6alJ3y/5s1VoUFEYoHXgXuNMdnBjifQjDFlxpgUrOlBR4hISJfvRGQqkG6M2RnsWJrYKGPMEOD7wM/cJduAaOkJX+fNtQl3Hft1YKUx5p/BjqcpGWMygQ3A5CCHEmijgGnumvYqYLyIvBjckALPGPOd+2c6sBqrVB0QLT3h67y5NuC+gLkC2GeMWRzseJqCiCSJSIL7eRQwAdgf3KgCyxjzoDGmszGmG9b/y+uMMXOCHFZAiUiMuyMCIhIDTAQC1vuuRSd8Y0wp4Jk3dx/wih3mzRWRl4CtQB8ROSoiNwc7pgAbBfwQq8WX5n5cGeygAqwDsF5EPsNq2LxvjLFFN0WbaQ9sFpFPgW3Af4wx7wbqZC26W6ZSSin/tegWvlJKKf9pwldKKZvQhK+UUjahCV8ppWxCE75SStmEJnzV7IhIWYXul2nu4RRChogMFpFn3c9vEpEnK63fICI1zm0qIqtEpFeg41ShJyzYAShVjQL3kALVEpEw9z0YLdUvgN81YP9lWOPN3No44Si70Ba+ahHcLeFXReQtYI172QIR2S4in1UcL15EHnLPkbBWRF4Skfvcy70tZxFp676F3zNI2SMVjnWbe/lY9z6vich+EVnpvusXERkuIlvc49VvE5E4EflQRFIqxPGRiAyq9D7igEHGmE/9eM/TKvyV86WI/Ne96kNggohog03Vif7CqOYoyj1KJMB/jTEz3M9HYiXLMyIyEeiFNe6IAG+6B53Kw7otfzDW7/curPHzfbkZyDLGDBeRCOAjEVnjXjcY6I81RtNHwCgR2Qa8DMw2xmwXkVZAAdaQvjcB94pIbyDCGPNZpXMNo+qt87NFZHSF1xcBGGPexD1UiIi8Amx0Ly8Xka+AZD/em1JemvBVc1RTSed9Y4xnHoCJ7sdu9+tYrC+AOGC1MSYfQET8GVtpIjBIRGa6X8e7j1UMbDPGHHUfKw3oBmQBx40x2wE8I3eKyKvAr0RkATAXeL6ac3UATlVa9rIx5k7PCxHZUHGliPwc6zN5qsLidKAjmvBVHWjCVy1JXoXnAvw/Y8xfKm4gIvdS8xDZpZwrY0ZWOtZdxpj3Kh1rLFBUYVEZ1v8zUt05jDH5IvI+1iQ8s7Ba85UVVDq3TyLyPeBaoPKQuZHuYynlN63hq5bqPWCue4x8RKSTiLQDNgEzRCTKXS+/qsI+h4Ch7uczKx3rdvcQzIhIb/fIhTXZD3QUkeHu7eMq1NOfBZYC2yv8NVLRPtwlm9qIyIXAn4FZxpjKyb03EPIDBarGpS181SIZY9aIyMXAVvd11Fxgjnve25eBNOBbrAucHo8Cr4jID4F1FZY/i1Wq2eW+KHsKmO7j3MUiMht4wj10cQHW8MW5xpidIpIN/LWGffeLSLyIxLmna/TlJqANsNr9Hr8zxlwpIu2xSjzHa9lfqfPoaJkqpInIQqxE/GgTna8j1mQlfY0x1U7TJyLzgRxjTL3mbXXvn22MWVHvQJUtaUlHqUYiIj/Cmmv3oZqSvdsyzr82UFeZwAsN2F/ZlLbwlVLKJrSFr5RSNqEJXymlbEITvlJK2YQmfKWUsglN+EopZROa8JVSyib+PwRYtPwo1xJVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "a,b = sps.iirdesign(cutoff, cutoff+width, gpass=3.0, gstop=50.0, analog=False, ftype='cheby2')\n", + "w, gd = sps.group_delay((a,b))\n", + "pl.plot(w*sample_rate/2/np.pi, gd/sample_rate, w*sample_rate/2/np.pi, 0.01*np.ones_like(w))\n", + "pl.xlabel('Frequency (Hz)')\n", + "pl.ylabel('Group Delay (s)')\n", + "pl.legend(('Chebychev Type 2 Design', 'Intermagnet Requirement'))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c26d319e8>]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGDlJREFUeJzt3XuMXOd53/HvM5e9cJfk8rKUKFIKJYeN5CZVrGwVuW4Cx4oRW20sAXEApYZDGy4EpG7tNC1qu3/UbYEiCVA4rhvABhO5YVrXkSsblWI4aRRahhoUVr1S5MQSFVGSbWorXpZ3Lvc6M0//OGdmZ5e73OFcdmbO8/sAizlz5j0zz+GQP777nvecY+6OiIhkV67bBYiISGcp6EVEMk5BLyKScQp6EZGMU9CLiGScgl5EJOMU9CIiGaegFxHJOAW9iEjGFbpdAMDu3bv9wIED3S5DRKSvPPfcc2fdfXyjdj0R9AcOHGBycrLbZYiI9BUz+2Ej7TR0IyKScQp6EZGMU9CLiGScgl5EJOMU9CIiGaegFxHJOAW9iEjGhQr6qQuzPP3ymW6XISKyqUIF/Xs++7/58B98p9tliIhsqlBBP7NQ6nYJIiKbLlTQi4hEpKAXEck4Bb2ISMYp6EVEMi5k0Lt7t0sQEdk0QYO+2xWIiGyekEFfUdKLSCAhg14xLyKRhAx69ehFJJKQQa+cF5FIQga9evQiEknQoO92BSIimydM0NfPndc8ehGJJEzQL5WXw109ehGJJEzQL5TKtWX16EUkkkBBX6ktq0cvIpEEDXolvYjEESboF+uCXjkvIpFsGPRm9kUzO2Nm36tbt9PMnjKz4+njjnS9mdnnzOxVM/srM7unk8XfiIpm3YhIUI306P8AeM+qdZ8Ejrr7QeBo+hzgvcDB9OcR4PPtKbN19eGuMXoRiWTDoHf3Z4Dzq1Y/CBxJl48AD9Wt/0NPfBsYM7O97Sq2FfXhrjF6EYmk2TH6m9z9JED6uCddvw94o67dVLruGmb2iJlNmtnk9PR0k2U0rrKiR6+gF5E42n0w1tZYt2aquvthd59w94nx8fE2l3GtyvKxWB2MFZFQmg3609UhmfTxTLp+Cri1rt1+4M3my2uflQdju1iIiMgmazbonwQOpcuHgCfq1v9qOvvmPuBSdYin21xj9CISVGGjBmb2ZeCdwG4zmwI+DfwW8BUz+whwAvjltPk3gAeAV4FZ4MMdqLkpGqMXkag2DHp3/5V1Xrp/jbYOfLTVojqhPto1vVJEIglzZqxOmBKRqMIE/Yrr0XexDhGRzRYm6HXClIhEFSfo65K+fk69iEjWxQl69ehFJKgwQe86YUpEggoT9PU9etfhWBEJJFDQ6zLFIhJT0KBX0otIHGGCvj7bdcKUiEQSJug1dCMiUQUK+uVldehFJJJAQa8xehGJKUzQu4JeRIIKE/QauhGRqAIFvXr0IhJToKBfXlbOi0gkYYJeY/QiElWYoK/oomYiElScoK+7Br169CISSZig183BRSSqMEGvm4OLSFRhgt51rRsRCSpM0Fd09UoRCSpQ0KtHLyIxtRT0ZvbPzexFM/uemX3ZzIbM7HYze9bMjpvZY2Y20K5iW6Gbg4tIVE0HvZntAz4GTLj7jwN54GHgt4HfcfeDwAXgI+0otFU6YUpEomp16KYADJtZAdgCnATeBTyevn4EeKjFz2iLisZrRCSopoPe3f8f8B+BEyQBfwl4Drjo7qW02RSwr9Ui20FDNyISVStDNzuAB4HbgVuAEeC9azRdM1XN7BEzmzSzyenp6WbLaNiKg7GV6zQUEcmYVoZufh74vrtPu/sS8DXg7wFj6VAOwH7gzbU2dvfD7j7h7hPj4+MtlNEYV49eRIJqJehPAPeZ2RYzM+B+4CXgaeD9aZtDwBOtldgeuqiZiETVyhj9syQHXZ8H/jp9r8PAJ4DfMLNXgV3Ao22os2UrTphaezRJRCSTChs3WZ+7fxr49KrVrwP3tvK+naATpkQkqjBnxmoevYhEFSboV06v7F4dIiKbLVDQ6zLFIhJToKBfXlbOi0gkYYJeY/QiElWYoNesGxGJKkzQ+4qhGyW9iMQRJuh1UTMRiSpM0LsugSAiQYUJ+oo7Oasud7cWEZHNFCjooZDLpctKehGJI1DQO/m0S6+DsSISSZigd6cW9Bq6EZFIwgT9yh59l4sREdlEIYNeY/QiEkmgoIecGWYaoxeRWMIEvafTK3NmGqMXkVDCBH2lkvbo0dCNiMQSJ+jVoxeRoAIFPVh1jF43BxeRQMIEvbuTyyU9eo3ciEgkYYI+GboxcgZljd2ISCCBgp406E0HY0UklEBB75hBLmdU1KMXkUDCBL2nPfp8ziirRy8igYQJ+oo7RhL25Uq3qxER2TwtBb2ZjZnZ42b2spkdM7O3m9lOM3vKzI6njzvaVWwrqgdj8zk0dCMiobTao/9PwJ+6+53A3cAx4JPAUXc/CBxNn3edO5hB3jR0IyKxNB30ZrYN+FngUQB3X3T3i8CDwJG02RHgoVaLbIfarBsdjBWRYFrp0d8BTAP/xcz+0sx+38xGgJvc/SRA+rinDXW2rHrClA7Gikg0rQR9AbgH+Ly7vw24yg0M05jZI2Y2aWaT09PTLZTRmNoYvZlOmBKRUFoJ+ilgyt2fTZ8/ThL8p81sL0D6eGatjd39sLtPuPvE+Ph4C2U0pnqtm1xOJ0yJSCxNB727nwLeMLMfS1fdD7wEPAkcStcdAp5oqcI2qV69Uj16EYmm0OL2/wz4kpkNAK8DHyb5z+MrZvYR4ATwyy1+Rlt43cFYzaMXkUhaCnp3fwGYWOOl+1t5304oV9IefU43HhGRWMKcGVuuOIVcTkM3IhJOmKAvVSoU8joYKyLxhAn6csXJ5zS9UkTiCRP0pYpTyFUPxiroRSSOMEFf7dHnDN1KUERCCRP0perBWF0CQUSCCRP0yz16Dd2ISCxhgr5UqVDIJXeY0qwbEYkkTNCXy5p1IyIxhQn6UsVr8+gV9CISSZigr59Hr6EbEYkkTNCvmHWjHr2IBBIm6GuzbnKGcl5EIgkT9LVZN4Z69CISSpigr+/RK+hFJJIwQV+91o0OxopINCGCvlJx3CGvg7EiElCIoC+lwa7r0YtIRCGCvtqD15mxIhJRiKAvVZK7gVevdaOgF5FIQgR9fY8+Z5pHLyKxhAj62hh9euMRjdGLSCQhgr7ao89p6EZEAgoR9Ct69Jp1IyLBhAj6crk6Rp/TrBsRCSdE0NfPuqle1MzVqxeRIFoOejPLm9lfmtnX0+e3m9mzZnbczB4zs4HWy2zN6nn0gGbeiEgY7ejRfxw4Vvf8t4HfcfeDwAXgI234jBty5so8lbokrx+jz6d7rOEbEYmipaA3s/3APwB+P31uwLuAx9MmR4CHWvmMG3Xy0hz3/oejfOGZ12rrVsyjz1V79Ap6EYmh1R79Z4F/BVTS57uAi+5eSp9PAfta/Iwb8sKJiwA8+cKbtXX117qpDt2oRy8iUTQd9Gb2D4Ez7v5c/eo1mq6ZqGb2iJlNmtnk9PR0s2Vc44U3kqCv77GX04Ox1atXApTVoxeRIFrp0b8DeJ+Z/QD4I5Ihm88CY2ZWSNvsB95ca2N3P+zuE+4+MT4+3kIZK/3N6SsAfP/s1do4falcf2ZsOnSjHr2IBNF00Lv7p9x9v7sfAB4GvunuHwCeBt6fNjsEPNFylTfgwuwSAEtl5+Jcsrxi1k1OQzciEksn5tF/AvgNM3uVZMz+0Q58xrouzi7Wls9fXQCuPTMWNHQjInEUNm6yMXf/FvCtdPl14N52vG8zLlxd5C3jI7w2fZVzM4v86J515tFXrvcuIiLZkakzY0vlCpfnS7xlfBSA81eT3v1yjz63PI9ePXoRCSJTQX8pHZN/y54k6M+lQb8860YHY0UknkwFffVA7B27R4DlHv1SuW4evQ7GikgwmQr66oHYPduG2DpUqAX9/FIZgOFivhb0JQW9iASRsaBPevRjw0V2jQzUhm6qQT9UzDOQDtKXdDRWRILIVNBfSHv0O7YMsHNkoDa9cq7aox/IU0yDfrGkoBeRGDIV9LUe/UiRnSODnJtJgn9uMQn1oUKOYiHZ5aWygl5EYshU0F+YXaSQM7YOFtg1MlAbo59bKjOQz1HI52pDN4sljdGLSAwZC/olxrYUMTN2jg5wYXYRd2d+qcxQMdnVgUJyMHZRPXoRCSJTQX9xdpGxLckNrXaNDLBUdi7Pl5hbLDM8kAdgIJ88LmmMXkSCyFTQX5hdZGy4CMDOkSTwz80sMLdUZriYBHxRPXoRCSZTQX9xdqnWo68G/fmri0nQDySX9anOutHBWBGJInNBv2NL0qPfNTIIJJdBmF8qM1wdo9f0ShEJJlNBf2F2kR1pT37naF2Pvn6MPp1eqaEbEYkiM0E/t1hmoVRhrNajXzV0Ux2jrw7dqEcvIkFkJujrz4qF5HIHWwbynJtJgn6ouLJHX73QmYhI1mUw6Iu1ddXLIMwv1vfoNetGRGLJTNBXL3+wfXigtm7X6CDnri4yu1Q/j14HY0UklswF/Y6R5R79+OggJ87PcnF2ifHRZBaOmVHMm3r0IhJGZoJ+9Rg9wO27t/DDc7MA7NsxXFtfzOd0MFZEwshO0KcXMBurG6O/I713LMAtY8tBP1DI6YQpEQkjM0F/dmaBrUMFBgv52rrb01sKAuwbW9mj19CNiESRoaBfZHzr4Ip1d928rbZ88/ah2vJAPqfLFItIGIVuF9Au01cW2D26Mui3bynyrX/5Tk5dnq+dKAXJ0I169CISRWaC/uzMAnfdsu2a9Qd2j3CgbggHkrn0OhgrIlFkZuhm+spCbQrlRnQwVkQiaTrozexWM3vazI6Z2Ytm9vF0/U4ze8rMjqePO9pX7trml8pcWShdM0a/Hh2MFZFIWunRl4B/4e53AfcBHzWztwKfBI66+0HgaPq8o05dmgdgT4NBP1jIMb9U7mRJIiI9o+mgd/eT7v58unwFOAbsAx4EjqTNjgAPtVrkRqYuzAFw684tDbUfHSwws6CgF5EY2jJGb2YHgLcBzwI3uftJSP4zAPa04zOuZ+pCcvbr/rqzX69nZLDA7GKpkyWJiPSMloPezEaBrwK/7u6Xb2C7R8xs0swmp6enW6ph6sIchZxx87ahjRuTBP3VBQW9iMTQUtCbWZEk5L/k7l9LV582s73p63uBM2tt6+6H3X3C3SfGx8dbKYMT52e5efsQhXxjuzMykGdGQS8iQbQy68aAR4Fj7v6ZupeeBA6ly4eAJ5ovrzGvnL7C37ppa8PtRwYLzC9VKGnmjYgE0EqP/h3AB4F3mdkL6c8DwG8B7zaz48C70+cdM79U5viZGd6699qTpdYzOpicJzarmTciEkDTZ8a6+18Ats7L9zf7vjfqldNXKFect65xVux6RtKgv7pQYttQcYPWIiL9re/PjP3my2cwg4kDjZ+XVR/0IiJZ19dBf/LSHI995w3+7oGd7Nna2IwbSA7GAppLLyIh9HXQf/W5Ka7Ml/jUe++8oe2qPfpZ9ehFJIC+vnrlR3/uR3nf3fu4bVdjZ8RWVQ/GaoqliETQ1z16M7vhkAfYPpwcgL04t9TukkREek5fB32zdo0mNxA/N7PY5UpERDovZNBvGSgwXMxzdmah26WIiHRcyKAH2L11gHMKehEJIG7Qjw5yVkM3IhJA2KDfNTKooRsRCSFs0I9vHVDQi0gIYYP+lu3DnJ1ZZG5RZ8eKSLaFDfof2T0CwA/PX+1yJSIinRU26G/flQT9D87OdrkSEZHOChv01TNqf3BOPXoRybawQb99uMhN2wZ5+WTDt7kVEelLYYMe4O79Y3x36lK3yxAR6ajQQf+Tt43x/bNXuXBVJ06JSHaFDvr77tgFwDPHp7tciYhI54QO+rv3j7FrZICnXjrd7VJERDomdNDnc8YDP7GXP3vptIZvRCSzQgc9wAfuu43FUoUvPPNat0sREemI8EF/583b+KV79vPFv/g+r0/PdLscEZG2Cx/0AJ94748xVMzza//teS7p9oIikjEKemDP1iE+/4Gf4vWzM/yj3/s2b5zXZRFEJDsU9Km/f3A3hz84wYnzs/zCZ5/hc0eP6wCtiGRCR4LezN5jZn9jZq+a2Sc78Rmd8HN37uEbH/sZfubgbj7z1Cv89G8e5aP//Xn+x+QbnLo03+3yRESaYu7e3jc0ywOvAO8GpoDvAL/i7i+tt83ExIRPTk62tY5WvXzqMl/69gn+9MVTTF9JblAyvnWQO2/eyp03b2Xf2DB7x4a5Zfswe8eGGBsuUsjrFyQR2Txm9py7T2zYrgNB/3bg37r7L6TPPwXg7r+53ja9GPRV7s7Lp67wf147x7GTl3n51GVeOT3DYqlyTdutgwW2DRfZnv6MDhUYKuYZLubSxzyD6eNQMcdgIU8hbxTzRiGXo5AzCvkchbwly7kcxbyRzxnFuvVmRs6MnEHODFvnsdrGVqxb1Zbl52a2+X/AItK0RoO+0IHP3ge8Ufd8CvjpDnzOpjAz7tq7jbv2bqutq1Sc87OLnLw4z5uX5jh1aZ4Ls4tcmltKfmaTxzfOz7JQqjC3WGa+VGZusczCGv9B9AozMJYD3+rWJ89rC+u+tvy8+vrK92K91zfYzla9gTVRw2Zp9uOa3o7mNmz+85r5rCZrbGqr5jds9vNa2b+P3X+QX7z7liY/uTGdCPq19viaXxvM7BHgEYDbbrutA2V0Ti5n7B4dZPfoID+xf/sNbVupOAulCvNLSfiXyk6p4pTKlfTRWapUKFecpXLyWCovLy9VHHfHHSruVNJHT5d91fNKbX3j2wB4+pV57Tm159XXuOa19bdZ6z1Zvd0G7Ve+vuq1Dba5Uc3+ouvNfuLmbkazv8k3s1Xzf5ZNbreJ+9bKhtW/K9uHi81+csM6EfRTwK11z/cDb65u5O6HgcOQDN10oI6elMsZwwN5hgfy3S5FRILoxNHD7wAHzex2MxsAHgae7MDniIhIA9reo3f3kpn9U+B/AXngi+7+Yrs/R0REGtOJoRvc/RvANzrx3iIicmM08VtEJOMU9CIiGaegFxHJOAW9iEjGKehFRDKu7de6aaoIs2ngh01uvhs428ZyuqHf96Hf64f+34d+rx+0D834EXcf36hRTwR9K8xsspGL+vSyft+Hfq8f+n8f+r1+0D50koZuREQyTkEvIpJxWQj6w90uoA36fR/6vX7o/33o9/pB+9AxfT9GLyIi15eFHr2IiFxH3wT9RjccN7NBM3ssff1ZMzuw+VVeXwP78CEzmzazF9Kff9yNOtdjZl80szNm9r11Xjcz+1y6f39lZvdsdo3X00D97zSzS3V//v9ms2u8HjO71cyeNrNjZvaimX18jTa9/h00sg89+z2Y2ZCZ/V8z+25a/79bo03vZZG79/wPyeWOXwPuAAaA7wJvXdXmnwBfSJcfBh7rdt1N7MOHgN/tdq3X2YefBe4BvrfO6w8Af0Jyl7H7gGe7XfMN1v9O4OvdrvM69e8F7kmXtwKvrPF3qNe/g0b2oWe/h/TPdTRdLgLPAvetatNzWdQvPfp7gVfd/XV3XwT+CHhwVZsHgSPp8uPA/dZbd7tuZB96mrs/A5y/TpMHgT/0xLeBMTPbuznVbayB+nuau5909+fT5SvAMZJ7NNfr9e+gkX3oWemf60z6tJj+rD7Q2XNZ1C9Bv9YNx1f/5ai1cfcScAnYtSnVNaaRfQD4pfRX7sfN7NY1Xu9lje5jL3t7+mv5n5jZ3+52MetJhwPeRtKjrNc338F19gF6+Hsws7yZvQCcAZ5y93W/g17Jon4J+kZuON7QTcm7qJH6/hg44O5/B/hzlnsF/aLXv4ONPE9ySvndwH8G/meX61mTmY0CXwV+3d0vr355jU167jvYYB96+ntw97K7/yTJ/bDvNbMfX9Wk576Dfgn6Rm44XmtjZgVgO731a/qG++Du59x9IX36e8BPbVJt7dLQjeF7lbtfrv5a7sld0opmtrvLZa1gZkWSgPySu39tjSY9/x1stA/98D0AuPtF4FvAe1a91HNZ1C9B38gNx58EDqXL7we+6enRkB6x4T6sGkt9H8n4ZT95EvjVdObHfcAldz/Z7aIaZWY3V8dSzexekn8f57pb1bK0tkeBY+7+mXWa9fR30Mg+9PL3YGbjZjaWLg8DPw+8vKpZz2VRR+4Z226+zg3HzezfA5Pu/iTJX57/amavkvzv+XD3Kr5Wg/vwMTN7H1Ai2YcPda3gNZjZl0lmROw2syng0yQHo3D3L5DcJ/gB4FVgFvhwdypdWwP1vx/4NTMrAXPAw93+B7rKO4APAn+djhED/GvgNuiP74DG9qGXv4e9wBEzy5P8B/QVd/96r2eRzowVEcm4fhm6ERGRJinoRUQyTkEvIpJxCnoRkYxT0IuIZJyCXkQk4xT0IiIZp6AXEcm4/w/CCEciiicTagAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "a,b = sps.iirdesign(cutoff, cutoff+width, gpass=3.0, gstop=50.0, analog=False, ftype='ellip')\n", + "w, gd = sps.group_delay((a,b))\n", + "pl.plot(w,gd)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "bessel does not have order selection. Use iirfilter function.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/geomagenv36/lib/python3.6/site-packages/scipy/signal/filter_design.py\u001b[0m in \u001b[0;36miirdesign\u001b[0;34m(wp, ws, gpass, gstop, analog, ftype, output)\u001b[0m\n\u001b[1;32m 1704\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1705\u001b[0;31m \u001b[0mordfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfilter_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mftype\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1706\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mIndexError\u001b[0m: list index out of range", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-19-2193337a950a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miirdesign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcutoff\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcutoff\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpass\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgstop\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m50.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0manalog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mftype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'bessel'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroup_delay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mpl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mgd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/geomagenv36/lib/python3.6/site-packages/scipy/signal/filter_design.py\u001b[0m in \u001b[0;36miirdesign\u001b[0;34m(wp, ws, gpass, gstop, analog, ftype, output)\u001b[0m\n\u001b[1;32m 1708\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mIndexError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1709\u001b[0m raise ValueError((\"%s does not have order selection. Use \"\n\u001b[0;32m-> 1710\u001b[0;31m \"iirfilter function.