"""ImagCDFFactory Implementation Using cdflib This module provides the ImagCDFFactory class for creating and writing geomagnetic time series data in the ImagCDF format using the cdflib library. The ImagCDF format is based on NASA's Common Data Format (CDF) and is designed to store geomagnetic data with high precision. References: - ImagCDF Format Documentation: https://intermagnet.org/docs/technical/im_tn_8_ImagCDF.pdf - CDF Library: http://cdf.gsfc.nasa.gov/ """ from __future__ import absolute_import, print_function from io import BytesIO import os import sys from typing import List, Optional, Union from datetime import datetime, timezone import numpy as np from obspy import Stream, Trace, UTCDateTime from geomagio.TimeseriesFactory import TimeseriesFactory from .geomag_types import DataInterval, DataType from .TimeseriesFactoryException import TimeseriesFactoryException from . import TimeseriesUtility from . import Util import cdflib import tempfile class IMCDFPublicationLevel: """Handles publication levels and mapping between data types and levels. The ImagCDF format uses publication levels to describe the processing level of the data. This class maps data types (e.g., 'variation', 'definitive') to their corresponding publication levels as defined in the ImagCDF documentation. Publication Levels: 1: Raw data with no processing. 2: Edited data with preliminary baselines. 3: Data suitable for initial bulletins or quasi-definitive publication. 4: Definitive data with no further changes expected. Reference: - ImagCDF Documentation Section 4.2: Attributes that Uniquely Identify the Data """ class PublicationLevel: LEVEL_1 = "1" LEVEL_2 = "2" LEVEL_3 = "3" LEVEL_4 = "4" TYPE_TO_LEVEL = { "none": PublicationLevel.LEVEL_1, "variation": PublicationLevel.LEVEL_1, "reported": PublicationLevel.LEVEL_1, "provisional": PublicationLevel.LEVEL_2, "adjusted": PublicationLevel.LEVEL_2, "quasi-definitive": PublicationLevel.LEVEL_3, "quasidefinitive": PublicationLevel.LEVEL_3, "definitive": PublicationLevel.LEVEL_4, } def __init__(self, data_type: Optional[str] = None): """Initialize with a data type to determine the publication level.""" if data_type: self.level = self.TYPE_TO_LEVEL.get(data_type.lower()) else: raise ValueError("data_type must be provided.") if not self.level: raise ValueError(f"Unsupported data_type: {data_type}") def to_string(self) -> str: """Return the publication level as a string.""" return self.level class ImagCDFFactory(TimeseriesFactory): """Factory for creating and writing ImagCDF formatted CDF files. This class extends the TimeseriesFactory to support writing geomagnetic time series data to files in the ImagCDF format using the cdflib library. """ def __init__( self, observatory: Optional[str] = None, channels: List[str] = ("H", "D", "Z", "F"), type: DataType = "variation", interval: DataInterval = "minute", urlTemplate="file://{obs}_{dt}_{t}.cdf", urlInterval: int = -1, ): """ Initialize the ImagCDFFactory with default parameters. Parameters: - observatory: IAGA code of the observatory (e.g., 'BOU'). - channels: List of geomagnetic elements (e.g., ['H', 'D', 'Z', 'F']). - type: Data type indicating the processing level (e.g., 'variation', 'definitive'). - interval: Data interval (e.g., 'minute', 'second'). - urlTemplate: Template for generating file URLs or paths. - urlInterval: Interval size for splitting data into multiple files. """ super().