\") % ftype)\n\u001b[0m\u001b[1;32m 1711\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1712\u001b[0m \u001b[0mwp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0matleast_1d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: bessel does not have order selection. Use iirfilter function." + ] + } + ], + "source": [ + "a,b = sps.iirdesign(cutoff, cutoff+width, gpass=3.0, gstop=50.0, analog=False, ftype='bessel')\n", + "w, gd = sps.group_delay((a,b))\n", + "pl.plot(w,gd)" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.011920928955078125" + ] + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "200000/(2.0**24)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(512,)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "a = EdgeFactory(cwbhost=\"166.154.45.158\", host=\"166.154.45.158\")" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "temp = a.get_timeseries(channels=['UK2'], starttime=UTCDateTime(\"2018-09-11T21:45:00Z\"), endtime=UTCDateTime(\"2018-09-11T21:50:00Z\"), observatory=\"GXX\", type=\"variation\", interval=\"minute\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1 Trace(s) in Stream:\n", + "NT.GXX.R0.UK2 | 2018-09-11T21:44:54.240000Z - 2018-09-11T21:49:53.640000Z | 59.9 s, 6 samples" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "temp" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAADtCAYAAAA2syooAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8jnX8x/HXhzmEUPqJkkPIHDaHGIlQDokkiiGHyvk0bGbDbM1hmFMybA5DyCHHolLOleSUw9hCqZ+ylMOY8+z7++O+7TfaZnJv1w6f5+NxPR67r8P3+lz3ru1+39f9vb63GGNQSimllFJKZR45rC5AKaWUUkop9WA0xCullFJKKZXJaIhXSimllFIqk9EQr5RSSimlVCajIV4ppZRSSqlMRkO8UkoppZRSmYyGeKWUUkoppTIZDfFKKaWUUkplMhrilVJKKaWUymQ0xCullFJKKZXJaIhXKgMQkTwiEi4ip0UkRkS2iYjLPev4iMjfInJeRCaKiNjnO4nIKhH5Q0SMiBS7Z7syIrJJRC7a1/G9Ty3NReSEiFwRkXUi8liiZdVE5HsRuSwiB0SkegrtPCkin9trvp7E8g9E5KiIxIuIe6L5s0Uk1j7dEpGbiR4PF5GWIrLL/jydFhH/e9oNFZGT9ueiTkrHmmibQiISLSJfJrN8dlLP7T3rbBOR64lq/SKJdZxE5LCIRKbQTorHl2g9d3tN7kktfxh6PmbM81FEPETkN/u+FohInhTaSPZ8FJE3RCTS3s4ZEZkiIjlTaMtZRL62P89/iYhHEuuk2fmolEqahnilMgYn4BegDvA4sB5Ye2ehiLwG9AFqA5WBlsC7ibbfAbRNpu2P7G3/D1APGCAiryS1oogUBZYCA4CiwGXgQ/uyXMAaYAFQGBgPrBGR3MnsNx74HHgvmeXHAQ/gx8QzjTG9jTEFjDEFgHnAuDuPjTHjgEeBkfb66gLuItI5URMH7Ps8ncx+k/IBcCKpBSJSA6iUyna6Jaq1eRLL+wMx92njfseHiOS3rxORyroelJ6PdhnlfBSRJsBQ4BWgOFAQCLhPO8mdj3uB+saYQtjObVegZ1INiMgjwBfAIuAJoByw6Z510vp8VEolQUO8UhmAMeaKMWa0Mea0MeY2MAMoIyJF7Kt0BmYaY34xxpwBJgHv2LeNM8Z8aIz5IZnmSwHLjTG3jDG/At+SfCh9E/jBGPOFMeYK4A+8bb/i5wzkM8aEGWNuG2OWAzeABskc09/GmNnA4WSWLzbGfA3866poSowxnxhjNhtjbhhjfgdWA26Jls82xmwHbqemPRGpgi18zU9imQDTgcEPUmMy+3kSW1AKSmm9+x2fnR+2QPnPw9aVTA16PqZSOp6PrwJLjDEnjDFXgWCgy4PUmqimP4wxf98zu0wyq78LfG+M+dh+jJeNMcfuWSdNz0elVNI0xCuVMb0A/GWMOWd/XIm7w8dBbFdAUyME29XBPCJSHtvV1W3JrHvXfowxJ4E44Nlk1pcHqCOt1CWVVwBFpKOIHLpn9nTAE9uV2nt1BSKNMfuSaGumiMy8Z/ZH9u4aX4uI6z3LJgDjgCupqTWRu45PRJ4DmmML1ulFz8fUS8vzUe75+SkRKWxv64HORxGpJyIxwHnAhSTexNrVAs6LyG57W+tF5JlE7VhxPiql0BCvVIYjIoWAUGBEotkFgEuJHl+yz0uN77GFsCvAz8A8Y0ySVyOT2E/ifUUB10Wkt4jkEpEO2D5az5fKOhxORHph61qwMDXrG2OWGmMSwoy9/+5ZY8zOJNouBAy3T0m11dcY0zfRLG9sVzNLAl8DG0WkgL2tF4DngCWpqTNRDUkd34fAMGPMrQdp67/S8zH10vJ8xNaFpaOIPGc/rzzt8/PZ20r1+Whf/1t7d5pngdnAhWTKfBrbJy/9gRLYnvfFiZan6/molPp/GuKVykBEJC+2vscbjDGJr4zFYusDe0dB+7z7tZcT2AjMAfJie1F/W0Tesi+/c9Pbnbbu3U/CvowxN7F1b+gMRAOtgW+AP5JpK02JSEtgFNDSGHPtP2yfH1vf46HJrBIAhBpjzqamPWPMj8aYWGPMNWPMRGzPpZuI5MB2ddXDGGMeoL5/HZ+IvAHEGWOSvAH3Pu1FJPodlUzlNno+plJan4/GmK+AKdj6p/+M7c1QHPBXMusneT4msd6v2D7tmJZMadeA1caYPcaYG9j+LuqLSIGHOR+VUg/PyeoClFI2IuIELAP+BLzuWXwU20feG+2Pq5K6j+wfB54CZhlj4oBTIrIWaAR8ar9Z7979tE5U07P8/02OGGP2Ay/al+UETgL77MtSeyX2oYnIS9j64L5mjEnyhtRUKI8tRO6xdX3nESCviEQYYypje46eFpHEoeqQiHQ0xnyTivbvdIcoCNQAPrPvJzdQUESigWft/ZvvksLxNQJesm8Ltt9vNRF5zhgTmFIx9mNKNT0fUy+dzkeMMVOwBXlEpDHwk/2ehdRIqnvOHTmAssksO4Lt04V7CQ9xPiqlHMAYo5NOOmWACQgHvgJyJbGsBXAK24t8MWwvrO8lWp4H25VNg+3GwbyJlv2GbSSRHNg+Dj8M9E6mhqLYPlZvhu1j+o+BRYmWu9j39Si2G+vW3ueY8gIVsN0smBfIk2hZLvu8HdiupuYFctyz/Wwg4J551YCzQONk9pnb3tZvwEv2nyWJ9Zzsz+WdyQPYAhS1Ly9yz3Jz5/iTaKsw0MT+3OTGdiNsNLYAL/e00wbbSCjFkqkr2eOzP++J2/oe6AU8qudjlj8fHwEq2s+n57Ddh9A6mX0mez7al78NlLT/XA7YD0xIpq2K2G5YrW5/jsYD29L7fNRJJ53+PVlegE466WSwBx2D7aPr2ERT/UTr+NpfTC8AExMHAXugMomnRMtq2V9cY4Az2D42z5lCLa9hu6J5FdvQgo8lWjYVuGhv62Og8H2Oy9wznUq0bEESyxves31SoSkc20gfiZ+nLxIt35ZEu6XtyzoBEcnU2g348j7HUuye2mbbf/4fbMP2xWK7UXALUCOZdhpiu1k28byE3/X9ju+e7bYB7no+Zv3zEdtV7ghs9xKc4p43Pg9yPmK7z+O0va3fgcnc/Ubr3t91e/s+LwIbgGfS83zUSSedkp7EmFR30VRKKaWUUkplAHpjq1JKKaWUUpmMhnillFJKKaUyGQ3xSimllFJKZTIa4pVSSimllMpkNMQrpZRSSimVyWiIV0oppZRSKpPREK+UUkoppVQmoyFeKaWUUkqpTEZDvFJKKaWUUpmMhnillFJKKaUyGQ3xSimllFJKZTIa4pVSSimllMpkNMQrpZRSSimVyWiIV0oppZRSKpPREK+UUkoppVQmoyFeKaWUUkqpTEZDvFJKKaWUUpmMhnillFJKKaUyGQ3xSimllFJKZTIa4pVSSimllMpkNMQrpZRSSimVyWiIV0oppZRSKpPREK+UUkoppVQmoyFeKaWUUkqpTEZDvFJKKaWUUpmMhnillFJKKaUyGQ3xSimllFJKZTIa4pVSSimllMpkNMQrpZRSSimVyWiIV0oppZRSKpPREK+UUkoppVQmoyFeKaWUUkqpTMbJ6gLSk4gI8BRw2epalFJKKaWUsnsU+NMYY1K7QbYK8dgC/Gmri1BKKaWUUuoeJYA/UrtydgvxlwH+93//l4IFC1pdi1JKKaWUyuYuXbrEM888Aw/YUyS7hXgAChYsqCFeKaWUUkplWtkyxKeWMYYTJ05w/Phxbt26ZXU52UKOHDkoXrw41atXJ2fOnFaXo5RSSimVIWmIT8b58+cZNGgQR48etbqUbOmxxx4jODiYatWqWV2KUkoppVSGoyE+GcOHD+evv/5i6tSpuLm5kSdPHqtLyhZu377N8ePHmTJlCgMHDuTzzz/Xrk9KKaWUUvfQceKTcPbsWfbu3YuHhwf169fXAJ+OcubMibOzM2PGjOHq1avs3LnT6pKUUuq+fvjhB4KCgrTrpVIq3eiV+CT89ttvALi4uFhcSfZVtGhRnnrqKU6dOmV1KUoplawbN24QEBDAxIkTiY+P58CBAyxduhQnJ315VUqlLb0Sn4Tbt28DkCtXLosryd6cnJyIi4uzugyllErSgQMHqFmzJpMnT2bs2LF8+umnrFmzho4dO+r/LqVUmtMQ/wBKly5NqVKluHnzZsK83r17U758eQoUKECBAgXImzcvOXPmTHjcvHnzJNs6deoUHTt25H/+538oWLAgFStWxM/Pj0uXLgHQq1cv3n333YT14+PjcXNzIyQkBIBXX32VDz74IGH5lStXKFWqFBs2bPjXvuLi4hCRhJpKly5NcHDwXeucPXuW5s2bky9fPpydndm2bVuyz0OJEiXYu3fvXfPGjBlD9+7dAfjmm2+oUqVKwrJz585RrVo1+vfvD4CHhwdlypShYMGCuLm58e233ya7L6WUymhu3bpFYGAgbm5uODk5sXfvXnx8fGjbti0rV65kzZo1dOrUSYO8UipNaYh/QJcvX2bBggV3zevUqROxsbHExsayYMEC6tevn/D4iy+++Fcb0dHR1KlTh0KFCnHgwAEuXbrE119/DUBkZCQAEyZM4Msvv0wI0zNmzEBE6NOnDwAzZ85k2rRpREVFAeDn50etWrVo0aJFsrWfOnWK2NhYVqxYgb+/P1u3bk1Y1rt3b0qVKsW5c+cYO3Ysbdu2JSYm5j8/T3ecP3+exo0b8+KLLzJjxgzANvLMN998w8WLFxk8eDBvvPEGV65ceeh9KaVUWjt69CgvvPACgYGB+Pr6snv3blxdXROWt27dmhUrVrB69WreeecdDfJKqTSjIf4BDR48mHHjxj3UzUuTJk2idOnSzJo1ixIlSgC2q9ujR4/Gzc0NgMKFCzNlyhR69erFiRMnCAgIIDQ0lBw5bL+yZ599Fm9vb3r37s2+fftYsGAB06dPT9X+3dzccHZ25qeffgIgJiaGDRs2EBgYyCOPPELbtm2pUKFCklf1H8SdAF+nTp2EAA8QEBBA2bJlyZEjBx06dMDJyYkTJ0481L6UUiot3b59m0mTJlGjRg2uXr3Krl27CAwMJHfu3P9a980332T58uWsWrWKzp07a5BXSqUJDfEPqEmTJjz99NP/uhr/ILZu3crrr79+3/U6dOhAmTJlqFOnDu+9996/xkz38vLin3/+oVmzZgQGBvLUU0+lav+7d+/m2LFjPPvsswD8/PPPFClShKJFiyasU7VqVSIiIh7gqO4WGxtL48aNqVWrFjNnzkREklzv5MmTXLp0ibJly/7nfSmlVFo6ceIEDRo0wNvbmwEDBrB//35q1aqV4jZt2rRh+fLlfPrppxrklVJpwmEhXkTyiEi4iJwWkRgR2SYiLvZl+UQkVETOishfIuKVyja/FJHr98w7JSJXRSTWPs121DGklr+//0NdjT937hzFihVLeDxp0iQKFy5M/vz5mTZt2l3r1q1bl3PnzuHu7v6vdnLlykWtWrW4ePEib7/99n33W7ZsWfLly0edOnXo2bMnrVq1AmyB+96x2AsWLEhsbOx/OTwA/v77bw4fPkyXLl2SDfA3b96ka9eu+Pr6UqBAgf+8L6WUSgvx8fGEhIRQtWpVzpw5w44dOwgODiZv3ryp2r5NmzYsW7aMlStX0qVLFw3ySimHcuSVeCfgF6AO8DiwHlhrXzYCKAOUA2oCvUSkWUqNiUhrILlk97IxpoB96u2I4h9E06ZNKV68OAsXLvxP2xcpUoTo6OiEx15eXly8eJE333zzrn/yv/zyC1OnTqVHjx54ef37fc/333/P559/zttvv423t/d993vy5EkuX77MtGnT+PbbbxPehBQoUCDhhto7Ll26lGywdnJy+tcbmFu3bt01mk+ZMmUICQnh9ddf59ChQ/9qIz4+ns6dO1OiRAn8/PzuW7tSSqWn33//nWbNmtG/f3+6devGwYMHqVev3gO307ZtW5YvX86KFSvo2rWrBnmllMM4LMQbY64YY0YbY04bY24DM4AyIlIEeBWYaoy5ZIz5X2A+0CW5tkQkLzAG8HmYmuyfDhS8MwGPPkx7iT3M1fhGjRrx2Wef3Xe9Pn36MGjQIEJCQvjnn3/uetNw69YtevbsSXBwMLNmzWLTpk0pjihzR86cOfHw8KBAgQKEhoYC8Nxzz3Hu3Dn+/vvvhPUOHjxI5cqVk2zjmWeeSRhL/45ff/2VkiVL3jWvZ8+eDBs2jKZNm/6rz3vfvn05d+4cixYtSvZKvVJKpTdjDAsWLMDFxYXIyEg2bdpESEjIQ31aeCfIL1++XIO8Usph0rJP/AvAX8aYc/bHiZOaAEknRBsfYBlwOpnla+3dctaISKkU2vEFYhJNybX3wJo1a8aTTz7J2rVr77/yPTw9PTl16hR9+vTh9GlbSWfOnLnri42WLFnCb7/9ho+PD7ly5SI0NBRvb2/Onz8PwMSJEylatChdu3alcOHCTJ48mT59+tw1/GVKhg4dSnBwMLdu3aJQoUK89tpr+Pv7c+3aNdasWUNUVFSyI920a9eO4OBgTp06RXx8PNu2bWP9+vW8+eab/1p32LBhvPvuuzRu3DjhWEeMGMGePXtYs2ZNkjeFKaWUFaKjo3njjTd49913adOmDUeOHKFJkyYOabtt27YsW7YsIcjf+T4SpZT6r9IkxItIISAUWzcagE3AIBEpLCKlgW5AvmS2LQ20AyYl03xHoDRQHvgdW6BP7lJuEFAo0VTiQY7jfvz9/RNCdUpu375NgQIF2LVrFwDFixdn165dXLx4kWrVqlGwYEFeeeUVGjVqRPfu3blw4QKenp7Mnj2bPHnyAPDiiy/SqlUrvL29OXHiRMIV+Ds6duxIiRIlmDhxIgDdu3dPGJc9KS1atCB//vwsWbIEgNmzZ/PLL79QpEgRfHx8+PTTTylUqBAACxcupGrVqgnb9unThzfeeIOXX36Zxx57jMGDB7N48WKcnZ2T3FdQUBDNmzenadOm/PXXX4wbN46IiAiKFy+eMHb98uXL7/s8KqVUWlm+fDmVK1fmxx9/ZN26dYSHhyf8D3SUt956i08++USDvFLKIcQY49gGbV1hvgD2G2M87fPyA1OB14GLwGqgrjGmURLbrwEWG2NW2QN9pDEmybuIRCQntivsrsaYX1JRW0EgJiYm5l83cib2ww8/0L9/fz7//PO7bkBV6atNmzY0aNAADw8Pq0tRSmVR//zzD/369WPFihW0a9eOkJAQnnjiiTTd58qVK+nQoQPu7u4sXLiQnDlzpun+lFIZ26VLl+5cNChkjLl0v/XvcHJkESLihK0bzJ9Awp2YxpgrQM9E640B9v6rAZuGwAsiEgLkBPKISDTQwBgTdc+6xj4ppZRSD2T9+vX07NmTW7dusWzZMtq3b58u+3377bcxxtCxY0dEhAULFmiQV0o9MIeGeGAO8Ajwtkl0iV9ESgBxwN/Ay8C7QHKD7Fbg/7v5PAPsBKoB/4hISeBpbG8AcgOBwG/AKQcfB2C7wUkppVTWEhMTw6BBg1iwYAEtW7Zkzpw56f6pa7t27TDG0KlTJ0SE8PBwDfJKqQfisBBvv8G0G3AduJCom3pz+34WAUWASMDdGPNnom1jgebGmJ3GmLOJ5ucFMMZE2x8/CoQBzwJXge+BN4wx8Y46DoD8+fMDcOHCBYoXL+7IplUqxcfHc/HixYTfhVJKOcLXX3/Ne++9x6VLlwgPD6dr166WjZB158p/p06dADTIK6UeiMNCvDHmN+4egeZez6SwbZJjdxljTgF5Ez2OAFz+Y4mp5uzszKOPPsr69eupVKlSWu9OJWHbtm1cunQJNzc3q0tRSmUBsbGxeHt7M2vWLBo3bsy8efP+NSyuFe4E+Ttda+bPn69BXimVKo7uTpMl5MqVi+7duzN16lROnTqFm5tbwigxKm3dvn2bn3/+mS1btlC3bl2qVKlidUlKqUxu586ddOvWjejoaEJCQujduzc5cqTlCMsPpn379nd1rZk3b54GeaXUfWmIT0anTp144oknWLduHUuXLv1PX+qkHlzOnDkpVqwY77//Pp07d063F9q//voLLy8vduzYwaBBg+jbt6++cVMqk7t27Rp+fn5MmTKFunXr8tVXX1GuXDmry0qSu7s78P9dazTIK6Xux+FDTGZkqR1iUmUft2/fJiwsDF9fX5ycnGjcuDErV66kVKlSBAUF0a5dO/1GWaUyoT179tC1a1d++eUXxowZw+DBgzNFKP7kk09455136NKlC3Pnzs0UNSulHs5/HWIy43yeqFQ6279/P3Xr1qVv37689dZbREVFsWzZMg4fPkzlypVxd3endu3a7Nixw+pSlVKpdPPmTUaNGsULL7xAvnz52L9/P15eXpkmDHfo0IGPP/6YRYsW0aNHD+LjHTpug1IqC9EQr7KdS5cu4eHhQa1atbh27Rrffvstc+fOpUiRIgBUqlSJzz77jK1btxIfH0+DBg144403OHbsmMWVK6VScvjwYWrXrk1QUBD+/v7s2rUrUw5O0LFjRxYtWsTChQvp3r27BnmlVJI0xKtswxjDihUrcHZ2Zt68eUycOJF9+/bx4osvJrl+w4YN+fHHH1m6dCmHDh3CxcWF3r17Ex0dnc6VK6VSEhcXR1BQEM8//zxxcXH8+OOP+Pn5kStXLqtL+886deqkQV4plSIN8SpbOHHiBK+++irt27enTp06HDt2DE9Pz/u+yOfIkYMOHToQGRnJhAkTWL58OeXKlSMwMJArV66kU/VKqeRERUVRr149Ro4ciaenJ3v37qV69epWl+UQnTp1YuHChSxcuFC71iil/kVDvMrSbty4QWBgIFWqVCEqKorPPvuM1atX88wzyX5tQZLy5MmDp6cnJ0+epHfv3owdO5Zy5coxZ84c4uLi0qh6pVRy4uPj+fDDD6lWrRoXLlzgu+++IygoKMuNKvXOO++wcOFCwsPDNcgrpe6iIV5lWd988w0uLi6MHj2aIUOGcPToUVq2bPlQbT7++ONMmjSJyMhIGjVqRM+ePalWrRobNmwgO430pJSVfv31V15++WUGDRpEr169OHDgAHXq1LG6rDTzzjvvsGjRIsLDw+nZs6cGeaUUoCFeZUHR0dF07NiRJk2aULx4cQ4ePMi4cePIly+fw/ZRpkwZli5dyp49e3jiiSdo2bIlr7zyCvv27XPYPpRSdzPGEBYWhqurK6dOnWLLli1MmzbNoX/bGdWdK/Lz58+nV69eGuSVUhriVdZx+/ZtZsyYQYUKFfj6669ZuHAh27ZtS9PRKWrWrMnWrVv57LPPiI6OpmbNmnTq1IlTp06l2T6Vyo7++OMPmjdvTq9evejQoQOHDx+mUaNGVpeVrjp37syCBQuYN28evXv31iCvVDanIV5lCXv37qV27doMGDAAd3d3oqKi6NKlS7p8UZOI0LJlSw4dOkRoaCibN2+mQoUKDB06lAsXLqT5/pXKyowxLF68mCpVqnDo0CE2btxIWFgYjz76qNWlWaJLly4sWLCAuXPnapBXKptzWIgXkTwiEi4ip0UkRkS2iYiLfVk+EQkVkbMi8peIeKWyzS9F5Hoyy9xFxIiIu6OOQWU+MTEx9O/fHzc3N+Li4ti1axehoaE8/vjj6V6Lk5MTPXv25MSJEwwfPpxZs2ZRtmxZpkyZwo0bN9K9HqUyu7Nnz9K2bVs6d+5MixYtOHLkCM2bN7e6LMt16dKF8PBw5s6dS58+fTTIK5VNOfJKvBPwC1AHeBxYD6y1LxsBlAHKATWBXiLSLKXGRKQ1UCCZZfmBkUCEQypXmY4xhk8++QRnZ2cWLlzI5MmT2bt3b4a4ua1AgQL4+/tz/Phx3n77bYYOHUrFihVZtmyZvtgqlUqrV6+mcuXK7Ny5k08//ZTFixdb8uY8o+ratSvz589nzpw59O3bV/+3KJUNOSzEG2OuGGNGG2NOG2NuAzOAMiJSBHgVmGqMuWSM+V9gPtAlubZEJC8wBvBJZhU/YB7wT0o12T8dKHhnArLn569ZzM8//0yTJk3o2LEj9erV49ixYwwePBgnJyerS7tL8eLFCQ0N5ciRI1SpUoUOHTpQp04dtm/fbnVpSmVYFy5c4J133qFt27bUr1+fiIgI2rZta3VZGVK3bt2YP38+YWFhGuSVyobSsk/8C8Bfxphz9seJOycLUDmFbX2AZcDpexeIyHNAc2xvEu7HF4hJNP2rPZV5XL9+HX9/f1xcXPjll1/YuHEjK1eupESJElaXlqKKFSuyfv16tm7dijGGhg0b0qpVK44dO2Z1aUplKF988QVVqlRhw4YNLF68mFWrVlG0aFGry8rQunXrxrx58wgLC6Nfv34a5JXKRtIkxItIISAUWzcagE3AIBEpLCKlgW5AkmOC2Ze3AyYl0/yHwDBjzK1UlBIEFEo0Zey0p5L11VdfUaVKFYKCgvD29iYiIiLT9Y1t2LAhu3fvZunSpRw+fBgXFxd69+5NdHS01aUpZalLly7Ro0cPXnvtNVxdXTly5AidOnVKlxvTs4J3332XuXPnEhoaSv/+/TXIK5VNODzE27vCrAU2GGPm22ePAU4Bx4AvgJXAH8k0MRXwM8b864ZWEXkDiDPGfJmaWowxN+xdeC4ZYy4Blx/oYJTl/vzzT9q3b8+rr75KyZIlOXToEKNHj+aRRx6xurT/JEeOHHTo0IHIyEgmTpzIihUrKFeuHB988AGxsbFWl6dUutu6dSuurq4sW7aMsLAwNm7cyNNPP211WZnOe++9x9y5c5k9ezb9+/fXL59TKhtwaIgXESds3WD+BBJGoLH3l+9pjClujKkIGGBvMs00BEJEJBrYA+QRkWgRqQA0Al6yP44G6gKzRWSUI49DWS8uLo4PP/wQZ2dntm3bxuLFi9m8eTPOzs5Wl+YQefLkYciQIZw8eZI+ffowbtw4ypcvz5w5c4iLi7O6PKXS3NWrV/Hw8ODll1+mTJkyHD58mB49eujV94dwJ8jPmjWLfv36aZBXKqszxjhsAsKBr4Bc98wvARQDcgJNsF2FfyqZNora1y0G1AKu2392wnZjarFE0/dAL+DRVNZXEDAxMTFGZVy7d+821atXNyJi+vTpY86fP291SWnu119/NR07djSAqVQfedybAAAgAElEQVSpkvnss89MfHy81WUplSa+//57U758eZM3b14zbdo0c/v2batLylLmzp1rANO3b1/9P6JUJhATE2OwXeAuaB4gdztynPhS2Pq6vwRcEJFY+1QfKI/tqvplYALgboz5M9G2d9bDGHPWGBNtjIkG/rbPizbGxBljLt9ZZl9+E4gxxmg3mSzgwoUL9OnTJ2GYyB9++IGZM2fy2GOPWVxZ2itdujRLlixhz549FC1alNdff52XX36ZvXuT+8BKqcznxo0b+Pj4UK9ePR5//HF++uknPDw8yJFDv3fQkd5//33mzp3LzJkztWuNUlmYw8bkM8b8xt0j0NzrmRS2TXI8eGPMKSBvCts1TGV5KgMzxrBkyRI8PT25du0a06ZNo2/fvhluyMj0ULNmTbZs2cLGjRvx9vamVq1adOjQgXHjxlG6dGmry1PqP9u/fz9du3YlKiqKsWPH4uXllS3/xtPL+++/jzEmoYvSRx99pF2VlMpi9PKHslRkZCSvvPIKnTt3pmHDhkRGRjJw4MBs/eIuIrRo0YKDBw8SFhbG1q1bqVChAl5eXly4cMHq8pR6ILdu3SIwMJDatWvj5OTE3r178fHxydZ/4+mle/fuhIWFERISwsCBA/WKvFJZjIZ4ZYlr164xcuRIXF1d+f333/nqq69Yvnw5Tz31lNWlZRhOTk706NGD48ePM2LECGbPnk3ZsmWZPHkyN27csLo8pe4rIiKCF154gcDAQHx9fdm9ezeurq5Wl5Wt9OjRg7CwMGbMmKFBXqksRkO8SncbN26kcuXKBAcHM3z4cI4cOULTpk2tLivDKlCgAKNGjeLEiRO0a9eOYcOG4ezszCeffKLjQasM6fbt2wQHB1OjRg2uXr3Krl27CAwMJHfu3FaXli316NGD0NBQZsyYgYeHhwZ5pbIIDfEq3Zw+fZq33nqLFi1aULZsWQ4fPkxAQAB58yZ724NKpFixYsyePZvDhw/j6upKx44dqV27Ntu3b7e6NKUSnDhxggYNGjBs2DAGDhzI/v37qVWrltVlZXs9e/Zk9uzZfPTRRwwaNEiDvFJZgIZ4lebi4uKYOnUqFStW5LvvvuOTTz5h06ZNPPfcc1aXlilVrFiRdevWsW3bNkSEhg0b8vrrr3P06FGrS1PZWHx8PCEhIVStWpUzZ86wY8cOgoOD9U16BtKrVy9mzZrF9OnTNcgrlQVoiFdpateuXdSsWRNPT0+6detGZGQk7u7uOkqCAzRo0IAffviBTz75hIiICFxcXOjVqxfR0dFWl6aymd9//52mTZvSv39/unXrxsGDB6lXr57VZakk9O7dOyHIDx48WIO8UpmYhniVJs6fP0/Pnj2pW7cuTk5O/Pjjj3z00UcUKlTI6tKylBw5cuDu7s6xY8eYNGkSK1eupFy5cgQEBBAbG2t1eSqLM8YQHh6Oi4sLUVFRbNq0iZCQEAoUSHLUYJVB9O7dm5kzZ/Lhhx8yZMgQDfJKZVIa4pVDGWNYuHAhFSpUYPny5cyYMYPdu3dTs2ZNq0vL0vLkycPgwYM5efIkffr0ISgoiPLlyxMWFkZcXJzV5aks6MyZM7Rq1Yr33nuPNm3acPjwYZo0aWJ1WSqV+vTpQ0hICNOmTcPT01ODvFKZkIZ45TBHjx6lYcOGdOvWjSZNmhAZGUm/fv3ImTOn1aVlG4899hjBwcFERUXxyiuv0KtXL1xdXfnss8/0RVo5zPLly6lSpQp79uxh3bp1hIeHU7hwYavLUg+ob9++hISEMHXqVA3ySmVCGuLVQ7t69Sq+vr4JN7R9/fXXLF26lOLFi1tdWrZVunRpFi9ezN69eylWrBitWrWiUaNG7N271+rSVCb2zz//0K5dO9zd3WncuDFHjhyhVatWVpelHkLfvn2ZMWMGU6dOxcvLS4O8UpmIhnj1UD7//HMqVarE1KlT8fPz49ChQzRu3NjqspTd888/z+bNm/n888/5+++/qVWrFh07duTXX3+1ujSVyaxfv57KlSuzefNmli1bxvLly3niiSesLks5QL9+/ZgxYwZTpkxh6NChGuSVyiQ0xKv/5Pfff+fNN9/k9ddfp0KFChw5coRRo0bpcHIZkIjQokULDh48yJw5c9i2bRvOzs54enpy/vx5q8tTGdzFixfp1q0bb7zxBm5ubkRERNC+fXury1IOdifIT548WYO8UpmEw0K8iOQRkXAROS0iMSKyTURc7MvyiUioiJwVkb9ExCuVbX4pItfvmbfB3k6MiOwWkRccdQzq/m7dusWkSZOoWLEiu3fvZvny5Xz55ZeUK1fO6tLUfTg5OdG9e3eOHz/OyJEjCQ0NpVy5ckyePJkbN25YXZ7KgDZt2oSLiwtr1qwhPDyc9evXU6xYMavLUmmkX79+fPTRR0yePBlvb28N8kplcI68Eu8E/ALUAR4H1gNr7ctGAGWAckBNoJeINEupMRFpDSQ1Tpk38JQxphAwBlgjOuh4uvjuu++oUaMGw4YNo0ePHkRGRtKuXTsd8z2TyZ8/P35+fpw8eZL27dszbNgwnJ2dWbp0KfHx8VaXpzKA2NhY+vTpQ7NmzXB2dubw4cN069ZN/9azgf79+zN9+nQmTZrEsGHDNMgrlYE5LMQbY64YY0YbY04bY24DM4AyIlIEeBWYaoy5ZIz5X2A+0CW5tkQkL7aA7pPEfiKMMXH24B4PPAnkS6adPCJS8M4EPPqwx5kdnTt3ju7du1OvXj3y5cvH3r17mTZtGgULFrS6NPUQnnzySWbNmsWRI0dwdXWlU6dO1K5dm23btlldmrLQzp07qVq1KosWLSIkJISvvvqKkiVLWl2WSkcDBgxg+vTpBAcHa5BXKgNLyz7xLwB/GWPO2R8nvoQjQOUUtvUBlgGnk1ooIp8D14HPgenGmCvJtOMLxCSakmxPJS0+Pp758+dToUIFVq1axaxZs/j++++pXr261aUpB3J2dmbdunVs376dHDly0KhRI15//XWOHj1qdWkqHV27dg0vLy8aNGhA8eLFOXjwIH379iVHDr11KjsaMGAAH374IcHBwfj4+GiQVyoDSpP/ziJSCAjF1o0GYBMwSEQKi0hpoBvJXz0vDbQDJiXXvjGmJbar6m8B+1MoJQgolGgqkeqDyOaOHDlCgwYNeP/992nevDmRkZH07t1bx3zPwl566SV++OEHli1bRkREBC4uLvTs2ZMzZ85YXZpKY3v27KFGjRrMmDGDiRMnsn37dr3PRTFw4ECmTZvGxIkT8fX11SCvVAbj8BBv7