__init__( observatory=observatory, channels=channels, type=type, interval=interval, urlTemplate=urlTemplate, urlInterval=urlInterval, ) def parse_string(self, data: str, **kwargs): """Parse ImagCDF formatted string data into a Stream. Note: Parsing from strings is not implemented in this factory. """ raise NotImplementedError('"parse_string" not implemented') def write_file(self, fh, timeseries: Stream, channels: List[str]): # Create a temporary file to write the CDF data with tempfile.NamedTemporaryFile(delete=False) as tmp_file: tmp_file_path = tmp_file.name + ".cdf" try: # Initialize the CDF writer cdf_writer = cdflib.cdfwrite.CDF(tmp_file_path) # Write global attributes global_attrs = self._create_global_attributes(timeseries, channels) cdf_writer.write_globalattrs(global_attrs) # Time variables time_vars = self._create_time_stamp_variables(timeseries) for ts_name, ts_data in time_vars.items(): # Define time variable specification var_spec = { 'Variable': ts_name, 'Data_Type': 33, # CDF_TIME_TT2000 'Num_Elements': 1, 'Rec_Vary': True, 'Var_Type': 'zVariable', 'Dim_Sizes': [], 'Sparse': 'no_sparse', 'Compress': 6, 'Pad': None, } # Define time variable attributes var_attrs = self._create_time_var_attrs(ts_name) # Write time variable cdf_writer.write_var(var_spec, var_attrs, ts_data) # Data variables for trace in timeseries: channel = trace.stats.channel var_name = f"GeomagneticField{channel}" data_type = self._get_cdf_data_type(trace) num_elements = 1 CDF_CHAR = 51 CDF_UCHAR = 52 if data_type in [CDF_CHAR, CDF_UCHAR]: # Handle string types num_elements = len(trace.data[0]) if len(trace.data) > 0 else 1 var_spec = { 'Variable': var_name, 'Data_Type': data_type, 'Num_Elements': num_elements, 'Rec_Vary': True, 'Var_Type': 'zVariable', 'Dim_Sizes': [], 'Sparse': 'no_sparse', 'Compress': 6, 'Pad': None, } var_attrs = self._create_var_attrs(trace) # Write data variable cdf_writer.write_var(var_spec, var_attrs, trace.data) # Close the CDF writer cdf_writer.close() # Copy the temporary CDF file to the final file handle with open(tmp_file_path, "rb") as tmp: cdf_data = tmp.read() fh.write(cdf_data) finally: # Cleanup the temporary file os.remove(tmp_file_path) def put_timeseries( self, timeseries: Stream, starttime: Optional[UTCDateTime] = None, endtime: Optional[UTCDateTime] = None, channels: Optional[List[str]] = None, type: Optional[DataType] = None, interval: Optional[DataInterval] = None, ): """ Store timeseries data in ImagCDF format using cdflib. This method writes the timeseries data to one or more files, depending on the specified urlInterval. Parameters: - timeseries: ObsPy Stream containing the geomagnetic data. - starttime: Start time of the data to be written. - endtime: End time of the data to be written. - channels: List of channels to include in the output file. - type: Data type indicating the processing level. - interval: Data interval of the data. """ if len(timeseries) == 0: # No data to store return channels = channels or self.channels type = type or self.type interval = interval or self.interval # Extract metadata from the first trace stats = timeseries[0].stats delta = stats.delta # Sample rate observatory = stats.station starttime = starttime or stats.starttime endtime = endtime or stats.endtime # Split data into intervals if necessary urlIntervals = Util.get_intervals( starttime=starttime, endtime=endtime, size=self.urlInterval ) for urlInterval in urlIntervals: interval_start = urlInterval["start"] interval_end = urlInterval["end"] if interval_start != interval_end: interval_end = interval_end - delta url = self._get_url( observatory=observatory, date=interval_start, type=type, interval=interval, channels=channels, ) # Handle 'stdout' output if url == 'stdout': # Write directly to stdout fh = sys.stdout.buffer url_data = timeseries.slice( starttime=interval_start, endtime=interval_end, ) self.write_file(fh, url_data, channels) continue # Proceed to next interval if any # Handle 'file://' output elif url.startswith('file://'): # Get the file path from the URL url_file = Util.get_file_from_url(url, createParentDirectory=False) url_data = timeseries.slice( starttime=interval_start, endtime=interval_end, ) # Check if the file already exists to merge data if os.path.isfile(url_file): try: # Read existing data to merge with new data existing_cdf = cdflib.cdfread.CDF(url_file) existing_stream = self._read_cdf(existing_cdf) existing_cdf.close() existing_data = existing_stream # Merge existing data with new data for trace in existing_data: new_trace = url_data.select( network=trace.stats.network, station=trace.stats.station, channel=trace.stats.channel, ) if new_trace: trace.data = np.concatenate((trace.data, new_trace[0].data)) url_data = existing_data + url_data except Exception as e: # Log the exception if needed print(f"Warning: Could not read existing CDF file '{url_file}': {e}", file=sys.stderr) # Proceed with new data # Pad the data with NaNs to ensure it fits the interval url_data.trim( starttime=interval_start, endtime=interval_end, nearest_sample=False, pad=True, fill_value=np.nan, ) # Write the data to the CDF file with open(url_file, "wb") as fh: self.write_file(fh, url_data, channels) else: # Unsupported URL scheme encountered raise TimeseriesFactoryException("Unsupported URL scheme in urlTemplate") def _create_global_attributes(self, timeseries: Stream, channels: List[str]) -> dict: """ Create a dictionary of global attributes for the ImagCDF file. These attributes apply to all the data in the file and include metadata such as observatory information, data publication level, and format descriptions. References: - ImagCDF Documentation Section 4: ImagCDF Global Attributes """ stats = timeseries[0].stats if len(timeseries) > 0 else None # Extract metadata from stats or fallback to defaults observatory_name = getattr(stats, 'station_name', None) or self.observatory or "Unknown Observatory" station = getattr(stats, 'station', None) or "Unknown Iaga Code" institution = getattr(stats, 'agency_name', None) or "Unknown Institution" latitude = getattr(stats, 'geodetic_latitude', None) or 0.0 longitude = getattr(stats, 'geodetic_longitude', None) or 0.0 elevation = getattr(stats, 'elevation', None) or 99_999.0 vector_orientation = getattr(stats, 'sensor_orientation', None) or "" data_interval_type = getattr(stats, 'data_interval_type', None) or self.interval publication_level = IMCDFPublicationLevel(data_type=self.type).to_string() global_attrs = { 'FormatDescription': {0: 'INTERMAGNET CDF Format'}, 'FormatVersion': {0: '1.2'}, 'Title': {0: 'Geomagnetic time series data'}, 'IagaCode': {0: station}, 'ElementsRecorded': {0: ''.join(channels)}, 'PublicationLevel': {0: publication_level}, 'PublicationDate': {0: [cdflib.cdfepoch.timestamp_to_tt2000(datetime.timestamp(datetime.now(timezone.utc))), "cdf_time_tt2000"]}, 'ObservatoryName': {0: observatory_name}, 'Latitude': {0: np.array([latitude], dtype=np.float64)}, 'Longitude': {0: np.array([longitude], dtype=np.float64)}, 'Elevation': {0: np.array([elevation], dtype=np.float64)}, 'Institution': {0: institution}, 'VectorSensOrient': {0: vector_orientation}, #remove F - because its a calculation, not an element? 'StandardLevel': {0: 'None'}, # Set to 'None' # Temporarily Omit 'StandardName', 'StandardVersion', 'PartialStandDesc' 'Source': {0: 'institute'}, # "institute" - if the named institution provided the data, “INTERMAGNET” - if the data file has been created by INTERMAGNET from another data source, “WDC” - if the World Data Centre has created the file from another data source # 'TermsOfUse': {0: self.getINTERMAGNETTermsOfUse()}, # 'UniqueIdentifier': {0: ''}, # 'ParentIdentifiers': {0: ''}, # 'ReferenceLinks': {0: ''}, #links to /ws, plots, USGS.gov } return global_attrs def _create_time_stamp_variables(self, timeseries: Stream) -> dict: vector_times = None scalar_times = None for trace in timeseries: channel = trace.stats.channel times = [ (trace.stats.starttime + trace.stats.delta * i).datetime for i in range(trace.stats.npts) ] # Convert timestamps to TT2000 format required by CDF tt2000_times = cdflib.cdfepoch.timestamp_to_tt2000([time.timestamp() for time in times]) # tt2000_times = cdflib.cdfepoch.compute_tt2000(times) #this does not work if channel in self._get_vector_elements(): if vector_times is None: vector_times = tt2000_times else: if not np.array_equal(vector_times, tt2000_times): raise ValueError("Time stamps for vector channels are not the same.") elif channel in self._get_scalar_elements(): if scalar_times is None: scalar_times = tt2000_times else: if not np.array_equal(scalar_times, tt2000_times): raise ValueError("Time stamps for scalar channels are not the same.") else: # Handle other channels if necessary pass time_vars = {} if vector_times is not None: time_vars['GeomagneticVectorTimes'] = vector_times if scalar_times is not None: time_vars['GeomagneticScalarTimes'] = scalar_times return time_vars def _create_var_spec( self, var_name: str, data_type: str, num_elements: int, var_type: str, dim_sizes: List[int], sparse: bool, compress: int, pad: Optional[Union[str, np.ndarray]], ) -> dict: """ Create a variable specification dictionary for cdflib. This is used to define the properties of a variable when writing it to the CDF file. Parameters: - var_name: Name of the variable. - data_type: CDF data type. - num_elements: Number of elements per record. - var_type: Variable type ('zVariable' or 'rVariable'). - dim_sizes: Dimensions of the variable (empty list for 0D). - sparse: Whether the variable uses sparse records. - compress: Compression level. - pad: Pad value for sparse records. Reference: - CDF User's Guide: Variable Specification """ var_spec = { 'Variable': var_name, 'Data_Type': data_type, 'Num_Elements': num_elements, 'Rec_Vary': True, 'Var_Type': var_type, 'Dim_Sizes': dim_sizes, 'Sparse': 'no_sparse' if not sparse else 'pad_sparse', 'Compress': compress, 'Pad': pad, } return var_spec def _create_var_attrs(self, trace: Trace) -> dict: # print(trace.stats) channel = trace.stats.channel fieldnam = f"Geomagnetic Field Element {channel}" # “Geomagnetic Field Element ” + the element code or “Temperature ” + the name of the location where the temperature was recorded. units = '' # Must be one of “nT”, “Degrees of arc” or “Celsius” if channel == 'D': units = 'Degrees of arc' validmin = -360.0 validmax = 360.0 # A full circle representation elif channel == 'I': units = 'Degrees of arc' validmin = -90.0 validmax = 90.0 #The magnetic field vector can point straight down (+90°), horizontal (0°), or straight up (-90°). elif 'Temperature' in channel: units = 'Celsius' fieldnam = f"Temperature {trace.stats.location}" elif channel == 'F': units = 'nT' validmin = 0.0 # negative magnetic field intestity not physically meaningful. validmax = 79_999.0 elif channel in ['X', 'Y', 'Z', 'H', 'E', 'V', 'G']: units = 'nT' validmin = -79_999.0 validmax = 79_999.0 if channel in self._get_vector_elements(): depend_0 = 'GeomagneticVectorTimes' elif channel in self._get_scalar_elements(): depend_0 = 'GeomagneticScalarTimes' else: depend_0 = None # Handle other cases if necessary var_attrs = { 'FIELDNAM': fieldnam, 'UNITS': units, 'FILLVAL': 99999.0, 'VALIDMIN': validmin, 'VALIDMAX': validmax, 'DEPEND_0': depend_0, 'DISPLAY_TYPE': 'time_series', 'LABLAXIS': channel, } return var_attrs def _create_time_var_attrs(self, ts_name: str) -> dict: """ Create a dictionary of time variable attributes. These attributes provide metadata for time variables. Note: None of these attributes are required for the time stamp variables GeomagneticVectorTimes and GeomagneticScalarTimes. Reference: - ImagCDF Documentation Section 3: ImagCDF Data """ # var_attrs = { # 'UNITS': 'TT2000', # 'DISPLAY_TYPE': 'time_series', # 'LABLAXIS': 'Time', # } # return var_attrs return {} def _get_cdf_data_type(self, trace: Trace) -> int: """ Map ObsPy trace data type to CDF data type. Determines the