wqzFthgjJlvnz0GOAUcA74AVgJ/JNPEVMDPGHM9meUAGGNuGmNWAZ4iUjGZdW7Yu/BcMsZcAi4/8AFlM1euXMHb25vq1avz999/s3nzZj7++GOefPJJq0tT6UBEaN++PceOHWPy5MmsWrWK8uXLExAQQGxsrNXlKQe7efMmfn5+vPDCC+TPn5/9+/fj5eWlb9ZVAg8PD6ZNm8aECRM0yCuVwTg0xIuIE7ZuMH8CCSPQ2PvL9zTGFDfGVAQMkNy3zjQEQkQkGtgD5BGRaBGpkMz6TthumlUPad26dVSsWJGPPvqIgIAADh48yMsvv2x1WcoCefLkYdCgQZw4cYK+ffsyfvx4ypUrR2hoKHFxcVaXpxzg0KFDuLm5MX78ePz9/dm1axeVKlWyuiyVAXl4eDB16lQmTJjA8OHDNcgrlUE4+kr8HOARoJtJ9FcuIiVEpJiI5BSRJsC72K64J6UCUM0+vQbcsP98UkRKiUhLEclrv2m1P7YuMvscfBzZym+//UarVq1o3bo1VapUISIighEjRpAnTx6rS1MWe+yxx5g4cSJRUVE0adKE3r174+rqymeffaYv5JlUXFwcQUFB1KxZk9u3b/Pjjz/i5+dHrly5rC5NZWCDBg1iypQpjB8/nhEjRujfv1IZgCPHiS+Fra/7S8AFEYm1T/WB8tiuql8GJgDuxpg/E217Zz2MMWeNMdHGmGjgb/u8aGPMnct/I4CzQDTQHnjdGPOXo44jO7l58yYTJkygYsWK7N+/n08//ZQNGzbw7LPPWl2aymBKlSrFxx9/zL59+yhevDitWrWiUaNG7Nmzx+rS1AOIjIzkxRdfZOTIkXh6erJ37169UV2l2uDBg5kyZQpBQUEa5JXKAJwc1ZAx5jfuHoHmXs+ksG1S48FjjDkF5E30+Ddso96oh7Rjxw769OlDVFQUHh4eBAQE8OijOgKnSlmNGjX45ptv+OKLL/D29sbNzQ13d3fGjRtHmTLaqy2jio+PZ/r06fj6+lKyZEm+++476tSpY3VZKhMaPHgwxhg8PT0REcaMGaPfH6CURXTssGzm77//5t1336VBgwYULFiQffv2MXnyZA3wKtVEhNdee42ffvqJuXPnsn37dpydnfH09OT8+fNWl6fu8euvv/Lyyy8zePBgevXqxYEDBzTAq4cyZMgQJk2axLhx4/Dz89Mr8kpZREN8NhEfH8+cOXOoUKEC69atIywsjO+++46qVataXZrKpJycnHj//fc5fvw4I0eOJCwsjLJlyzJp0iSuX09xcCmVDowxhIWF4eLiwqlTp9iyZQvTpk0jX74kR/dV6oF4enoSHBzM2LFjNcgrZREN8dnAoUOHqFevHj179qRVq1ZERkbSo0cP/RIX5RD58+fHz8+PEydO0KFDB3x8fHB2dmbp0qXEx8dbXV62dPr0aZo3b06vXr3o2LEjhw4dolGjRlaXpbIYLy+vhCA/atQoDfJKpTNNcVnY5cuX8fT0pEaNGsTExLB9+3YWLFhA0aJFrS5NZUFPPvkkM2fO5MiRI1SrVo1OnTrh5ubG1q1brS4t2zDG8PHHH1OlShUOHTrExo0bCQsLo2DBglaXprIoLy8vJk6cyJgxY/D399cgr1Q60hCfBRljWL16NZUqVWLWrFmMGTOGAwcO8NJLL1ldmsoGnJ2dWbt2LTt27CBnzpy8/PLLtGzZkoiICKtLy9LOnj1LmzZt6NKlCy1btuTIkSM0b97c6rJUNjB06FAmTJjA6NGjNcgrlY40xGcxv/76Ky1btqRt27ZUq1aNo0eP4uPjQ+7cua0uTWUz9evX54cffmD58uUcO3YMV1dXevTowZkzZ6wuLctZtWoVlStX5ttvv+XTTz9l8eLFPP7441aXpbIRb2/vhCAfEBBgdTlKZQsa4rOImzdvMm7cOCpVqsThw4dZs2YN69evp3Tp0laXprIxEaFdu3YcPXqUKVOmsHr1asqVK4e/vz+xsbFWl5fpnT9/nk6dOvHWW29Rv359IiIiaNu2rdVlqWzK29ub8ePHExgYqEFeqXSgIT4L2LZtG1WrVmXUqFH079+fo0eP0rp1ax27V2UYefLkwcPDg5MnT9K/f38mTJhAuXLlmD17NnFxcfdvQP3Lxo0bqVKlChs3bmTx4sWsWrVK73dRlhs2bBhBQUF88MEHGuSVSmMa4jOxs2fP0qVLFxo1akSRIkU4cOAAwcHBFCiQ5HdnKWW5woULM2HCBKKiomjatCl9+vTBxcWF9evXaz/aVLp06RI9evSgRYsWVK1alSNHjtCpUyd9064yDB8fn4Qg/8EHH1hdjlJZlob4TCg+Pp7Q0FAqVKjAhg0bmDdvHjt27MDFxcXq0pRKlVKlSrFo0SL279/P008/zRtvvEHDhg3Zs2eP1aVlaFu2bMHFxYVly5YRFhbGxo0befrpp60uS6l/8fHxYdy4cQQEBBAYGGh1OUplSRriM5kDBw5Qt25devfuTZs2bYiKiuK9997TMd9VplS9enW+/vprNm7cyPnz53Fzc8Pd3Z1ffvnF6tIylKtXrzJw4EBeeeUVypQpw6FDh+jRo4defVcZmq+vL2PHjsXf31+DvFJpQJNfJnH58mUGDx5MzZo1iY2NZefOncybN48nnnjC6tKUeigiQvPmzfnpp5+YN28eO3fuxNnZmSFDhnD+/Hmry7Pc999/T7Vq1ZgzZw7Tpk1jy5YtlClTxuqylEqV4cOHJwT50aNHW12OUlmKw0K8iOQRkXAROS0iMSKyTURc7MvyiUioiJwVkb9ExCuVbX4pItcTPS4qIivsbZwXkc9EpKSjjiEjMsawcuVKnJ2dCQsLY/z48Rw4cIB69epZXZpSDpUzZ07ee+89fv75Z0aNGsWcOXMoW7YswcHBXL9+/f4NZDE3btzAx8eH+vXr8/jjj/PTTz/h4eGhn7qpTGf48OGMGTOGUaNGMWbMGKvLUSrLcOSrgRPwC1AHeBxYD6y1LxsBlAHKATWBXiLSLKXGRKQ1cO8dmvmBb4HKQDHgBBDuoPoznJMnT9K8eXPatWtHrVq1OHbsGEOHDiVXrlxWl6ZUmsmfPz8jR47kxIkTdOzYEV9fX5ydnVmyZAnx8fFWl5cu9u/fz/PPP8+UKVMYO3Ys3377LRUqVLC6LKX+sxEjRjB69Gj8/Pw0yCvlKMaYNJmA3EA8UATYBzRPtMwXWJLCtnmBI0A94HoK65UHLqewPA9QMNH0NGBiYmJMRnb9+nUTGBho8uTJY0qVKmXWr19vdUlKWSYyMtK0bt3aAKZGjRpm8+bNVpeUZm7evGkCAgKMk5OTqVatmjl48KDVJSnlUKNHjzaAGTNmjNWlKJVhxMTEGMAABc0DZO20/Fz2BeAvY8w5++PEd2AJtqvpyfEBlgGn77OPukBK3+XuC8Qkmu7XnuU2b96Mq6srgYGBDBo0iIiICF5//XWry1LKMhUqVGDNmjXs2LGDXLly8corr9CiRQsiIlL60898IiIiqFOnDqNHj8bX15fdu3fj6upqdVlKOdTIkSMJDAxk5MiRjBs3zupylMrU0iTEi0ghIBRbNxqATcAgESksIqWBbkC+ZLYtDbQDJt1nH88A44GRKawWBBRKNJVI3RGkv+joaDp16kTjxo158skn+emnnxg/fjz58+e3ujSlMoT69euza9cuVqxYQVRUFK6urvTo0YM///zT6tIeyu3btwkODqZGjRpcu3aNXbt2ERgYSO7cua0uTak04efnxwcffMCIESM0yCv1EBwe4kUkL7a+8BuMMfPts8cAp4BjwBfASuCPZJqYCvgZY5K9k01EHge+BMYZY75Jbj1jzA1jzKU7E3D5QY8nrd2+fZuQkBCcnZ3ZtGkT4eHhbN++ncqVU/qgQqnsSUR4++23OXr0KFOmTGH16tWUL1+eUaNGcflyhvvzvq8TJ07w0ksvMWzYMAYOHMj+/fupVauW1WUpleZGjRqVEOSDgoKsLkepTMmhIV5EnLB1g/kTSBiBxhhzxRjT0xhT3BhTEVu/n73JNNMQCBGRaGAPkEdEokWkgn0fBYCNwDpjzEeOrD+97du3jzp16tC/f3/atWtHZGQk3bp107GflbqP3Llz4+HhwcmTJxkwYAATJ06kfPnyzJ49m7i4OKvLu6/4+HhCQkKoWrUq0dHRbN++neDgYPLmzWt1aUqlm1GjRhEQEMDw4cMZP3681eUolek4+kr8HOARoJsx//8d6iJSQkSKiUhOEWkCvIvtintSKgDV7NNrwA37zydFJDewGogwxgx3cO3pJiYmhgEDBuDm5sbNmzf57rvvCAsLo0iRIlaXplSmUrhwYcaPH8/PP/9M06ZN6du3L1WqVGHdunUk+heUofz+++80bdqU/v3707VrVw4ePEj9+vWtLkspS/j7++Pv74+vr68GeaUekCPHiS+Fra/7S8AFEYm1T/WxjSKzB1t3lgmAuzHmz0Tb3lkPY8xZY0y0MSYa+Ns+L9oYE4ftZtkmgHui9mMzy1jxxhiWLVuGs7Mz4eHhBAcHs2/fPurWrWt1aUplaiVLlmTRokXs27ePEiVK0Lp1axo0aMCPP/5odWkJjDHMnz+fKlWqEBUVxaZNm5g5cyYFCtw7kq5S2UtAQEBCkJ8wYYLV5SiVaTg5qiFjzG/cPQLNvZ5JYdskX8WMMaewDTd55/H2++wjwzp+/Dh9+/blm2++oU2bNkybNo1nnkn2KVFK/QfVq1fn66+/5quvvsLb25vatWvTvn17xo0bx7PPPmtZXWfOnKFHjx5s2LCBbt26MXXqVAoXLmxZPUplNAEBARhj8PHxQUTw9va2uiSlMjz96r80dv36dQICAnBxceHkyZNs2LCBVatWaYBXKo2ICK+++ioHDhxg/vz57Ny5E2dnZwYPHsy5c+fu34AD3fn0rXLlyuzdu5d169YRHh6uAV6pJAQEBODn58ewYcOYOHGi1eUoleFpiE9DmzZtwsXFhXHjxuHp6cmRI0d47bXXrC5LqWwhZ86cvPvuuxw/fhx/f3/mzZtH2bJlCQ4O5vr1ZAe/cph//vmH9u3b06FDB5o0acKRI0do1apVmu9XqcxKRPjggw8SgnxwcLDVJSmVoWmITwN//vkn7u7uNGvWjBIlSnDw4EHGjh1LvnxJDo2vlEpD+fLlY8SIEZw4cYJOnTrh6+tLhQoVWLx4MfHx8Wmyz3Xr1lG5cmU2b97MsmXLWL58OU888USa7EuprOROkB85ciTe3t5MmpTiV8Yola1piHeg27dvM336dJydndmyZQuLFi1iy5YtVKxY0erSlMr2ihYtSkhICBERETz//PN07tyZWrVqsWXLFoft4+LFi3Tt2pXWrVvj5uZGREQE7du3d1j7SmUHIkJgYCAjRoxg6NChTJ482eqSlMqQNMQ7yJ49e3Bzc2PQoEF07NiRqKgoOnfurGO+K5XBVKhQgdWrV7Nz505y587NK6+8wmuvvcaRI0ceqt1NmzZRpUoV1q5dS3h4OOvXr6dYsWIOqlqp7EVEGD16NCNGjMDLy0uDvFJJ0BD/kC5evEi/fv2oXbs28fHx7Nq1i9mzZ/PYY49ZXZpSKgX16tXj+++/Z+XKlfz8889UrVqV7t278+eff95/40RiY2Pp06cPzZo1w9nZmcOHD+uXtinlAHeC/PDhw/Hy8mLKlClWl6RUhqIh/j8yxrBkyRKcnZ1ZtGgRU6dOZc+ePdSuXdvq0pRSqSQivPXWWxw9epSpU6eydu1aypcvz6hRo7h8+fJ9t9+xYwdVq1Zl0aJFhISEsGnTJkqWzBRfW6FUpiAijBkzBl9fXzw9PZk6NbnviVQq+9EQ/x9ERUXRuHFj3nnnHV566SUiIyPx8PDAyclhw+4rpdJR7ty5GThwICdPnmTgwIEEBwdTrlw5Zs2axa1bt/61/rVr1/D09KRhw4YUL16cgwcP0rdvX3Lk0H+pSjmaiDB27Fh8fX0ZMmSIBnml7PQV5wFcu3YNPz8/XF1dOXXqFF988QUrVqzg6aeftro0pZQDFCpUiKCgIKKionj11Vfp168fLi4urFu3DmMMAD/++CM1atQgJCSEiRMnsn37dsqVK2dx5UplbXeCvI+PjwZ5pez00nEqffnll/Tr14/Tp08zbNgwfH19eeSRR6wuSymVBkqWLMnChQsZPHgw3t7etG7dmvr161OzZk2mT59OtWrV2L9/P5UqVbK6VKWyDRFh3LhxGGMYMmQIIsKgQYOsLkspy+iV+Pv4448/ePvtt2nevDllypTh0KFDBAYGaoBXKhuoVq0amzZt4ssvv+TixYt89NFH+Pv7s2vXLg3wSllARAgKCmLYsGEMHjyYDz/80OqSlLKMXolPRlxcHDNmzMDPz4/8+fOzZMkSOnTooCNOKJUNNWvWjMaNG3P9+nXy589vdTlKZWt3grwxJuFKvIeHh8VVKZX+HHYlXkTyiEi4iJwWkRgR2SYiLvZl+UQkVETOishfIuKVyja/FJHr98wLFZGTImJEpI6j6k/shx9+oFatWgwZMoSuXbsSGRlJx44dNcArlY3lzJlTA7xSGYSIMH78eIYOHcqgQYOYPn261SUple4ceSXeCfgFqAOcATyAtUBZYARQBigHFAK2iMhhY8xXyTUmIq2BAkksOgAsBRY7sHYAzp8/j6+vL3PmzKF69ers3r2bWrVqOXo3SimllHpIIsKECRMA25V4EWHAgAEWV6VU+nFYiDfGXAFG33ksIjOASSJSBHgVGGmMuQRcEpH5QBcgyRAvInmBMUBv4Jt79jPbvs7t+9UkInmAPIlmPZpM7Xz88cd4eXlx48YNPvzwQ/r27UvOnDnvtwullFJKWeROkDfGMHDgQAAN8irbSMs+8S8Afxljztm7oSTuiyJA5RS29QGWAacfsgZfwD+lFY4dO0bfvn3Ztm0b7u7uTJkyheLFiz/kbpVSSimVHkSEiRMnJgR5EaF///5Wl6VUmkuTEC8ihYBQbN1oADYBg0Tke6Aw0C2FbUsD7YAaQLGHLCUISPw9zY9if2Nw9epVxowZw6RJkyhVqhSbNm2iSZMmD7k7pZRSSqU3ESE4OBhjDAMGDEBE6Nevn9VlKZWmHB7i7V1h1gIbjDHz7bPHAFOBY8BFYCVQN5kmpgJ+xpjrD3sjqTHmBnAjUW0AfPXVV3h7e3PmzBn+r717D5KrrNM4/n16QmYSMjMJ4U4IiRBSXKLREhdQuSnlgmipCMaES0JIIAFKC7EA8bKsrKwohFuAGEmioFKrK+iCYMp1uSjueoECBEUugoQQApiZXEhiLr/945weTjrdPZd0T09PP5+qU5l+33Pe8/Y5b07/+u33vOeyyy7j4osvpqWlZYf2ZWZmZrUjiW9+85sAXT3xDuRtMKtoEC9pCMkwmOVA1ww06Xj52Zn1rgB+X6KYY4AjJM0HmoBmSSuAoyPi6UrU89RTT+X4449n6dKlTJgwoRJFmpmZWY3lA/mI4Pzzz0cSc+fOrXW1zKqi0j3xC4FhwCmRf0Y5IGkMsBl4DTgOmAGUmvZlIm9Nfbkv8BAwGXg9LWtomi9gaNrzvzG7v+4sWrSI6dOne8pIMzOzQUYSV199NRHR1RPvQN4Go4oF8ZL2IxnrvgFYlQmQT0j3811gNPBnYEpELM9suxY4ISIeioiVmfQWgIhYkdnVUuDo9O8H0n/HAzvtV8MAABNkSURBVC/0tK4nn3yyA3gzM7NBShLXXJPcEnfeeechiTlz5tS4VmaVVckpJl9k2xloCu1bZtti88ETES8ALQVpx/ShemZmZtZA8oF8RDB37lwkce6559a6WmYVU80pJs3MzMxqRhLz5s0D6OqJdyBvg4WDeDMzMxu08oF8RDBnzhwkcc4559S6WmY7zEG8mZmZDWqSuPbaa4GkJ14Ss2fP7mYrs4HNQbyZmZkNevlAPiK6euIdyFs9cxBvZmZmDUES1113XVcgL4lZs2bVulpmfeIg3szMzBqGJK6//nrgrZ54B/JWjxzEm5mZWUPJB/IRwezZs5HE2WefXetqmfWKg3gzMzNrOJK44YYbiAhmzZqFJGbOnFnrapn1mIN4MzMza0iSuPHGGwG6euIdyFu9cBBvZmZmDSsfyGd75M8666xaV8usWw7izczMrKEV65F3IG8DnYN4MzMza3i5XK6rR/7ss89GEjNmzKh1tcxKylWqIEnNkhZLWiapU9L9kialecMlLZC0UtKrki7qYZn3SdpQkLa/pF9LelPSI5LeUan3YGZmZo0rl8sxf/58Zs+ezcyZM1myZEmtq2RWUiV74ocAzwOHA68AnwHuAvYHLgPGAwcA7cAvJT0RET8vVZikjwEjimT9ALgH+ABwNnCnpAMjYnMF34uZmZk1oFwux0033UREdA2pmT59em0rZVaEIqI6BUtDgQ3AbsBS4IsRcW+adylwaERMK7FtC/B74FzgFxHRkqZPBH4L7BYR/0jTXgROj4gHi5TTDDRnklqBZZ2dnbS1tVXmjZqZmdmgs3XrVubMmcPChQtZvHgxZ555Zq2rZIPU6tWraW9vB2iPiNU93a6aY+KPAF6NiDckASiTJ+CQMtteAtwBLCtIPxh4Oh/Apx5Py9ouiAcuBb7Sy3qbmZlZg8vlctx8881ERNfYeAfyNpBUJYiX1A4sIBlGA0lP/GclPQyMBKaX2XYccCrwLmDPguwRQOE3lNUUH3YDcCVwTeZ1K9t/MTAzMzPbTi6X45ZbbukK5CVxxhln1LpaZkAVgvh0KMxdwD0RsShNvgKYB/wJ6AB+CBxZooh5wJciYkPag5+1FigcB9OWpm8nIjYCGzN16/kbMTMzs4aXy+VYsGAB8NbYeAfyNhBUNIiXNIRkGMxyoGsGmohYB8zOrHcFyZj3Yo4BjpA0H2gCmiWtAI4GngImStopIjal678d+EYl34eZmZlZXmEgL4nTTz+9xrWyRlfpnviFwDDglMjcMStpDLAZeA04DpgBHFaijIm8NfXlvsBDwGTg9YjYLOlp4BJJVwEzgS3AwxV+H2ZmZmZd8oF8RHDmmWciidNOO63W1bIGVrEgXtJ+JGPdNwCrMkNXTkj3811gNPBnYEpELM9suxY4ISIeioiVmfQWgIhYkdnVVOA7wBfSsj7h6SXNzMys2nK5HN/61reIiK4hNQ7krVYqFsRHxItsOwNNoX3LbFv0xtSIeAFoKUh7FnhvH6poZmZmtkNyuRwLFy4E6OqRnzat6IzZZlVVzSkmzczMzAadfCCf75GXxNSpU2tdLatTfX1mk4N4MzMzs17K5XJ8+9vfBui6ydWBfOPatGkTHR0ddHR0sGrVqu3+LZaWzesLB/FmZmZmfZAP5CPCgXydiwjWrVvXq+A7u866deuKlpvL5Rg5ciSjRo1i1KhRXX+PGzeu63VLSwsXXnhhr+usvnbh1yNJbUBnZ2cnbW2F082bmZmZ9d6WLVuYOXMmt912G7fffjuf/vSna12lhrR582Y6Ozv7FIR3dHSweXPxeVKGDRu2XRBe6t/CtNbW1m6fU7R69Wra29sB2iOi8KGmJbkn3szMzGwHNDU1ceuttwLJbDWSmDJlSo1rVX8igvXr1/c5CF+zZk3RciUVDbrHjh1bMvjO/zty5Eiam5v7+Uj0jIN4MzMzsx2UD+Qjomu2mkYM5Lds2UJnZ2efgvBVq1axadOmouW2tLRsF2CPGTOGQw89tNte8tbWVnK5XNFy65mDeDMzM7MKaGpqYtGiRV2BvCQ+9alP1bpavbZ+/foe35BZmLZ6dfHRIJJob2/fLsDee++9ezRUpaWlpWi5jcxBvJmZmVmFNDU1sXjxYoCuHvn+DuS3bt26TW94b2dM2bhxY9Fyhw4dul3Avddee3HwwQd3Oyylra2Npqamfj0Og52DeDMzM7MKKgzkJXHqqaf2qowNGzb0OQjv7OwsOfd4W1vbdgH2QQcd1G0QPmrUKIYNG7bDx8Yqx0G8mZmZWYXlA/mIYOrUqaxcuZJ99tmnxzdtbtiwoWi5O+2003YB9h577MHEiRO7DcLb29vdGz6IOIg3MzMzq4KmpiaWLFkCwAUXXNCV3traul2APWHChG6D8HxveHdTFlpj8DzxZmZmZlUUEbz00kvsvPPOtLe3M2SI+1DtLX2dJ75i8+1Iapa0WNIySZ2S7pc0Kc0bLmmBpJWSXpV0UZlyDpf0uKSOdP3vSBqRyT9O0mOS1kp6QNK4Sr0HMzMzs0qTxNixYxk9erQDeKuYSk6aOQR4Hjgc2AX4KXBXmncZMB44AHg3cI6kD5Uo51nghIgYCYxL6/glAEm7Aj8CLgXagbuBH1TwPZiZmZmZDXgVC+IjYl1EfDUilkXEFuBGYLyk0cA/A/MiYnVEvAQsAs4oUc7rEfFy+lJAkHwBADgCeCYifpbu42pgsqQJxcpKfx1oyy9Aa6Xer5mZmZlZrVTz8VVHAK9GxBvp6+xdGAIOKbWhpLGSOoC1wMdJvhBkty1UqqxLgc7MsqxnVTczMzMzG7iqMjBLUjuwgGQYDcBS4LOSHgZGAtPLbR8RfwNGStodOAd4Jc36DXCgpA+nZV4INAPDSxR1JXBN5nUrsKzU08TMzMzMzPpTX+PSis9OI6kFuBd4JCI+l6btDMwDPgJ0AD8GjoyIY3tQ3ruBGyLiiPT18cBVwFjg+8AxwPkR8UAPytoH98abmZmZ2cAzJjOkvFsVDeIlDSG58XQdcFqUKFzSFUBzRHy+B2W+B7g7InYvktcOPAdMzAzbKVeWgL2BNd2tm9FKEviP6eV21jjcRqwctw8rx+3DynH7aBytwPJSsXMxlR5OsxAYBpySrYSkMcBm4DXgOGAGcFixAiSdSBKY/wXYE/gq8D+Z/MnAH4E2krHyt/ckgAdI69Tjbzjp/vJ/runN3J3WONxGrBy3DyvH7cPKcftoKL0+v5WcJ34/krHuRwGr0nnc10p6PzAB+B3Jt8ivA1MiYnlm2/x6AHuQDMdZC/yB5BvonMyuvgj8HXgGeB24uFLvwczMzMysHjTUE1v7Iv+UV3r5FC1rHG4jVo7bh5Xj9mHluH1YOdWcYnKw2Ahcnv5rVozbiJXj9mHluH1YOW4fVpJ74s3MzMzM6ox74s3MzMzM6oyDeDMzMzOzOuMg3szMzMyszjiINzMzMzOrMw7izczMzMzqTK+CeEnNkhZLWiapU9L9kiZl8i+R9Jqkv0u6SumjxiQNkfSfkl6WFJL2LCh3vKSlkjrSdS7tph4nSHpW0jpJP5E0KpM3WdLDktZIelTSO8uUs4eku9M6byiSf7mkpyRtlTQlk35L5mFWmyT9I/P6C5JOkvSb9Bgtk/SVgnIXSHouPRaHl3uvmW3aJa2QdF8mbVxaxtrMMq1MGbtJukfSm5KelvSBgvyi56+elWuzko6S9GDaju7rrqxMmZcUO3eSZkh6Ji3vT5IOLFPG9LROq9P6Dc3k7S/p1+l5ekTSO/ry3q1n+quNSHqy4P/qVkmfK1OG28gA0I/tY7x69zlY8not6TBJj6Xt4wElD2O0KujH9jFO0s/TfTwt6fhuyvD1owH0tid+CPA8cDiwC/BT4C4ASSeSPFn1n4BDgJOAGZltHwROLlHuDWm5uwHvAy4oDDDzJO0OfB+4ANid5Cmw16V5OwF3AkuAkcC/A3dmG2+BrcDdwFkl8p8BPgP8NpsYEedGxIiIGAHcCnwt/zoivga0kjxZdnfgSGCKpNMzRTya7nNZif0WcznwbJH0jZl9j4iI75UpYz6wHNiV5Em3P1T6BagH569elWyzwJvALcCVPS1M0j7AVGBFQfpHgM8BHwNGkBy/10uUMQm4Jl13X2AcSXvJ+wGwNK3vIpI2PKSndbRe65c2EhGHZK4b+wGbgJ+UKMNtZODol/ZB7z4HS16vJTUDPyb5XNwF+F/gtp7Wz3qtv9rH90iefD8amAXcIWnXEmX4+tEoIqLPCzCUJBAeTdIoLs7knQX8ssg2AexZkPYEcGzm9X8AF5TY5znAvZnX+wPrgWZgEvBqwfpPA8d38z7GARvK5N8PTCmRdwvwL92U/2/ADUXSXwAO78FxPpTki8RZwH09rXdBGSNIHhaxVybtQeCM9O8enb96X7JtNpM2PXtcu9n+DuDjhecuPT9l21lm3SuBmzOvjwOeT/+eSPJ0vqGZ/BeBo2p97BplqVYbKVhnDvAbt5H6W6p4DenN52DJ6zXwIeBPmbydSYLJ/Wp97BphqUb7IOkY3AoMz6z3c2BWiTJ8/WiQZUfHxB9BEjS/ARycXoTyHiPpIeiJ+SS91c2SJpB8o72/xLrb7CcingM2A28rsb56UY9qORJ4sicrSpoq6fGC5OtJenm3FtlkqKTlkl6UdK2k4ZmybpJ0U/pyAtAZEa9kts2eox05f/Uk22bLkvS4pKmZ18cAu0bEnQXrNQHvBCalP1/+VdKX8z9vSxqb/kQ+Nt2k2LEeL2lYmvd0RPwjk/84g/NcDFQVbyNFTCPpWctv5zZSP6rVPkp+Dkp6n6SOzLrlrteFn5HrgOfSdKu+al4/VPD3Iel2vn40qD7/fCKpHVgAXJYmjQBWZ1ZZnab1xMPAXGAd0ETSs/1EiXVHAK8VpOX39RiwQdK5JMNcPgkcAAynRiSdA+wFfKcn60fE90mGC+W3nwKsjIiHJO1fsPrrwLtJ3veYdB9XkgwBIiLmZtYtPD+kr0eWyO/N+asLRdpsWRHx9sy2Q4B5wOlFVt2D5P/SB0h+NWkD7gVeAhZHxN946zhD8WOdTy91ngbVuRioqthGsvsYB7wH+ESmHLeROlDl9lHyczAifkX37WNEibzCfKuSarWPiFgj6f+AL0i6nKRj8GiS3npfPxpYn3riJbWQjPm6JyIWpclrSYKXvLY0rbuymoCfAQuBFmA8cIqkT6b5XTeCldhP177Sb5YfJ/lPsIJkPNgvgJdLlFVVkk4CvgycFBHr+7D9ziRj4T9fLD8i1kbEIxGxJSJeBC4hef/FlDxuJfJ7dP7qRYk22xvnAb+KiD8Wycuf269HREd6QZ0PnFiirGLHOp/e3XmyKqlyG8maCvwiIlaWWcdtZICpZvvo7nOwiHLXa7ePGuiH68c0kk675STj239EGtsU4etHg+h1EJ9+W7yDpCFdlMl6imRMet476NkQkl2AvUnGb22OiBdI/iMcCxCZmzaL7UfS23jrxhLSoPa9ETGa5MPyQOAPJcqqGklHkfwa8NGIKHZDak9MILmY/07SCpIblY6VVOq4Fhtuk/cM0K5tZwbKnqO+nr8Br0yb7Y1jgWlKZghaQXKz0D2SZkTEqrTsbXZbpqxix/qv6Re9p4CJ6U3aeW9nkJyLgarabaRgvalkhtKU4DYygPRD+yj7OVhEuet14WfkziT3jj3Vx3pbN/rj+hERz0fEhyJi14j4IMnN8b8vUZavH42it4PogcUkN1TsVJD+YZKfdsYDewJ/BM7K5DeT9DAESeNryeS9SHKjV45kWMgTwLkl9r87sIrk5p3hJHfdfzeTPyndVyvwDeCubt5PC8mNHhvSv5szeTulaQ+S9O63ALmC7be7sRWYDKwEPlhin0PTsl4Ejkr/VpH1hqTHMr98BvglsHua/x6SQF8kHwD/DdxU5r3+kOSnvmHAR4G/A6N6cv7qeSnTZnPpsZ9Fcqd+S+E6mXVHFpyLl0h62oen+f9GMtNRa3oungCmlyhrEvAG8C6gPT1v/5rJ/y3wpbQdzyX5gjqk1sdxMC/90UbSdSaT9Hjt3E193EYG0NJP15DefA6WvF6nbeIlkpspm0mGWD5Y62M4mJd+ah8HkdykPIwkFniUInFDuq6vHw2y9G7lJPgOkuEDazPL+9P8S0nGaa8Crso2sPSCE9klk3cYyXjATuAV4FqgqUw9TiS5UedNkumcRmXy5gEdaVm3ASO7eU9RsLyQyVtSJP+Ygu2LBfGLgS0Fxyg7o879Rcodl+ZNA54sUdfpbDs7zdT0uK5L/8PfAIwoqNstmde7kfxk+ybwFwq+ZJQ7f/W6lGuzwDFFzsOSzLZPAtNKlPsC284sMZTkp/BOkp84L88fP2Bsus+xBefyZZIpUpew7ZfHA4Bfp3V+FJhc6+M4mJf+aiNp2jeA7xVZ121kgC79eA0p+TmY7mttwfblPm8PI7lZcT1JJ9R+tT6Og3Xpx/ZxEUlgvgb4L2DfTJ6vHw265IMMMzMzMzOrEzs6xaSZmZmZmfUzB/FmZmZmZnXGQbyZmZmZWZ1xEG9mZmZmVmccxJuZmZmZ1RkH8WZmZmZmdcZBvJmZmZlZnXEQb2ZmZmZWZxzEm5mZmZnVGQfxZmZmZmZ1xkG8mZmZmVmd+X9NO0fBuNOEzwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 800x250 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "temp.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "b = temp[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0. , 59.88, 119.76, 179.64, 239.52, 299.4 ])" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b.times()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.016666666666666666" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "1/60" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "c = EdgeFactory()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "read_wave_server_v returned flag FR - requested data right (later) than tank contents\n" + ] + } + ], + "source": [ + "brt = c.get_timeseries(channels=['UK1'], starttime=UTCDateTime(\"2018-09-11T21:45:00Z\"), endtime=UTCDateTime(\"2018-09-11T21:50:00Z\"), observatory=\"BRT\", type=\"variation\", interval=\"minute\")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0. , 59.88, 119.76, 179.64, 239.52, 299.4 ])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "brt[0].times()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "dht = c.get_timeseries(channels=['MVH'], starttime=UTCDateTime(\"2018-09-10T21:45:00Z\"), endtime=UTCDateTime(\"2018-09-10T21:50:00Z\"), observatory=\"DHT\", type=\"variation\", interval=\"minute\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 60., 120., 180., 240., 300.])" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dht[0].times()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (geomagenv36)", + "language": "python", + "name": "geomagenv36" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/algorithms/Filter_notes.ipynb b/docs/algorithms/Filter_notes.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ec28c705e4168615f3881c13fc469100278c05e7 --- /dev/null +++ b/docs/algorithms/Filter_notes.ipynb @@ -0,0 +1,13270 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#%matplotlib inline\n", + "%matplotlib notebook\n", + "\n", + "import matplotlib as mp\n", + "\n", + "import numpy as np\n", + "\n", + "import scipy as sp\n", + "\n", + "import scipy.linalg as spl\n", + "\n", + "import scipy.signal as sps\n", + "\n", + "import glob\n", + "\n", + "import json\n", + "\n", + "import urllib3\n", + "\n", + "from datetime import datetime \n", + "\n", + "import dateutil.parser as dp\n", + "\n", + "import matplotlib.pyplot as pl\n", + "\n", + "import re\n", + "\n", + "import obspy\n", + "\n", + "from obspy.core import UTCDateTime\n", + "\n", + "import geomagio\n", + "\n", + "from geomagio.edge import EdgeFactory\n", + "\n", + "#from geomagio.Algorithm import DeltaFAlgorithm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "a = EdgeFactory()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "brt = a.get_timeseries(channels=('H','E','Z'), observatory='BRT', type='variation', interval='second', starttime=UTCDateTime('2018-09-18T23:59:15Z'), endtime=UTCDateTime('2018-09-19T00:15:45Z'))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "h = brt[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "e = brt[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "z = brt[2]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "t = h.times()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### the equation is $x= 2$" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c251c5198>]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(t,h.data)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c27afd438>]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(t,e.data)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c27db2940>]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(t,z.data)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "one_minute_gauss_filter=sps.get_window(Nx=91,window=('gaussian', 15.8734))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c2806f5c0>]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "one_minute_gauss_filter=one_minute_gauss_filter/sum(one_minute_gauss_filter)\n", + "pl.plot(one_minute_gauss_filter)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "t_filt = np.linspace(0,len(h.data)-91,901)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,\n", + " 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,\n", + " 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,\n", + " 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43.,\n", + " 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54.,\n", + " 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65.,\n", + " 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76.,\n", + " 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87.,\n", + " 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98.,\n", + " 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109.,\n", + " 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120.,\n", + " 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131.,\n", + " 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142.,\n", + " 143., 144., 145., 146., 147., 148., 149., 150., 151., 152., 153.,\n", + " 154., 155., 156., 157., 158., 159., 160., 161., 162., 163., 164.,\n", + " 165., 166., 167., 168., 169., 170., 171., 172., 173., 174., 175.,\n", + " 176., 177., 178., 179., 180., 181., 182., 183., 184., 185., 186.,\n", + " 187., 188., 189., 190., 191., 192., 193., 194., 195., 196., 197.,\n", + " 198., 199., 200., 201., 202., 203., 204., 205., 206., 207., 208.,\n", + " 209., 210., 211., 212., 213., 214., 215., 216., 217., 218., 219.,\n", + " 220., 221., 222., 223., 224., 225., 226., 227., 228., 229., 230.,\n", + " 231., 232., 233., 234., 235., 236., 237., 238., 239., 240., 241.,\n", + " 242., 243., 244., 245., 246., 247., 248., 249., 250., 251., 252.,\n", + " 253., 254., 255., 256., 257., 258., 259., 260., 261., 262., 263.,\n", + " 264., 265., 266., 267., 268., 269., 270., 271., 272., 273., 274.,\n", + " 275., 276., 277., 278., 279., 280., 281., 282., 283., 284., 285.,\n", + " 286., 287., 288., 289., 290., 291., 292., 293., 294., 295., 296.,\n", + " 297., 298., 299., 300., 301., 302., 303., 304., 305., 306., 307.,\n", + " 308., 309., 310., 311., 312., 313., 314., 315., 316., 317., 318.,\n", + " 319., 320., 321., 322., 323., 324., 325., 326., 327., 328., 329.,\n", + " 330., 331., 332., 333., 334., 335., 336., 337., 338., 339., 340.,\n", + " 341., 342., 343., 344., 345., 346., 347., 348., 349., 350., 351.,\n", + " 352., 353., 354., 355., 356., 357., 358., 359., 360., 361., 362.,\n", + " 363., 364., 365., 366., 367., 368., 369., 370., 371., 372., 373.,\n", + " 374., 375., 376., 377., 378., 379., 380., 381., 382., 383., 384.,\n", + " 385., 386., 387., 388., 389., 390., 391., 392., 393., 394., 395.,\n", + " 396., 397., 398., 399., 400., 401., 402., 403., 404., 405., 406.,\n", + " 407., 408., 409., 410., 411., 412., 413., 414., 415., 416., 417.,\n", + " 418., 419., 420., 421., 422., 423., 424., 425., 426., 427., 428.,\n", + " 429., 430., 431., 432., 433., 434., 435., 436., 437., 438., 439.,\n", + " 440., 441., 442., 443., 444., 445., 446., 447., 448., 449., 450.,\n", + " 451., 452., 453., 454., 455., 456., 457., 458., 459., 460., 461.,\n", + " 462., 463., 464., 465., 466., 467., 468., 469., 470., 471., 472.,\n", + " 473., 474., 475., 476., 477., 478., 479., 480., 481., 482., 483.,\n", + " 484., 485., 486., 487., 488., 489., 490., 491., 492., 493., 494.,\n", + " 495., 496., 497., 498., 499., 500., 501., 502., 503., 504., 505.,\n", + " 506., 507., 508., 509., 510., 511., 512., 513., 514., 515., 516.,\n", + " 517., 518., 519., 520., 521., 522., 523., 524., 525., 526., 527.,\n", + " 528., 529., 530., 531., 532., 533., 534., 535., 536., 537., 538.,\n", + " 539., 540., 541., 542., 543., 544., 545., 546., 547., 548., 549.,\n", + " 550., 551., 552., 553., 554., 555., 556., 557., 558., 559., 560.,\n", + " 561., 562., 563., 564., 565., 566., 567., 568., 569., 570., 571.,\n", + " 572., 573., 574., 575., 576., 577., 578., 579., 580., 581., 582.,\n", + " 583., 584., 585., 586., 587., 588., 589., 590., 591., 592., 593.,\n", + " 594., 595., 596., 597., 598., 599., 600., 601., 602., 603., 604.,\n", + " 605., 606., 607., 608., 609., 610., 611., 612., 613., 614., 615.,\n", + " 616., 617., 618., 619., 620., 621., 622., 623., 624., 625., 626.,\n", + " 627., 628., 629., 630., 631., 632., 633., 634., 635., 636., 637.,\n", + " 638., 639., 640., 641., 642., 643., 644., 645., 646., 647., 648.,\n", + " 649., 650., 651., 652., 653., 654., 655., 656., 657., 658., 659.,\n", + " 660., 661., 662., 663., 664., 665., 666., 667., 668., 669., 670.,\n", + " 671., 672., 673., 674., 675., 676., 677., 678., 679., 680., 681.,\n", + " 682., 683., 684., 685., 686., 687., 688., 689., 690., 691., 692.,\n", + " 693., 694., 695., 696., 697., 698., 699., 700., 701., 702., 703.,\n", + " 704., 705., 706., 707., 708., 709., 710., 711., 712., 713., 714.,\n", + " 715., 716., 717., 718., 719., 720., 721., 722., 723., 724., 725.,\n", + " 726., 727., 728., 729., 730., 731., 732., 733., 734., 735., 736.,\n", + " 737., 738., 739., 740., 741., 742., 743., 744., 745., 746., 747.,\n", + " 748., 749., 750., 751., 752., 753., 754., 755., 756., 757., 758.,\n", + " 759., 760., 761., 762., 763., 764., 765., 766., 767., 768., 769.,\n", + " 770., 771., 772., 773., 774., 775., 776., 777., 778., 779., 780.,\n", + " 781., 782., 783., 784., 785., 786., 787., 788., 789., 790., 791.,\n", + " 792., 793., 794., 795., 796., 797., 798., 799., 800., 801., 802.,\n", + " 803., 804., 805., 806., 807., 808., 809., 810., 811., 812., 813.,\n", + " 814., 815., 816., 817., 818., 819., 820., 821., 822., 823., 824.,\n", + " 825., 826., 827., 828., 829., 830., 831., 832., 833., 834., 835.,\n", + " 836., 837., 838., 839., 840., 841., 842., 843., 844., 845., 846.,\n", + " 847., 848., 849., 850., 851., 852., 853., 854., 855., 856., 857.,\n", + " 858., 859., 860., 861., 862., 863., 864., 865., 866., 867., 868.,\n", + " 869., 870., 871., 872., 873., 874., 875., 876., 877., 878., 879.,\n", + " 880., 881., 882., 883., 884., 885., 886., 887., 888., 889., 890.,\n", + " 891., 892., 893., 894., 895., 896., 897., 898., 899., 900.])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t_filt" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "901" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t_filt.size" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "991" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.size" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "hf = np.ones_like(t_filt)\n", + "ef = np.ones_like(t_filt)\n", + "zf = np.ones_like(t_filt)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "'numpy.float64' object is not iterable", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-18-1f8b0065d365>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mt\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mt_filt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mhf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_minute_gauss_filter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m91\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: 'numpy.float64' object is not iterable" + ] + } + ], + "source": [ + "for i, t in t_filt:\n", + " t = np.int(t)\n", + " hf[i] = np.dot(one_minute_gauss_filter, h.data[np.int(i*60):np.int(i*60+91)])" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,\n", + " 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,\n", + " 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,\n", + " 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43.,\n", + " 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54.,\n", + " 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65.,\n", + " 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76.,\n", + " 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87.,\n", + " 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98.,\n", + " 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109.,\n", + " 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120.,\n", + " 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131.,\n", + " 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142.,\n", + " 143., 144., 145., 146., 147., 148., 149., 150., 151., 152., 153.,\n", + " 154., 155., 156., 157., 158., 159., 160., 161., 162., 163., 164.,\n", + " 165., 166., 167., 168., 169., 170., 171., 172., 173., 174., 175.,\n", + " 176., 177., 178., 179., 180., 181., 182., 183., 184., 185., 186.,\n", + " 187., 188., 189., 190., 191., 192., 193., 194., 195., 196., 197.,\n", + " 198., 199., 200., 201., 202., 203., 204., 205., 206., 207., 208.,\n", + " 209., 210., 211., 212., 213., 214., 215., 216., 217., 218., 219.,\n", + " 220., 221., 222., 223., 224., 225., 226., 227., 228., 229., 230.,\n", + " 231., 232., 233., 234., 235., 236., 237., 238., 239., 240., 241.,\n", + " 242., 243., 244., 245., 246., 247., 248., 249., 250., 251., 252.,\n", + " 253., 254., 255., 256., 257., 258., 259., 260., 261., 262., 263.,\n", + " 264., 265., 266., 267., 268., 269., 270., 271., 272., 273., 274.,\n", + " 275., 276., 277., 278., 279., 280., 281., 282., 283., 284., 285.,\n", + " 286., 287., 288., 289., 290., 291., 292., 293., 294., 295., 296.,\n", + " 297., 298., 299., 300., 301., 302., 303., 304., 305., 306., 307.,\n", + " 308., 309., 310., 311., 312., 313., 314., 315., 316., 317., 318.,\n", + " 319., 320., 321., 322., 323., 324., 325., 326., 327., 328., 329.,\n", + " 330., 331., 332., 333., 334., 335., 336., 337., 338., 339., 340.,\n", + " 341., 342., 343., 344., 345., 346., 347., 348., 349., 350., 351.,\n", + " 352., 353., 354., 355., 356., 357., 358., 359., 360., 361., 362.,\n", + " 363., 364., 365., 366., 367., 368., 369., 370., 371., 372., 373.,\n", + " 374., 375., 376., 377., 378., 379., 380., 381., 382., 383., 384.,\n", + " 385., 386., 387., 388., 389., 390., 391., 392., 393., 394., 395.,\n", + " 396., 397., 398., 399., 400., 401., 402., 403., 404., 405., 406.,\n", + " 407., 408., 409., 410., 411., 412., 413., 414., 415., 416., 