appropriate CDF data type based on the NumPy data type of the trace data. Returns: - CDF_DOUBLE (45) for floating-point data. - CDF_INT4 (41) for integer data. Reference: - CDF Data Types: http://cdf.gsfc.nasa.gov/html/cdfdatatypes.html """ # CDF data type constants CDF_DOUBLE = 45 # CDF_DOUBLE corresponds to 64-bit float CDF_INT4 = 41 # CDF_INT4 corresponds to 32-bit int if trace.data.dtype in [np.float32, np.float64]: return CDF_DOUBLE elif trace.data.dtype in [np.int32, np.int64]: return CDF_INT4 else: # Default to double precision float return CDF_DOUBLE def _read_cdf(self, cdf: cdflib.cdfread.CDF) -> Stream: """ Read CDF data into an ObsPy Stream. This method reads the data variables and their corresponding time variables from a CDF file and constructs an ObsPy Stream. Parameters: - cdf: cdflib CDF object representing the open CDF file. Returns: - An ObsPy Stream containing the data from the CDF file. """ stream = Stream() # Read time variables time_vars = {} for var in cdf.cdf_info()['zVariables']: if var.endswith('Time'): time_data = cdf.varget(var) # Convert TT2000 to UTCDateTime utc_times = [UTCDateTime(t) for t in cdflib.cdfepoch.to_datetime(time_data)] time_vars[var] = utc_times # Read data variables for var in cdf.cdf_info()['zVariables']: if not var.endswith('Time'): data = cdf.varget(var) attrs = cdf.varattsget(var) if 'DEPEND_0' in attrs: ts_name = attrs['DEPEND_0'] if ts_name in time_vars: times = time_vars[ts_name] if len(times) > 1: delta = times[1] - times[0] # Calculate sample interval else: delta = 60 if self.interval == 'minute' else 1 trace = Trace( data=data, header={ 'station': self.observatory, 'channel': var, 'starttime': times[0], 'delta': delta, } ) stream += trace return stream @staticmethod def getINTERMAGNETTermsOfUse() -> str: """ Return the INTERMAGNET Terms of Use. These terms should be included in the 'TermsOfUse' global attribute as per the ImagCDF specification. Reference: - ImagCDF Documentation Section 4.5: Attributes that Relate to Publication of the Data """ return ( "CONDITIONS OF USE FOR DATA PROVIDED THROUGH INTERMAGNET:\n" "The data made available through INTERMAGNET are provided for\n" "your use and are not for commercial use or sale or distribution\n" "to third parties without the written permission of the institute\n" "(http://www.intermagnet.org/Institutes_e.html) operating\n" "the observatory. Publications making use of the data\n" "should include an acknowledgment statement of the form given below.\n" "A citation reference should be sent to the INTERMAGNET Secretary\n" "(secretary@intermagnet.org) for inclusion in a publications list\n" "on the INTERMAGNET website.\n" "\n" " ACKNOWLEDGEMENT OF DATA FROM OBSERVATORIES\n" " PARTICIPATING IN INTERMAGNET\n" "We offer two acknowledgement templates. The first is for cases\n" "where data from many observatories have been used and it is not\n" "practical to list them all, or each of their operating institutes.\n" "The second is for cases where research results have been produced\n" "using a smaller set of observatories.\n" "\n" " Suggested Acknowledgement Text (template 1)\n" "The results presented in this paper rely on data collected\n" "at magnetic observatories. We thank the national institutes that\n" "support them and INTERMAGNET for promoting high standards of\n" "magnetic observatory practice (www.intermagnet.org).\n" "\n" " Suggested Acknowledgement Text (template 2)\n" "The results presented in this paper rely on the data\n" "collected at <observatory name>. We thank <institute name>,\n" "for supporting its operation and INTERMAGNET for promoting high\n" "standards of magnetic observatory practice (www.intermagnet.org).