417.,\n", + " 418., 419., 420., 421., 422., 423., 424., 425., 426., 427., 428.,\n", + " 429., 430., 431., 432., 433., 434., 435., 436., 437., 438., 439.,\n", + " 440., 441., 442., 443., 444., 445., 446., 447., 448., 449., 450.,\n", + " 451., 452., 453., 454., 455., 456., 457., 458., 459., 460., 461.,\n", + " 462., 463., 464., 465., 466., 467., 468., 469., 470., 471., 472.,\n", + " 473., 474., 475., 476., 477., 478., 479., 480., 481., 482., 483.,\n", + " 484., 485., 486., 487., 488., 489., 490., 491., 492., 493., 494.,\n", + " 495., 496., 497., 498., 499., 500., 501., 502., 503., 504., 505.,\n", + " 506., 507., 508., 509., 510., 511., 512., 513., 514., 515., 516.,\n", + " 517., 518., 519., 520., 521., 522., 523., 524., 525., 526., 527.,\n", + " 528., 529., 530., 531., 532., 533., 534., 535., 536., 537., 538.,\n", + " 539., 540., 541., 542., 543., 544., 545., 546., 547., 548., 549.,\n", + " 550., 551., 552., 553., 554., 555., 556., 557., 558., 559., 560.,\n", + " 561., 562., 563., 564., 565., 566., 567., 568., 569., 570., 571.,\n", + " 572., 573., 574., 575., 576., 577., 578., 579., 580., 581., 582.,\n", + " 583., 584., 585., 586., 587., 588., 589., 590., 591., 592., 593.,\n", + " 594., 595., 596., 597., 598., 599., 600., 601., 602., 603., 604.,\n", + " 605., 606., 607., 608., 609., 610., 611., 612., 613., 614., 615.,\n", + " 616., 617., 618., 619., 620., 621., 622., 623., 624., 625., 626.,\n", + " 627., 628., 629., 630., 631., 632., 633., 634., 635., 636., 637.,\n", + " 638., 639., 640., 641., 642., 643., 644., 645., 646., 647., 648.,\n", + " 649., 650., 651., 652., 653., 654., 655., 656., 657., 658., 659.,\n", + " 660., 661., 662., 663., 664., 665., 666., 667., 668., 669., 670.,\n", + " 671., 672., 673., 674., 675., 676., 677., 678., 679., 680., 681.,\n", + " 682., 683., 684., 685., 686., 687., 688., 689., 690., 691., 692.,\n", + " 693., 694., 695., 696., 697., 698., 699., 700., 701., 702., 703.,\n", + " 704., 705., 706., 707., 708., 709., 710., 711., 712., 713., 714.,\n", + " 715., 716., 717., 718., 719., 720., 721., 722., 723., 724., 725.,\n", + " 726., 727., 728., 729., 730., 731., 732., 733., 734., 735., 736.,\n", + " 737., 738., 739., 740., 741., 742., 743., 744., 745., 746., 747.,\n", + " 748., 749., 750., 751., 752., 753., 754., 755., 756., 757., 758.,\n", + " 759., 760., 761., 762., 763., 764., 765., 766., 767., 768., 769.,\n", + " 770., 771., 772., 773., 774., 775., 776., 777., 778., 779., 780.,\n", + " 781., 782., 783., 784., 785., 786., 787., 788., 789., 790., 791.,\n", + " 792., 793., 794., 795., 796., 797., 798., 799., 800., 801., 802.,\n", + " 803., 804., 805., 806., 807., 808., 809., 810., 811., 812., 813.,\n", + " 814., 815., 816., 817., 818., 819., 820., 821., 822., 823., 824.,\n", + " 825., 826., 827., 828., 829., 830., 831., 832., 833., 834., 835.,\n", + " 836., 837., 838., 839., 840., 841., 842., 843., 844., 845., 846.,\n", + " 847., 848., 849., 850., 851., 852., 853., 854., 855., 856., 857.,\n", + " 858., 859., 860., 861., 862., 863., 864., 865., 866., 867., 868.,\n", + " 869., 870., 871., 872., 873., 874., 875., 876., 877., 878., 879.,\n", + " 880., 881., 882., 883., 884., 885., 886., 887., 888., 889., 890.,\n", + " 891., 892., 893., 894., 895., 896., 897., 898., 899., 900.])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "i_filt_s = t_filt\n", + "i_filt_e = t_filt + 90\n", + "i_filt_s" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100.,\n", + " 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111.,\n", + " 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122.,\n", + " 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133.,\n", + " 134., 135., 136., 137., 138., 139., 140., 141., 142., 143., 144.,\n", + " 145., 146., 147., 148., 149., 150., 151., 152., 153., 154., 155.,\n", + " 156., 157., 158., 159., 160., 161., 162., 163., 164., 165., 166.,\n", + " 167., 168., 169., 170., 171., 172., 173., 174., 175., 176., 177.,\n", + " 178., 179., 180., 181., 182., 183., 184., 185., 186., 187., 188.,\n", + " 189., 190., 191., 192., 193., 194., 195., 196., 197., 198., 199.,\n", + " 200., 201., 202., 203., 204., 205., 206., 207., 208., 209., 210.,\n", + " 211., 212., 213., 214., 215., 216., 217., 218., 219., 220., 221.,\n", + " 222., 223., 224., 225., 226., 227., 228., 229., 230., 231., 232.,\n", + " 233., 234., 235., 236., 237., 238., 239., 240., 241., 242., 243.,\n", + " 244., 245., 246., 247., 248., 249., 250., 251., 252., 253., 254.,\n", + " 255., 256., 257., 258., 259., 260., 261., 262., 263., 264., 265.,\n", + " 266., 267., 268., 269., 270., 271., 272., 273., 274., 275., 276.,\n", + " 277., 278., 279., 280., 281., 282., 283., 284., 285., 286., 287.,\n", + " 288., 289., 290., 291., 292., 293., 294., 295., 296., 297., 298.,\n", + " 299., 300., 301., 302., 303., 304., 305., 306., 307., 308., 309.,\n", + " 310., 311., 312., 313., 314., 315., 316., 317., 318., 319., 320.,\n", + " 321., 322., 323., 324., 325., 326., 327., 328., 329., 330., 331.,\n", + " 332., 333., 334., 335., 336., 337., 338., 339., 340., 341., 342.,\n", + " 343., 344., 345., 346., 347., 348., 349., 350., 351., 352., 353.,\n", + " 354., 355., 356., 357., 358., 359., 360., 361., 362., 363., 364.,\n", + " 365., 366., 367., 368., 369., 370., 371., 372., 373., 374., 375.,\n", + " 376., 377., 378., 379., 380., 381., 382., 383., 384., 385., 386.,\n", + " 387., 388., 389., 390., 391., 392., 393., 394., 395., 396., 397.,\n", + " 398., 399., 400., 401., 402., 403., 404., 405., 406., 407., 408.,\n", + " 409., 410., 411., 412., 413., 414., 415., 416., 417., 418., 419.,\n", + " 420., 421., 422., 423., 424., 425., 426., 427., 428., 429., 430.,\n", + " 431., 432., 433., 434., 435., 436., 437., 438., 439., 440., 441.,\n", + " 442., 443., 444., 445., 446., 447., 448., 449., 450., 451., 452.,\n", + " 453., 454., 455., 456., 457., 458., 459., 460., 461., 462., 463.,\n", + " 464., 465., 466., 467., 468., 469., 470., 471., 472., 473., 474.,\n", + " 475., 476., 477., 478., 479., 480., 481., 482., 483., 484., 485.,\n", + " 486., 487., 488., 489., 490., 491., 492., 493., 494., 495., 496.,\n", + " 497., 498., 499., 500., 501., 502., 503., 504., 505., 506., 507.,\n", + " 508., 509., 510., 511., 512., 513., 514., 515., 516., 517., 518.,\n", + " 519., 520., 521., 522., 523., 524., 525., 526., 527., 528., 529.,\n", + " 530., 531., 532., 533., 534., 535., 536., 537., 538., 539., 540.,\n", + " 541., 542., 543., 544., 545., 546., 547., 548., 549., 550., 551.,\n", + " 552., 553., 554., 555., 556., 557., 558., 559., 560., 561., 562.,\n", + " 563., 564., 565., 566., 567., 568., 569., 570., 571., 572., 573.,\n", + " 574., 575., 576., 577., 578., 579., 580., 581., 582., 583., 584.,\n", + " 585., 586., 587., 588., 589., 590., 591., 592., 593., 594., 595.,\n", + " 596., 597., 598., 599., 600., 601., 602., 603., 604., 605., 606.,\n", + " 607., 608., 609., 610., 611., 612., 613., 614., 615., 616., 617.,\n", + " 618., 619., 620., 621., 622., 623., 624., 625., 626., 627., 628.,\n", + " 629., 630., 631., 632., 633., 634., 635., 636., 637., 638., 639.,\n", + " 640., 641., 642., 643., 644., 645., 646., 647., 648., 649., 650.,\n", + " 651., 652., 653., 654., 655., 656., 657., 658., 659., 660., 661.,\n", + " 662., 663., 664., 665., 666., 667., 668., 669., 670., 671., 672.,\n", + " 673., 674., 675., 676., 677., 678., 679., 680., 681., 682., 683.,\n", + " 684., 685., 686., 687., 688., 689., 690., 691., 692., 693., 694.,\n", + " 695., 696., 697., 698., 699., 700., 701., 702., 703., 704., 705.,\n", + " 706., 707., 708., 709., 710., 711., 712., 713., 714., 715., 716.,\n", + " 717., 718., 719., 720., 721., 722., 723., 724., 725., 726., 727.,\n", + " 728., 729., 730., 731., 732., 733., 734., 735., 736., 737., 738.,\n", + " 739., 740., 741., 742., 743., 744., 745., 746., 747., 748., 749.,\n", + " 750., 751., 752., 753., 754., 755., 756., 757., 758., 759., 760.,\n", + " 761., 762., 763., 764., 765., 766., 767., 768., 769., 770., 771.,\n", + " 772., 773., 774., 775., 776., 777., 778., 779., 780., 781., 782.,\n", + " 783., 784., 785., 786., 787., 788., 789., 790., 791., 792., 793.,\n", + " 794., 795., 796., 797., 798., 799., 800., 801., 802., 803., 804.,\n", + " 805., 806., 807., 808., 809., 810., 811., 812., 813., 814., 815.,\n", + " 816., 817., 818., 819., 820., 821., 822., 823., 824., 825., 826.,\n", + " 827., 828., 829., 830., 831., 832., 833., 834., 835., 836., 837.,\n", + " 838., 839., 840., 841., 842., 843., 844., 845., 846., 847., 848.,\n", + " 849., 850., 851., 852., 853., 854., 855., 856., 857., 858., 859.,\n", + " 860., 861., 862., 863., 864., 865., 866., 867., 868., 869., 870.,\n", + " 871., 872., 873., 874., 875., 876., 877., 878., 879., 880., 881.,\n", + " 882., 883., 884., 885., 886., 887., 888., 889., 890., 891., 892.,\n", + " 893., 894., 895., 896., 897., 898., 899., 900., 901., 902., 903.,\n", + " 904., 905., 906., 907., 908., 909., 910., 911., 912., 913., 914.,\n", + " 915., 916., 917., 918., 919., 920., 921., 922., 923., 924., 925.,\n", + " 926., 927., 928., 929., 930., 931., 932., 933., 934., 935., 936.,\n", + " 937., 938., 939., 940., 941., 942., 943., 944., 945., 946., 947.,\n", + " 948., 949., 950., 951., 952., 953., 954., 955., 956., 957., 958.,\n", + " 959., 960., 961., 962., 963., 964., 965., 966., 967., 968., 969.,\n", + " 970., 971., 972., 973., 974., 975., 976., 977., 978., 979., 980.,\n", + " 981., 982., 983., 984., 985., 986., 987., 988., 989., 990.])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "i_filt_e" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "'int' object is not iterable", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-21-6664f3db0770>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: 'int' object is not iterable" + ] + } + ], + "source": [ + "for i in len(hf):\n", + " print(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "from numpy.lib import stride_tricks as npls" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(901, 91)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "window = 91\n", + "shape = h.data.shape[:-1] + (h.data.shape[-1] - window + 1, window)\n", + "strides = h.data.strides + (h.data.strides[-1],)\n", + "as_s = npls.as_strided(h.data, shape=shape, strides=strides, writeable=False)\n", + "as_s.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(901, 91)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "shape" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(8, 8)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "strides" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[9145.616, 9145.659, 9145.698, ..., 9147.489, 9147.453, 9147.415],\n", + " [9146.457, 9146.659, 9146.864, ..., 9152.84 , 9152.933, 9153.046],\n", + " [9149.807, 9149.887, 9149.958, ..., 9151.775, 9151.762, 9151.772],\n", + " ...,\n", + " [9156.414, 9156.362, 9156.33 , ..., 9157.791, 9157.746, 9157.662],\n", + " [9157.573, 9157.555, 9157.543, ..., 9157.463, 9157.493, 9157.475],\n", + " [9156.089, 9156.107, 9156.129, ..., 9158.807, 9158.818, 9158.832]])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "as_s[::60]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "hf2 = np.dot(one_minute_gauss_filter, as_s[::].T)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9146.3294147 , 9146.34727413, 9146.36700672, 9146.38871274,\n", + " 9146.41245012, 9146.43826252, 9146.46617488, 9146.4961749 ,\n", + " 9146.52823637, 9146.5623157 , 9146.59832795, 9146.63614451,\n", + " 9146.6756066 , 9146.71654228, 9146.7587768 , 9146.8021385 ,\n", + " 9146.84643758, 9146.89145024, 9146.93693953, 9146.98268004,\n", + " 9147.0284517 , 9147.0740595 , 9147.11933223, 9147.16408598,\n", + " 9147.20814227, 9147.25135698, 9147.29362312, 9147.33486287,\n", + " 9147.37501995, 9147.41406655, 9147.45200071, 9147.48884501,\n", + " 9147.52464808, 9147.55946916, 9147.59339714, 9147.62656116,\n", + " 9147.65912327, 9147.69125836, 9147.72313398, 9147.75492814,\n", + " 9147.78682483, 9147.81901966, 9147.85172944, 9147.88516094,\n", + " 9147.91950993, 9147.95495996, 9147.9916889 , 9148.02987329,\n", + " 9148.06966334, 9148.11119517, 9148.15460282, 9148.20000821,\n", + " 9148.24750588, 9148.29716011, 9148.34902764, 9148.40314728,\n", + " 9148.45955299, 9148.5182719 , 9148.57929871, 9148.64261179,\n", + " 9148.70819126, 9148.77600591, 9148.84600612, 9148.91813911,\n", + " 9148.99235183, 9149.06857916, 9149.14674233, 9149.22676679,\n", + " 9149.30857443, 9149.39208481, 9149.47721967, 9149.56389017,\n", + " 9149.65200735, 9149.74148146, 9149.83223975, 9149.92419547,\n", + " 9150.0172389 , 9150.11127348, 9150.20620308, 9150.30192348,\n", + " 9150.3983424 , 9150.4953694 , 9150.59288013, 9150.69076012,\n", + " 9150.78891849, 9150.88723482, 9150.98556927, 9151.08378862,\n", + " 9151.18175878, 9151.27933976, 9151.37638912, 9151.47276453,\n", + " 9151.56830513, 9151.66282852, 9151.75616281, 9151.8481503 ,\n", + " 9151.93862663, 9152.02742555, 9152.11437783, 9152.19929249,\n", + " 9152.28196404, 9152.36221976, 9152.43991102, 9152.51487312,\n", + " 9152.58694163, 9152.65594849, 9152.72173336, 9152.78415666,\n", + " 9152.84308025, 9152.8983711 , 9152.94991059, 9152.99759991,\n", + " 9153.04135303, 9153.08109105, 9153.11676563, 9153.14833557,\n", + " 9153.17575841, 9153.19902477, 9153.21815123, 9153.23318014,\n", + " 9153.2441662 , 9153.25115738, 9153.25421474, 9153.25342434,\n", + " 9153.24890119, 9153.24077559, 9153.22918075, 9153.21424296,\n", + " 9153.19610037, 9153.17490982, 9153.15083191, 9153.12405065,\n", + " 9153.09476085, 9153.06313909, 9153.02936378, 9152.9935991 ,\n", + " 9152.95600412, 9152.91675664, 9152.87603556, 9152.83400635,\n", + " 9152.79080552, 9152.74655996, 9152.70139306, 9152.65542151,\n", + " 9152.60875812, 9152.56150152, 9152.51373655, 9152.46551673,\n", + " 9152.41689245, 9152.36792742, 9152.31866951, 9152.26913367,\n", + " 9152.21932366, 9152.16925782, 9152.11895131, 9152.06839911,\n", + " 9152.01758657, 9151.96650215, 9151.91514015, 9151.86351146,\n", + " 9151.81161229, 9151.75941927, 9151.70691397, 9151.65408259,\n", + " 9151.60093076, 9151.54747373, 9151.49372966, 9151.43972681,\n", + " 9151.38548955, 9151.33102645, 9151.27637207, 9151.2215872 ,\n", + " 9151.16671864, 