\n" ) def _get_url( self, observatory: str, date: UTCDateTime, type: DataType = "variation", interval: DataInterval = "minute", channels: Optional[List[str]] = None, ) -> str: """ Generate the file URL specific to ImagCDF conventions. This method constructs the filename based on the ImagCDF naming conventions, which include the observatory code, date-time formatted according to the data interval, and the publication level. Parameters: - observatory: IAGA code of the observatory. - date: Start date for the file. - type: Data type indicating the processing level. - interval: Data interval (e.g., 'minute', 'second'). - channels: List of channels (optional). Returns: - The formatted file URL or path. Reference: - ImagCDF Documentation Section 5: ImagCDF File Names """ # Get the publication level for the type publication_level = IMCDFPublicationLevel(data_type=type).to_string() # Determine filename date format based on interval if interval == "year": date_format = date.strftime("%Y") elif interval == "month": date_format = date.strftime("%Y%m") elif interval == "day": date_format = date.strftime("%Y%m%d") elif interval == "hour": date_format = date.strftime("%Y%m%d_%H") elif interval == "minute": date_format = date.strftime("%Y%m%d_%H%M") elif interval == "second": date_format = date.strftime("%Y%m%d_%H%M%S") else: raise ValueError(f"Unsupported interval: {interval}") # Default filename following ImagCDF convention # Filename format: [iaga-code]_[date-time]_[publication-level].cdf filename = f"{observatory.lower()}_{date_format}_{publication_level}.cdf" # If the urlTemplate explicitly specifies 'stdout', return 'stdout' if self.urlTemplate.lower() == "stdout": return "stdout" # Prepare parameters for templating params = { "date": date.datetime, "i": self._get_interval_abbreviation(interval), "interval": self._get_interval_name(interval), "minute": date.hour * 60 + date.minute, "month": date.strftime("%b").lower(), "MONTH": date.strftime("%b").upper(), "obs": observatory.lower(), "OBS": observatory.upper(), "t": publication_level, "type": self._get_type_name(type), "julian": date.strftime("%j"), "year": date.strftime("%Y"), "ymd": date.strftime("%Y%m%d"), "dt": date_format, # Add the date-time formatted string } # Attempt to use the template provided in urlTemplate if "{" in self.urlTemplate and "}" in self.urlTemplate: try: return self.urlTemplate.format(**params) except KeyError as e: raise TimeseriesFactoryException(f"Invalid placeholder in urlTemplate: {e}") # If the urlTemplate doesn't support placeholders, assume 'file://' scheme if self.urlTemplate.startswith("file://"): base_path = self.urlTemplate[7:] # Strip "file://" if not base_path or base_path == "{obs}_{dt}_{t}.cdf": base_path = os.getcwd() # Default to current working directory return os.path.join(base_path, filename) # Unsupported URL scheme raise TimeseriesFactoryException( f"Unsupported URL scheme in urlTemplate: {self.urlTemplate}" ) # Placeholder methods for interval and type names/abbreviations def _get_interval_abbreviation(self, interval: DataInterval) -> str: """Get the abbreviation for the data interval.""" abbreviations = { "year": "yr", "month": "mon", "day": "day", "hour": "hr", "minute": "min", "second": "sec", } return abbreviations.get(interval, "min") def _get_interval_name(self, interval: DataInterval) -> str: """Get the full name for the data interval.""" names = { "year": "yearly", "month": "monthly", "day": "daily", "hour": "hourly", "minute": "minute", "second": "second", } return names.get(interval, "minute") def _get_type_name(self, type: DataType) -> str: """Get the full name for the data type.""" type_names = { "variation": "variation", "definitive": "definitive", "quasi-definitive": "quasi-definitive", "provisional": "provisional", "adjusted": "adjusted", "none": "none", } return type_names.get(type, "variation") def _get_vector_elements(self): return {'X', 'Y', 'Z', 'H', 'D', 'E', 'V', 'I', 'F'} def _get_scalar_elements(self): return {'S', 'G'}