9151.11182499, 9151.05696787, 9151.00219884,\n", + " 9150.94759059, 9150.89322982, 9150.83920433, 9150.78559928,\n", + " 9150.7324949 , 9150.67997936, 9150.6281303 , 9150.57703561,\n", + " 9150.52682015, 9150.47759126, 9150.42942702, 9150.38241424,\n", + " 9150.33665364, 9150.29225809, 9150.24933742, 9150.2079954 ,\n", + " 9150.16831906, 9150.13039555, 9150.09434076, 9150.06027026,\n", + " 9150.02827807, 9149.99843183, 9149.97081415, 9149.94552571,\n", + " 9149.92266997, 9149.90236159, 9149.88468784, 9149.86969104,\n", + " 9149.8574225 , 9149.84794278, 9149.84133032, 9149.83767784,\n", + " 9149.8370098 , 9149.83932201, 9149.84462817, 9149.85293327,\n", + " 9149.86424572, 9149.8785707 , 9149.89588695, 9149.91615142,\n", + " 9149.93930324, 9149.96526449, 9149.99396031, 9150.02531306,\n", + " 9150.05922306, 9150.09557494, 9150.13424385, 9150.1750742 ,\n", + " 9150.21789968, 9150.26257864, 9150.30897712, 9150.35693858,\n", + " 9150.40628657, 9150.45684196, 9150.50842777, 9150.56088487,\n", + " 9150.61406225, 9150.66779349, 9150.72191258, 9150.77627579,\n", + " 9150.83074797, 9150.88520113, 9150.93952152, 9150.9936031 ,\n", + " 9151.04734904, 9151.10067087, 9151.15349923, 9151.20578561,\n", + " 9151.25748365, 9151.30854869, 9151.3589626 , 9151.4087044 ,\n", + " 9151.45775133, 9151.50610374, 9151.55376348, 9151.60075791,\n", + " 9151.64712976, 9151.69290229, 9151.73808936, 9151.78271216,\n", + " 9151.8268044 , 9151.87040878, 9151.91356762, 9151.95631438,\n", + " 9151.99867358, 9152.04065486, 9152.08226113, 9152.12351158,\n", + " 9152.16441967, 9152.20498882, 9152.24522446, 9152.28512085,\n", + " 9152.32466642, 9152.36383623, 9152.40260179, 9152.44094866,\n", + " 9152.47885861, 9152.51630764, 9152.5532559 , 9152.58964854,\n", + " 9152.62544077, 9152.66060602, 9152.69511503, 9152.72891416,\n", + " 9152.76193184, 9152.79411061, 9152.82542771, 9152.85585557,\n", + " 9152.88533359, 9152.91379354, 9152.94119019, 9152.9674916 ,\n", + " 9152.99267367, 9153.01670699, 9153.03955046, 9153.06116291,\n", + " 9153.08150308, 9153.10054882, 9153.11830818, 9153.13478102,\n", + " 9153.14996027, 9153.16383384, 9153.17637466, 9153.18760295,\n", + " 9153.19756752, 9153.20628772, 9153.21378199, 9153.22008959,\n", + " 9153.22524988, 9153.2293041 , 9153.23229074, 9153.23426186,\n", + " 9153.23529289, 9153.23544721, 9153.23478221, 9153.23336046,\n", + " 9153.23124921, 9153.22851088, 9153.22521649, 9153.22144744,\n", + " 9153.21726252, 9153.21270226, 9153.20781335, 9153.20265548,\n", + " 9153.1972888 , 9153.19176907, 9153.18612963, 9153.18039362,\n", + " 9153.17460315, 9153.16878677, 9153.16294632, 9153.15708628,\n", + " 9153.1512156 , 9153.14535173, 9153.13949287, 9153.13361146,\n", + " 9153.12769202, 9153.12172608, 9153.11569917, 9153.10959401,\n", + " 9153.10339616, 9153.097084 , 9153.09063212, 9153.08400965,\n", + " 9153.0771906 , 9153.07015207, 9153.06286425, 9153.0553093 ,\n", + " 9153.04747553, 9153.03935548, 9153.03092278, 9153.02214213,\n", + " 9153.01300074, 9153.00349429, 9152.99361946, 9152.98337453,\n", + " 9152.97275604, 9152.96175392, 9152.95036248, 9152.93858654,\n", + " 9152.92643572, 9152.91391813, 9152.90102572, 9152.88774249,\n", + " 9152.87407819, 9152.86004573, 9152.84564559, 9152.83088429,\n", + " 9152.81576882, 9152.80030687, 9152.78450844, 9152.76838075,\n", + " 9152.75192941, 9152.73516676, 9152.71811657, 9152.70081349,\n", + " 9152.68328998, 9152.66555331, 9152.64761811, 9152.6295248 ,\n", + " 9152.6113035 , 9152.59297131, 9152.57456145, 9152.55611322,\n", + " 9152.5376664 , 9152.51926591, 9152.50094579, 9152.4827452 ,\n", + " 9152.46470354, 9152.44685356, 9152.42924386, 9152.41193884,\n", + " 9152.39499829, 9152.37846951, 9152.36240063, 9152.34685312,\n", + " 9152.33189563, 9152.31759037, 9152.30399073, 9152.29116102,\n", + " 9152.27917396, 9152.26810501, 9152.25802193, 9152.24898759,\n", + " 9152.24107097, 9152.23433787, 9152.2288684 , 9152.22472878,\n", + " 9152.22195769, 9152.2206102 , 9152.2207459 , 9152.22240618,\n", + " 9152.22564129, 9152.23049364, 9152.2369798 , 9152.24511344,\n", + " 9152.25489565, 9152.26632687, 9152.27940101, 9152.29408548,\n", + " 9152.31035438, 9152.32817952, 9152.3475092 , 9152.36827961,\n", + " 9152.39041223, 9152.41383513, 9152.43848362, 9152.46429633,\n", + " 9152.49119538, 9152.51907204, 9152.54783437, 9152.5774084 ,\n", + " 9152.60772433, 9152.63871197, 9152.67029159, 9152.70237927,\n", + " 9152.73491059, 9152.76783491, 9152.80110388, 9152.8346908 ,\n", + " 9152.86857143, 9152.90273106, 9152.93717337, 9152.97189296,\n", + " 9153.00689034, 9153.04218709, 9153.07783196, 9153.11388383,\n", + " 9153.15039968, 9153.18742787, 9153.22501683, 9153.26322626,\n", + " 9153.30212812, 9153.34180717, 9153.38233952, 9153.4237813 ,\n", + " 9153.46618585, 9153.50959997, 9153.55405683, 9153.5995865 ,\n", + " 9153.64622277, 9153.69398275, 9153.74285957, 9153.7928318 ,\n", + " 9153.84387027, 9153.89593078, 9153.94894576, 9154.00283737,\n", + " 9154.05751843, 9154.11288258, 9154.16881572, 9154.22519802,\n", + " 9154.28189146, 9154.33874413, 9154.39559884, 9154.45229025,\n", + " 9154.5086511 , 9154.56452217, 9154.61973869, 9154.67413937,\n", + " 9154.72757199, 9154.77986648, 9154.83084589, 9154.8803607 ,\n", + " 9154.92828897, 9154.97451658, 9155.01891791, 9155.06137406,\n", + " 9155.10179773, 9155.1401078 , 9155.17622663, 9155.21009773,\n", + " 9155.24168172, 9155.27093493, 9155.29782046, 9155.32233187,\n", + " 9155.34447779, 9155.3642573 , 9155.38167746, 9155.3967807 ,\n", + " 9155.40960259, 9155.42016509, 9155.42851765, 9155.43470381,\n", + " 9155.43876368, 9155.44076254, 9155.44076946, 9155.43885641,\n", + " 9155.43509394, 9155.42955367, 9155.42231175, 9155.41344728,\n", + " 9155.40304801, 9155.39119329, 9155.37796796, 9155.36346067,\n", + " 9155.34775509, 9155.33096004, 9155.3131756 , 9155.29450329,\n", + " 9155.27506805, 9155.25498416, 9155.23436233, 9155.2133202 ,\n", + " 9155.19200146, 9155.17055293, 9155.14910305, 9155.12779085,\n", + " 9155.1067659 , 9155.08616922, 9155.06613627, 9155.04681598,\n", + " 9155.02836435, 9155.0109254 , 9154.99465811, 9154.97971051,\n", + " 9154.96619542, 9154.95422052, 9154.94390727, 9154.93538258,\n", + " 9154.92875783, 9154.92412398, 9154.92155182, 9154.92109536,\n", + " 9154.92281761, 9154.92677952, 9154.93300345, 9154.94149922,\n", + " 9154.95227533, 9154.96531699, 9154.98060043, 9154.99809076,\n", + " 9155.0177325 , 9155.03946141, 9155.0632018 , 9155.08885734,\n", + " 9155.11633226, 9155.14552836, 9155.17633073, 9155.20863268,\n", + " 9155.24232394, 9155.27727274, 9155.31335124, 9155.35044521,\n", + " 9155.38844298, 9155.42722947, 9155.46668566, 9155.50669759,\n", + " 9155.54716588, 9155.58799908, 9155.62911234, 9155.67042555,\n", + " 9155.71187354, 9155.75339531, 9155.79493593, 9155.83647059,\n", + " 9155.87797022, 9155.91941171, 9155.96078829, 9156.00208437,\n", + " 9156.04330315, 9156.08447055, 9156.12559878, 9156.16668882,\n", + " 9156.20776667, 9156.24886356, 9156.29000184, 9156.33121012,\n", + " 9156.37250709, 9156.41391045, 9156.45543474, 9156.49709961,\n", + " 9156.53893285, 9156.58093726, 9156.62309499, 9156.66539641,\n", + " 9156.70783205, 9156.75036639, 9156.79296339, 9156.83560226,\n", + " 9156.87823703, 9156.92079751, 9156.96319712, 9157.00536311,\n", + " 9157.04724769, 9157.08877384, 9157.1298426 , 9157.17036103,\n", + " 9157.21022081, 9157.24931153, 9157.28753289, 9157.32478503,\n", + " 9157.36094747, 9157.39588991, 9157.42949656, 9157.46165178,\n", + " 9157.49225063, 9157.52118918, 9157.54835066, 9157.5736293 ,\n", + " 9157.59692742, 9157.61815795, 9157.63724188, 9157.65409038,\n", + " 9157.66863124, 9157.68079268, 9157.69051165, 9157.69777037,\n", + " 9157.70255069, 9157.7048154 , 9157.70454574, 9157.70175641,\n", + " 9157.69647076, 9157.68872519, 9157.67857076, 9157.66603809,\n", + " 9157.65117995, 9157.63409197, 9157.61486432, 9157.59359084,\n", + " 9157.57038447, 9157.54536789, 9157.51865136, 9157.49035127,\n", + " 9157.46061822, 9157.42960419, 9157.39745182, 9157.36431015,\n", + " 9157.33033277, 9157.29567289, 9157.2604864 , 9157.22492357,\n", + " 9157.18913088, 9157.15325564, 9157.11742628, 9157.0817518 ,\n", + " 9157.04635385, 9157.01135441, 9156.97686527, 9156.94297976,\n", + " 9156.90976504, 9156.87727405, 9156.84556567, 9156.81469978,\n", + " 9156.78471925, 9156.75566174, 9156.72753694, 9156.70032818,\n", + " 9156.67402318, 9156.64861023, 9156.6240785 , 9156.60041402,\n", + " 9156.57756708, 9156.55547687, 9156.53410771, 9156.51341541,\n", + " 9156.49333836, 9156.47381273, 9156.45476666, 9156.43615052,\n", + " 9156.41792467, 9156.40002204, 9156.38237063, 9156.36491542,\n", + " 9156.34761552, 9156.3304486 , 9156.31338684, 9156.29638872,\n", + " 9156.27942873, 9156.26249633, 9156.24558667, 9156.2287156 ,\n", + " 9156.21191829, 9156.19522879, 9156.17866731, 9156.16226557,\n", + " 9156.14608922, 9156.13022442, 9156.11476199, 9156.09977847,\n", + " 9156.08533668, 9156.07152002, 9156.05842657, 9156.04616176,\n", + " 9156.03483764, 9156.02454684, 9156.01536094, 9156.00734589,\n", + " 9156.00059746, 9155.99520726, 9155.99121699, 9155.98866571,\n", + " 9155.98759499, 9155.98803146, 9155.9900193 , 9155.9935882 ,\n", + " 9155.99873598, 9156.00545236, 9156.01369843, 9156.02343274,\n", + " 9156.03462417, 9156.04722983, 9156.06119199, 9156.07645986,\n", + " 9156.09298106, 9156.11070312, 9156.12957786, 9156.14952709,\n", + " 9156.17049253, 9156.19243666, 9156.21530317, 9156.23904184,\n", + " 9156.26360516, 9156.28895664, 9156.31507828, 9156.34195011,\n", + " 9156.36955173, 9156.3978666 , 9156.42687908, 9156.45658616,\n", + " 9156.48699079, 9156.51806847, 9156.54980537, 9156.58221248,\n", + " 9156.61528791, 9156.64901897, 9156.68340271, 9156.71843021,\n", + " 9156.75407963, 9156.79031618, 9156.8270968 , 9156.8643849 ,\n", + " 9156.90214494, 9156.94031653, 9156.97881689, 9157.01756593,\n", + " 9157.05646693, 9157.09541779, 9157.13432494, 9157.17308781,\n", + " 9157.21159945, 9157.24972611, 9157.2873198 , 9157.32426389,\n", + " 9157.360453 , 9157.39575422, 9157.43004306, 9157.46321934,\n", + " 9157.49517422, 9157.52580466, 9157.5550095 , 9157.58269459,\n", + " 9157.60879052, 9157.63323657, 9157.65597552, 9157.67696175,\n", + " 9157.69617753, 9157.71360974, 9157.72924745, 9157.74310835,\n", + " 9157.7552051 , 9157.76555627, 9157.77421289, 9157.78121643,\n", + " 9157.78661802, 9157.7905016 , 9157.79294513, 9157.79400825,\n", + " 9157.79375923, 9157.79228362, 9157.78968093, 9157.78606565,\n", + " 9157.78154837, 9157.77622157, 9157.77016911, 9157.76347018,\n", + " 9157.75620827, 9157.7484731 , 9157.74034054, 9157.73185025,\n", + " 9157.72303828, 9157.71396422, 9157.70466818, 9157.69514663,\n", + " 9157.68539553, 9157.67539766, 9157.66510675, 9157.65449945,\n", + " 9157.64355256, 9157.63221796, 9157.62044594, 9157.60817509,\n", + " 9157.59533518, 9157.58185583, 9157.56764971, 9157.55263294,\n", + " 9157.53672348, 9157.51985468, 9157.5019831 , 9157.48303713,\n", + " 9157.4629457 , 9157.44168372, 9157.41923591, 9157.39558704,\n", + " 9157.37074458, 9157.34472033, 9157.31752803, 9157.28920345,\n", + " 9157.25980622, 9157.22942504, 9157.19815237, 9157.16608282,\n", + " 9157.13335309, 9157.10010647, 9157.06646798, 9157.03258175,\n", + " 9156.99862461, 9156.96476211, 9156.93114659, 9156.89795898,\n", + " 9156.86538679, 9156.83361153, 9156.80282348, 9156.77319282,\n", + " 9156.74486717, 9156.71800158, 9156.69276683, 9156.66932791,\n", + " 9156.64781796, 9156.62835085, 9156.6110453 , 9156.59600253,\n", + " 9156.58331318, 9156.57306646, 9156.56531908, 9156.56011062,\n", + " 9156.55748031, 9156.55745105, 9156.56002435, 9156.56518237,\n", + " 9156.57289414, 9156.58313287, 9156.59586476, 9156.61103515,\n", + " 9156.62856364, 9156.64836052, 9156.67034745, 9156.69443253,\n", + " 9156.72052647, 9156.74854944, 9156.7784076 , 9156.81000603,\n", + " 9156.84325196, 9156.87804442, 9156.91429704, 9156.95194393,\n", + " 9156.99090445, 9157.03109319, 9157.07245566, 9157.11494547,\n", + " 9157.158502 , 9157.20306866, 9157.24859221, 9157.29501682,\n", + " 9157.34230991, 9157.39045449, 9157.43942921, 9157.48919742,\n", + " 9157.53971217, 9157.59092756, 9157.64280656, 9157.69531364,\n", + " 9157.74838729, 9157.8019522 , 9157.85594508, 9157.9102792 ,\n", + " 9157.96485336, 9158.01957042, 9158.07430401, 9158.12891716,\n", + " 9158.18328275, 9158.23725756, 9158.29069137, 9158.34343053,\n", + " 9158.39531688])" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hf2" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c28363d30>,\n", + " <matplotlib.lines.Line2D at 0x1c28363fd0>]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(t-45,h.data,'.',t_filt,hf2,'*')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "t_filt_dec = np.linspace(0,len(h.data)-91,16)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "hf3 = np.dot(one_minute_gauss_filter, as_s[::60].T)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(t-45,h.data,'.',t_filt,hf2,'*',t_filt_dec,hf3,'^')\n", + "pl.xlabel('time (s)')\n", + "pl.ylabel('field (nT)')\n", + "pl.legend(['One Second Signal', 'One Minute Filter Applied', \n", + " 'One Minute Downsampled Filtered Data'])\n", + "pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c2890d278>,\n", + " <matplotlib.lines.Line2D at 0x1c2890d3c8>]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(t_filt, hf2 - h.data[45:-45], '.C1', \n", + " t_filt_dec, hf3 - h.data[45:-45:60], '*C2')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c289707b8>,\n", + " <matplotlib.lines.Line2D at 0x1c28970940>]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(t_filt, (hf2 - h.data[45:-45])/h.data[45:-45], '.C1', \n", + " t_filt_dec, (hf3 - h.data[45:-45:60])/h.data[45:-45:60], '*C2')" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9145.616, 9145.659, 9145.698, 9145.744, 9145.789, 9145.829,\n", + " 9145.863, 9145.881, 9145.88 , 9145.848, 9145.812, 9145.814,\n", + " 9145.823, 9145.821, 9145.808, 9145.777, 9145.76 , 9145.785,\n", + " 9145.835, 9145.89 , 9145.942, 9146. , 9146.074, 9146.166,\n", + " 9146.27 , 9146.382, 9146.484, 9146.561, 9146.628, 9146.685,\n", + " 9146.709, 9146.706, 9146.721, 9146.756, 9146.77 , 9146.736,\n", + " 9146.663, 9146.589, 9146.525, 9146.464, 9146.384, 9146.274,\n", + " 9146.137, 9145.999, 9145.899, 9145.801, 9145.674, 9145.576,\n", + " 9145.527, 9145.479, 9145.436, 9145.424, 9145.444, 9145.496,\n", + " 9145.575, 9145.682, 9145.805, 9145.934, 9146.087, 9146.268,\n", + " 9146.457, 9146.659, 9146.864, 9147.02 , 9147.159, 9147.332,\n", + " 9147.512, 9147.68 , 9147.803, 9147.869, 9147.934, 9148.013,\n", + " 9148.097, 9148.151, 9148.164, 9148.146, 9148.101, 9148.072,\n", + " 9148.058, 9148.024, 9147.969, 9147.932, 9147.893, 9147.798,\n", + " 9147.695, 9147.625, 9147.575, 9147.532, 9147.489, 9147.453,\n", + " 9147.415, 9147.397, 9147.427, 9147.473, 9147.504, 9147.54 ,\n", + " 9147.595, 9147.647, 9147.719, 9147.828, 9147.931, 9148.013,\n", + " 9148.092, 9148.157, 9148.228, 9148.342, 9148.474, 9148.591,\n", + " 9148.693, 9148.788, 9148.863, 9148.951, 9149.082, 9149.199,\n", + " 9149.278, 9149.347, 9149.433, 9149.529, 9149.615, 9149.709,\n", + " 9149.807, 9149.887, 9149.958, 9150.025, 9150.098, 9150.181,\n", + " 9150.282, 9150.4 , 9150.517, 9150.636, 9150.743, 9150.835,\n", + " 9150.946, 9151.058, 9151.175, 9151.309, 9151.431, 9151.539,\n", + " 9151.651, 9151.776, 9151.899, 9152.032, 9152.17 , 9152.283,\n", + " 9152.392, 9152.49 , 9152.602, 9152.734, 9152.84 , 9152.933,\n", + " 9153.046, 9153.16 , 9153.262, 9153.358, 9153.428, 9153.494,\n", + " 9153.577, 9153.667, 9153.747, 9153.796, 9153.823, 9153.857,\n", + " 9153.906, 9153.956, 9154.014, 9154.044, 9154.014, 9153.966,\n", + " 9153.937, 9153.905, 9153.87 , 9153.841, 9153.782, 9153.707,\n", + " 9153.636, 9153.557, 9153.47 , 9153.386, 9153.302, 9153.212,\n", + " 9153.129, 9153.057, 9152.984, 9152.895, 9152.797, 9152.708,\n", + " 9152.639, 9152.6 , 9152.568, 9152.518, 9152.435, 9152.357,\n", + " 9152.321, 9152.298, 9152.271, 9152.238, 9152.227, 9152.237,\n", + " 9152.223, 9152.18 , 9152.126, 9152.069, 9152.033, 9152.018,\n", + " 9152.005, 9151.96 , 9151.876, 9151.812, 9151.775, 9151.762,\n", + " 9151.772, 9151.748, 9151.672, 9151.58 , 9151.508, 9151.463,\n", + " 9151.422, 9151.351, 9151.256, 9151.148, 9151.027, 9150.924,\n", + " 9150.852, 9150.792, 9150.731, 9150.647, 9150.549, 9150.466,\n", + " 9150.412, 9150.385, 9150.345, 9150.282, 9150.223, 9150.172,\n", + " 9150.122, 9150.086, 9150.053, 9150.001, 9149.952, 9149.92 ,\n", + " 9149.903, 9149.875, 9149.816, 9149.767, 9149.739, 9149.685,\n", + " 9149.617, 9149.565, 9149.533, 9149.54 , 9149.535, 9149.487,\n", + " 9149.431, 9149.376, 9149.342, 9149.341, 9149.337, 9149.321,\n", + " 9149.312, 9149.292, 9149.285, 9149.33 , 9149.384, 9149.431,\n", + " 9149.48 , 9149.515, 9149.562, 9149.639, 9149.743, 9149.853,\n", + " 9149.946, 9150.044, 9150.121, 9150.187, 9150.305, 9150.434,\n", + " 9150.523, 9150.6 , 9150.698, 9150.817, 9150.928, 9151.011,\n", + " 9151.067, 9151.126, 9151.221, 9151.333, 9151.416, 9151.444,\n", + " 9151.457, 9151.466, 9151.484, 9151.556, 9151.632, 9151.646,\n", + " 9151.635, 9151.62 , 9151.63 , 9151.706, 9151.762, 9151.764,\n", + " 9151.773, 9151.79 , 9151.803, 9151.824, 9151.856, 9151.906,\n", + " 9151.963, 9151.998, 9152.023, 9152.068, 9152.12 , 9152.17 ,\n", + " 9152.243, 9152.298, 9152.316, 9152.358, 9152.433, 9152.508,\n", + " 9152.57 , 9152.626, 9152.676, 9152.723, 9152.773, 9152.807,\n", + " 9152.819, 9152.838, 9152.873, 9152.908, 9152.936, 9152.97 ,\n", + " 9153.014, 9153.056, 9153.091, 9153.126, 9153.174, 9153.219,\n", + " 9153.257, 9153.274, 9153.273, 9153.287, 9153.312, 9153.344,\n", + " 9153.382, 9153.406, 9153.399, 9153.39 , 9153.408, 9153.437,\n", + " 9153.47 , 9153.506, 9153.517, 9153.501, 9153.482, 9153.466,\n", + " 9153.439, 9153.401, 9153.358, 9153.32 , 9153.297, 9153.265,\n", + " 9153.212, 9153.165, 9153.144, 9153.124, 9153.091, 9153.07 ,\n", + " 9153.051, 9153.04 , 9153.06 , 9153.084, 9153.074, 9153.043,\n", + " 9153.053, 9153.091, 9153.107, 9153.108, 9153.121, 9153.132,\n", + " 9153.137, 9153.154, 9153.158, 9153.151, 9153.155, 9153.155,\n", + " 9153.156, 9153.164, 9153.169, 9153.169, 9153.147, 9153.122,\n", + " 9153.12 , 9153.115, 9153.093, 9153.078, 9153.067, 9153.054,\n", + " 9153.028, 9153.001, 9152.993, 9152.982, 9152.974, 9152.964,\n", + " 9152.953, 9152.949, 9152.938, 9152.934, 9152.941, 9152.928,\n", + " 9152.89 , 9152.857, 9152.845, 9152.852, 9152.842, 9152.812,\n", + " 9152.801, 9152.787, 9152.75 , 9152.715, 9152.688, 9152.69 ,\n", + " 9152.696, 9152.663, 9152.62 , 9152.587, 9152.562, 9152.552,\n", + " 9152.551, 9152.543, 9152.514, 9152.462, 9152.426, 9152.404,\n", + " 9152.374, 9152.358, 9152.349, 9152.341, 9152.316, 9152.275,\n", + " 9152.248, 9152.24 , 9152.245, 9152.24 , 9152.221, 9152.193,\n", + " 9152.167, 9152.15 , 9152.148, 9152.157, 9152.146, 9152.105,\n", + " 9152.07 , 9152.037, 9152. , 9151.983, 9151.961, 9151.925,\n", + " 9151.9 , 9151.869, 9151.833, 9151.821, 9151.829, 9151.848,\n", + " 9151.884, 9151.927, 9151.974, 9152.036, 9152.095, 9152.143,\n", + " 9152.2 , 9152.271, 9152.364, 9152.462, 9152.54 , 9152.623,\n", + " 9152.693, 9152.737, 9152.79 , 9152.869, 9152.953, 9152.998,\n", + " 9153.022, 9153.068, 9153.12 , 9153.149, 9153.155, 9153.157,\n", + " 9153.165, 9153.174, 9153.177, 9153.179, 9153.176, 9153.17 ,\n", + " 9153.191, 9153.213, 9153.193, 9153.17 , 9153.176, 9153.184,\n", + " 9153.203, 9153.23 , 9153.252, 9153.292, 9153.336, 9153.374,\n", + " 9153.414, 9153.452, 9153.504, 9153.569, 9153.636, 9153.701,\n", + " 9153.764, 9153.832, 9153.901, 9154.013, 9154.149, 9154.243,\n", + " 9154.341, 9154.471, 9154.619, 9154.764, 9154.877, 9154.971,\n", + " 9155.069, 9155.163, 9155.255, 9155.361, 9155.456, 9155.525,\n", + " 9155.589, 9155.63 , 9155.643, 9155.648, 9155.665, 9155.694,\n", + " 9155.719, 9155.719, 9155.693, 9155.665, 9155.653, 9155.658,\n", + " 9155.659, 9155.652, 9155.639, 9155.617, 9155.594, 9155.564,\n", + " 9155.553, 9155.568, 9155.569, 9155.558, 9155.571, 9155.597,\n", + " 9155.607, 9155.615, 9155.622, 9155.614, 9155.611, 9155.61 ,\n", + " 9155.59 , 9155.56 , 9155.529, 9155.497, 9155.455, 9155.409,\n", + " 9155.371, 9155.332, 9155.298, 9155.251, 9155.178, 9155.107,\n", + " 9155.046, 9155.008, 9154.977, 9154.928, 9154.883, 9154.832,\n", + " 9154.774, 9154.735, 9154.717, 9154.678, 9154.616, 9154.572,\n", + " 9154.555, 9154.543, 9154.512, 9154.491, 9154.483, 9154.468,\n", + " 9154.469, 9154.468, 9154.447, 9154.444, 9154.475, 9154.523,\n", + " 9154.57 , 9154.62 , 9154.674, 9154.744, 9154.837, 9154.917,\n", + " 9154.988, 9155.053, 9155.101, 9155.175, 9155.274, 9155.369,\n", + " 9155.45 , 9155.526, 9155.6 , 9155.663, 9155.744, 9155.818,\n", + " 9155.854, 9155.891, 9155.938, 9155.973, 9155.995, 9156.013,\n", + " 9156.034, 9156.054, 9156.096, 9156.14 , 9156.14 , 9156.119,\n", + " 9156.121, 9156.157, 9156.194, 9156.213, 9156.218, 9156.214,\n", + " 9156.245, 9156.311, 9156.353, 9156.38 , 9156.419, 9156.456,\n", + " 9156.497, 9156.565, 9156.642, 9156.702, 9156.751, 9156.797,\n", + " 9156.85 , 9156.899, 9156.937, 9156.995, 9157.061, 9157.111,\n", + " 9157.155, 9157.206, 9157.273, 9157.347, 9157.409, 9157.453,\n", + " 9157.503, 9157.567, 9157.631, 9157.69 , 9157.742, 9157.769,\n", + " 9157.79 , 9157.852, 9157.927, 9157.991, 9158.042, 9158.065,\n", + " 9158.08 , 9158.121, 9158.163, 9158.172, 9158.165, 9158.152,\n", + " 9158.145, 9158.159, 9158.153, 9158.115, 9158.073, 9158.047,\n", + " 9158.045, 9158.04 , 9157.988, 9157.915, 9157.869, 9157.817,\n", + " 9157.759, 9157.729, 9157.691, 9157.614, 9157.496, 9157.392,\n", + " 9157.339, 9157.289, 9157.214, 9157.136, 9157.068, 9157.01 ,\n", + " 9156.966, 9156.935, 9156.886, 9156.808, 9156.731, 9156.677,\n", + " 9156.642, 9156.6 , 9156.552, 9156.519, 9156.488, 9156.469,\n", + " 9156.47 , 9156.457, 9156.445, 9156.432, 9156.399, 9156.388,\n", + " 9156.394, 9156.385, 9156.381, 9156.397, 9156.409, 9156.424,\n", + " 9156.451, 9156.453, 9156.45 , 9156.461, 9156.46 , 9156.456,\n", + " 9156.457, 9156.468, 9156.461, 9156.421, 9156.392, 9156.372,\n", + " 9156.34 , 9156.313, 9156.288, 9156.259, 9156.257, 9156.259,\n", + " 9156.245, 9156.237, 9156.216, 9156.163, 9156.116, 9156.078,\n", + " 9156.043, 9156.012, 9155.957, 9155.864, 9155.772, 9155.707,\n", + " 9155.643, 9155.61 , 9155.603, 9155.562, 9155.506, 9155.461,\n", + " 9155.439, 9155.466, 9155.502, 9155.516, 9155.551, 9155.612,\n", + " 9155.675, 9155.748, 9155.824, 9155.915, 9156.029, 9156.123,\n", + " 9156.195, 9156.275, 9156.355, 9156.427, 9156.488, 9156.529,\n", + " 9156.539, 9156.534, 9156.532, 9156.525, 9156.512, 9156.475,\n", + " 9156.414, 9156.362, 9156.33 , 9156.322, 9156.349, 9156.374,\n", + " 9156.359, 9156.348, 9156.365, 9156.397, 9156.452, 9156.516,\n", + " 9156.567, 9156.6 , 9156.671, 9156.782, 9156.857, 9156.904,\n", + " 9156.96 , 9157.019, 9157.112, 9157.238, 9157.346, 9157.429,\n", + " 9157.484, 9157.522, 9157.559, 9157.602, 9157.642, 9157.684,\n", + " 9157.737, 9157.809, 9157.879, 9157.902, 9157.936, 9157.995,\n", + " 9158.036, 9158.07 , 9158.095, 9158.102, 9158.111, 9158.14 ,\n", + " 9158.169, 9158.178, 9158.175, 9158.176, 9158.181, 9158.151,\n", + " 9158.092, 9158.046, 9158.006, 9157.941, 9157.872, 9157.829,\n", + " 9157.795, 9157.751, 9157.698, 9157.648, 9157.614, 9157.593,\n", + " 9157.573, 9157.555, 9157.543, 9157.534, 9157.515, 9157.505,\n", + " 9157.521, 9157.52 , 9157.498, 9157.493, 9157.505, 9157.508,\n", + " 9157.518, 9157.557, 9157.599, 9157.637, 9157.669, 9157.697,\n", + " 9157.72 , 9157.737, 9157.757, 9157.772, 9157.808, 9157.843,\n", + " 9157.849, 9157.856, 9157.841, 9157.807, 9157.791, 9157.746,\n", + " 9157.662, 9157.595, 9157.538, 9157.443, 9157.322, 9157.211,\n", + " 9157.102, 9156.998, 9156.928, 9156.87 , 9156.799, 9156.722,\n", + " 9156.65 , 9156.595, 9156.543, 9156.482, 9156.425, 9156.385,\n", + " 9156.355, 9156.299, 9156.24 , 9156.198, 9156.131, 9156.074,\n", + " 9156.046, 9156.013, 9156.001, 9156.01 , 9156.034, 9156.07 ,\n", + " 9156.089, 9156.107, 9156.129, 9156.162, 9156.21 , 9156.246,\n", + " 9156.264, 9156.307, 9156.378, 9156.446, 9156.524, 9156.605,\n", + " 9156.673, 9156.726, 9156.769, 9156.839, 9156.92 , 9156.983,\n", + " 9157.059, 9157.14 , 9157.195, 9157.237, 9157.292, 9157.336,\n", + " 9157.352, 9157.378, 9157.406, 9157.424, 9157.463, 9157.493,\n", + " 9157.475, 9157.436, 9157.43 , 9157.463, 9157.484, 9157.472,\n", + " 9157.485, 9157.524, 9157.561, 9157.625, 9157.707, 9157.799,\n", + " 9157.91 , 9158.047, 9158.206, 9158.35 , 9158.476, 9158.619,\n", + " 9158.786, 9158.949, 9159.072, 9159.163, 9159.255, 9159.347,\n", + " 9159.431, 9159.51 , 9159.58 , 9159.62 , 9159.638, 9159.641,\n", + " 9159.616, 9159.595, 9159.579, 9159.537, 9159.488, 9159.45 ,\n", + " 9159.408, 9159.352, 9159.283, 9159.21 , 9159.156, 9159.128,\n", + " 9159.119, 9159.105, 9159.078, 9159.038, 9159.007, 9159.01 ,\n", + " 9159.012, 9158.995, 9158.979, 9158.956, 9158.933, 9158.908,\n", + " 9158.871, 9158.835, 9158.812, 9158.804, 9158.807, 9158.818,\n", + " 9158.832])" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "h.data" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9156.74486717354" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(h.data[-151:-60], one_minute_gauss_filter)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "655928" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "as_s.nbytes" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7928" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "h.data.nbytes" + ] + }, + { + "cell_type": "code", + "execution_count": 265, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "82.73562058526741" + ] + }, + "execution_count": 265, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "655928/7928" + ] + }, + { + "cell_type": "code", + "execution_count": 266, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "62969088" + ] + }, + "execution_count": 266, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "24*4*655928" + ] + }, + { + "cell_type": "code", + "execution_count": 267, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1952041728" + ] + }, + "execution_count": 267, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "24*4*31*655928" + ] + }, + { + "cell_type": "code", + "execution_count": 268, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1296000" + ] + }, + "execution_count": 268, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "86400*15" + ] + }, + { + "cell_type": "code", + "execution_count": 269, + "metadata": {}, + "outputs": [], + "source": [ + "h_end_nan = h.data[-91:]" + ] + }, + { + "cell_type": "code", + "execution_count": 270, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9156.089, 9156.107, 9156.129, 9156.162, 9156.21 , 9156.246,\n", + " 9156.264, 9156.307, 9156.378, 9156.446, 9156.524, 9156.605,\n", + " 9156.673, 9156.726, 9156.769, 9156.839, 9156.92 , 9156.983,\n", + " 9157.059, 9157.14 , 9157.195, 9157.237, 9157.292, 9157.336,\n", + " 9157.352, 9157.378, 9157.406, 9157.424, 9157.463, 9157.493,\n", + " 9157.475, 9157.436, 9157.43 , 9157.463, 9157.484, 9157.472,\n", + " 9157.485, 9157.524, 9157.561, 9157.625, 9157.707, 9157.799,\n", + " 9157.91 , 9158.047, 9158.206, 9158.35 , 9158.476, 9158.619,\n", + " 9158.786, 9158.949, 9159.072, 9159.163, 9159.255, 9159.347,\n", + " 9159.431, 9159.51 , 9159.58 , 9159.62 , 9159.638, 9159.641,\n", + " 9159.616, 9159.595, 9159.579, 9159.537, 9159.488, 9159.45 ,\n", + " 9159.408, 9159.352, 9159.283, 9159.21 , 9159.156, 9159.128,\n", + " 9159.119, 9159.105, 9159.078, 9159.038, 9159.007, 9159.01 ,\n", + " 9159.012, 9158.995, 9158.979, 9158.956, 9158.933, 9158.908,\n", + " 9158.871, 9158.835, 9158.812, 9158.804, 9158.807, 9158.818,\n", + " 9158.832])" + ] + }, + "execution_count": 270, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "h_end_nan" + ] + }, + { + "cell_type": "code", + "execution_count": 271, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9156.089, 9156.107, 9156.129, 9156.162, 9156.21 , nan,\n", + " 9156.264, 9156.307, 9156.378, 9156.446, 9156.524, 9156.605,\n", + " 9156.673, 9156.726, 9156.769, 9156.839, 9156.92 , 9156.983,\n", + " 9157.059, 9157.14 , 9157.195, 9157.237, 9157.292, 9157.336,\n", + " 9157.352, 9157.378, 9157.406, 9157.424, 9157.463, 9157.493,\n", + " 9157.475, 9157.436, 9157.43 , 9157.463, 9157.484, 9157.472,\n", + " 9157.485, 9157.524, 9157.561, 9157.625, 9157.707, 9157.799,\n", + " 9157.91 , 9158.047, 9158.206, 9158.35 , 9158.476, 9158.619,\n", + " 9158.786, 9158.949, 9159.072, 9159.163, 9159.255, 9159.347,\n", + " 9159.431, 9159.51 , 9159.58 , 9159.62 , 9159.638, 9159.641,\n", + " 9159.616, 9159.595, 9159.579, 9159.537, 9159.488, 9159.45 ,\n", + " 9159.408, 9159.352, 9159.283, 9159.21 , 9159.156, 9159.128,\n", + " 9159.119, 9159.105, 9159.078, 9159.038, 9159.007, 9159.01 ,\n", + " 9159.012, 9158.995, 9158.979, 9158.956, 9158.933, 9158.908,\n", + " 9158.871, 9158.835, 9158.812, 9158.804, 9158.807, 9158.818,\n", + " 9158.832])" + ] + }, + "execution_count": 271, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "h_end_nan[5] = np.nan\n", + "h_end_nan" + ] + }, + { + "cell_type": "code", + "execution_count": 272, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "nan" + ] + }, + "execution_count": 272, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(h_end_nan, one_minute_gauss_filter)" + ] + }, + { + "cell_type": "code", + "execution_count": 273, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "81.9" + ] + }, + "execution_count": 273, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "91*0.9" + ] + }, + { + "cell_type": "code", + "execution_count": 275, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-1" + ] + }, + "execution_count": 275, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sign(-100)" + ] + }, + { + "cell_type": "code", + "execution_count": 276, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 276, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sign(100)" + ] + }, + { + "cell_type": "code", + "execution_count": 277, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 277, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sign(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "b = EdgeFactory(cwbhost='166.154.45.158', host='166.154.45.158')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "gxx_golden = b.get_timeseries(observatory='GXX', \n", + " channels=['LFF'], \n", + " type='variation', \n", + " interval='second', \n", + " starttime=UTCDateTime('2018-09-13T00:00:00Z'), \n", + " endtime=UTCDateTime('2018-09-13T00:15:00Z'))" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2018-09-19T00:00:00.000000Z" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "UTCDateTime('2018-09-18T23:59:15Z')+45" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'second'" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gxx_golden[0].stats.data_interval" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "fg = gxx_golden[0].data" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(901,)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fg.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "gxx_golden_v = b.get_timeseries(observatory='GXX', \n", + " channels=['BEU'], \n", + " type='variation',\n", + " interval='second',\n", + " starttime=UTCDateTime('2018-09-13T00:00:00Z')-9.9,\n", + " endtime=UTCDateTime('2018-09-13T00:15:00Z')+9.9)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "hg = gxx_golden_v[0].data" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9199,)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hg.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "tg = gxx_golden_v[0].times()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c2bbe7dd8>]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(tg,hg)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'second'" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gxx_golden_v[0].stats.data_interval" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "# excerpted from https://github.com/scipy/scipy/issues/7725#issuecomment-322094749\n", + "sample_rate = 10.0\n", + "cutoff = 0.2\n", + "width = 0.3\n", + "stop_db = 50.0\n", + "stop_db = np.abs(stop_db)\n", + "\n", + "# Convert to normalized frequencies\n", + "nyq = 0.5*sample_rate\n", + "cutoff = cutoff / nyq\n", + "width = width / nyq\n", + "\n", + "numtaps, beta = sps.kaiserord(ripple=stop_db, width=width)\n", + "numtaps |= 1\n", + "taps = sps.firwin(numtaps, cutoff, window=('kaiser', beta), scale=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-4.52198796e-05, -1.11619355e-04, -2.01483397e-04, -3.16506684e-04,\n", + " -4.57626335e-04, -6.24859943e-04, -8.17155093e-04, -1.03225668e-03,\n", + " -1.26659826e-03, -1.51522326e-03, -1.77174156e-03, -2.02832596e-03,\n", + " -2.27575221e-03, -2.50348516e-03, -2.69981225e-03, -2.85202413e-03,\n", + " -2.94664077e-03, -2.96967983e-03, -2.90696256e-03, -2.74445127e-03,\n", + " -2.46861053e-03, -2.06678395e-03, -1.52757659e-03, -8.41232992e-04,\n", + " 8.97254861e-19, 1.00153625e-03, 2.16614984e-03, 3.49372106e-03,\n", + " 4.98103797e-03, 6.62166161e-03, 8.40586129e-03, 1.03206248e-02,\n", + " 1.23497468e-02, 1.44739951e-02, 1.66713562e-02, 1.89173528e-02,\n", + " 2.11854322e-02, 2.34474143e-02, 2.56739920e-02, 2.78352727e-02,\n", + " 2.99013480e-02, 3.18428788e-02, 3.36316814e-02, 3.52413005e-02,\n", + " 3.66475558e-02, 3.78290461e-02, 3.87676015e-02, 3.94486690e-02,\n", + " 3.98616244e-02, 4.00000000e-02, 3.98616244e-02, 3.94486690e-02,\n", + " 3.87676015e-02, 3.78290461e-02, 3.66475558e-02, 3.52413005e-02,\n", + " 3.36316814e-02, 3.18428788e-02, 2.99013480e-02, 2.78352727e-02,\n", + " 2.56739920e-02, 2.34474143e-02, 2.11854322e-02, 1.89173528e-02,\n", + " 1.66713562e-02, 1.44739951e-02, 1.23497468e-02, 1.03206248e-02,\n", + " 8.40586129e-03, 6.62166161e-03, 4.98103797e-03, 3.49372106e-03,\n", + " 2.16614984e-03, 1.00153625e-03, 8.97254861e-19, -8.41232992e-04,\n", + " -1.52757659e-03, -2.06678395e-03, -2.46861053e-03, -2.74445127e-03,\n", + " -2.90696256e-03, -2.96967983e-03, -2.94664077e-03, -2.85202413e-03,\n", + " -2.69981225e-03, -2.50348516e-03, -2.27575221e-03, -2.02832596e-03,\n", + " -1.77174156e-03, -1.51522326e-03, -1.26659826e-03, -1.03225668e-03,\n", + " -8.17155093e-04, -6.24859943e-04, -4.57626335e-04, -3.16506684e-04,\n", + " -2.01483397e-04, -1.11619355e-04, -4.52198796e-05])" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taps" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(99,)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c2bc28a58>]" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(taps)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "one_second_filter = taps/np.sum(taps)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9101, 99)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "window = 99\n", + "shape = hg.shape[:-1] + (hg.shape[-1] - window + 1, window)\n", + "strides = hg.strides + (hg.strides[-1],)\n", + "as_s = npls.as_strided(hg, shape=shape, strides=strides, writeable=False)\n", + "as_s.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "t_filt_g = np.linspace(0,(len(hg)-99)/10,9101)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.000e+00, 1.000e-01, 2.000e-01, ..., 9.098e+02, 9.099e+02,\n", + " 9.100e+02])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t_filt_g" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "hg2 = np.dot(one_second_filter, as_s.T)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(tg-4.9,hg,'.',t_filt_g,hg2,'.')\n", + "pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9199,)" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hg.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "g = EdgeFactory(host='mage1.cr.usgs.gov')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "gxx_gol2 = g.get_timeseries(observatory='GXX',\n", + " channels=['BEU'], \n", + " type='variation',\n", + " interval='second',\n", + " starttime=UTCDateTime('2018-09-18T00:00:00Z'),\n", + " endtime=UTCDateTime('2018-09-18T00:15:00Z'))" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gxx_gol2.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "gb = np.ones_like(one_minute_gauss_filter)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "91" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(gb)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [], + "source": [ + "for i in np.linspace(-45, 45, 91):\n", + " gb[np.int(i) + 45] = i/(15.8734**2)*np.exp(-1/2*(i/15.8734)**2)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "gb = gb/np.sum(gb)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.00321141, -0.0037466 , -0.00435142, -0.00503114, -0.00579071,\n", + " -0.0066346 , -0.00756664, -0.00858978, -0.00970591, -0.01091565,\n", + " -0.01221811, -0.01361069, -0.01508887, -0.01664603, -0.0182733 ,\n", + " -0.01995939, -0.02169058, -0.02345064, -0.02522088, -0.02698025,\n", + " -0.02870551, -0.03037145, -0.03195122, -0.03341673, -0.03473911,\n", + " -0.0358892 , -0.03683818, -0.03755816, -0.03802282, -0.03820808,\n", + " -0.03809279, -0.0376593 , -0.03689407, -0.0357882 , -0.03433785,\n", + " -0.03254457, -0.03041554, -0.02796365, -0.02520746, -0.02217103,\n", + " -0.0188836 , -0.0153791 , -0.01169567, -0.00787486, -0.00396094,\n", + " 0. , 0.00396094, 0.00787486, 0.01169567, 0.0153791 ,\n", + " 0.0188836 , 0.02217103, 0.02520746, 0.02796365, 0.03041554,\n", + " 0.03254457, 0.03433785, 0.0357882 , 0.03689407, 0.0376593 ,\n", + " 0.03809279, 0.03820808, 0.03802282, 0.03755816, 0.03683818,\n", + " 0.0358892 , 0.03473911, 0.03341673, 0.03195122, 0.03037145,\n", + " 0.02870551, 0.02698025, 0.02522088, 0.02345064, 0.02169058,\n", + " 0.01995939, 0.0182733 , 0.01664603, 0.01508887, 0.01361069,\n", + " 0.01221811, 0.01091565, 0.00970591, 0.00858978, 0.00756664,\n", + " 0.0066346 , 0.00579071, 0.00503114, 0.00435142, 0.0037466 ,\n", + " 0.00321141])" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gb" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x1c28d280f0>]" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pl.plot(gb)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35.,\n", + " -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24.,\n", + " -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13.,\n", + " -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2.,\n", + " -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,\n", + " 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.,\n", + " 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31.,\n", + " 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42.,\n", + " 43., 44., 45.])" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linspace(-45,45,91)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "hfdiff = np.dot(gb, as_s[::60].T)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.plot(t_filt_dec,hfdiff,':')\n", + "pl.xlabel('time (s)')\n", + "pl.ylabel('field (nT)')\n", + "pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (geomagenv36)", + "language": "python", + "name": "geomagenv36" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/geomagio/algorithm/FilterAlgorithm.py b/geomagio/algorithm/FilterAlgorithm.py new file mode 100644 index 0000000000000000000000000000000000000000..73af88f1915a7db37f11809c54fdf5c14fbdfd51 --- /dev/null +++ b/geomagio/algorithm/FilterAlgorithm.py @@ -0,0 +1,123 @@ +"""Algorithm that converts from one geomagnetic coordinate system to a + related geographic coordinate system, by using transformations generated + from absolute, baseline measurements. +""" +from __future__ import absolute_import + +from .Algorithm import Algorithm +import json +import numpy as np +from numpy.lib import stride_tricks as npls +import scipy.signal as sps +from obspy.core import Stream, Stats +import sys + + +class FilterAlgorithm(Algorithm): + """Adjusted Data Algorithm""" + + def __init__(self, matrix=None, decimation=None, window=None, + data_type=None, location=None, inchannels=None, outchannels=None): + Algorithm.__init__(self, inchannels=inchannels, + outchannels=outchannels) + self.numtaps=91 + # get filter window (standard intermagnet one-minute filter) + self.window = sps.get_window(window=('gaussian', 15.8734), + Nx=self.numtaps) + # normalize filter window + self.window = self.window/np.sum(self.window) + self.decimation = 60 + self.data_type = data_type + self.location = location + + def create_trace(self, channel, stats, data): + """Utility to create a new trace object. + + Parameters + ---------- + channel : str + channel name. + stats : obspy.core.Stats + channel metadata to clone. + data : numpy.array + channel data. + + Returns + ------- + obspy.core.Trace + trace containing data and metadata. + """ + stats = Stats(stats) + if self.data_type is None: + stats.data_type = 'variation' + else: + stats.data_type = self.data_type + if self.data_type is None: + stats.location = 'R0' + else: + stats.location = self.location + + trace = super(FilterAlgorithm, self).create_trace(channel, stats, + data) + return trace + + def process(self, stream): + """Run algorithm for a stream. + Processes all traces in the stream. + Parameters + ---------- + stream : obspy.core.Stream + stream of data to process + Returns + ------- + out : obspy.core.Stream + stream containing 1 trace per original trace. + """ + + out = Stream() + + for trace in stream: + data = trace.data + times = trace.times() + half = (self.numtaps-1)/2 + step = self.decimation + shape = data.shape[:-1] + (data.shape[-1] - numtaps + 1, + numtaps) + strides = data.strides + (data.strides[-1],) + as_s = npls.as_strided(data, shape=shape, strides=strides, + writeable=False) + + filtered = np.dot(self.window, as_s[half:-half:step].T) + + stats=Stats(trace.stats) + stats.delta = delta*self.decimation + stats.npts = len(filtered) + trace_out = self.create_trace('', trace.stats) + + out += trace_out + + return out + + @classmethod + def add_arguments(cls, parser): + """Add command line arguments to argparse parser. + Parameters + ---------- + parser: ArgumentParser + command line argument parser + """ + + parser.add_argument('--adjusted-statefile', + default=None, + help='File to store state between calls to algorithm') + + def configure(self, arguments): + """Configure algorithm using comand line arguments. + Parameters + ---------- + arguments: Namespace + parsed command line arguments + """ + Algorithm.configure(self, arguments) + self.statefile = arguments.adjusted_statefile + self.load_state()