
Set 2 Part 1 Test Cases 
 
General Instructions (same as Set 1) 
 
•  Please provide mean hazard results (probability of exceedance) for peak horizontal acceleration 

(PGA) defined at 0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 
0.8, 0.9, and 1.0 g. (*Note Test Case 2.5 has different PGA values specified) 

•  Assume a Poisson model when converting rates to annual probabilities of exceedance  
•  Use 16.05 (not 16.1) in the equation logMo = 16.05 + 1.5M 
•  Use 3x1011 dyne/cm2 
•  Use a magnitude integration step size small enough to define the specified magnitude density 

function. The bin size for magnitude integration should be defined such that the Mmin is at the 
lower edge of a bin, not in the center (i.e., If your magnitude step size is 0.01, one magnitude bin 
should be from M 5.0 to 5.01) 

•  When integrating over the magnitude density function (balancing the moment), integrate from 
zero (not Mmin) 

•  Sigma = 0 for the ground motion model implies that the sigma in the relationship is artificially 
set to zero, not that the sigma is truncated 

•  Note that equation for ln(y) in Table 3.1 of Sadigh et al. (1997) has a typo in the third term. It 
should read C3*(8.5-M)^2.5 to match equation 2.2. 

•  Rupture dimension relationships: 
Log (A) = M – 4   σA= 0 
Log (W) = (0.5*M) – 2.15  σW= 0 
 Log (L) = (0.5*M) – 1.85  σL= 0 
 (σA= σW = σL = 0 for all test cases in this set) 
 Aspect Ratio (L/W) = 2 

•  Maintain the aspect ratio defined until maximum width is reached, then increase length 
(conservation of area at the expense of aspect ratio) 

•  Rupture plane location is uniformly distributed along strike and down dip. Do not allow rupture 
off the ends of fault. This results in uniform slip with tapered edges. Downdip and along-strike 
integration step size should be small enough to produce uniform rupture location. (*Note Test 
Case 2.4b has a different distribution specified downdip) 

•  You should be using as small a step size as feasible/necessary to produce stable results (for both 
magnitude density function and rupture distribution). This may be much smaller than you 
normally use on projects.  
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Case 2.1 – Multiple sources, Deaggregation 
 
Description: Calculate the hazard for Site 1 shown in Figure 2.1 due to the area source, Fault B, and 
Fault C. 
 
Area Source: circle with r = 100 km, point source depths = 5-10 km, N(M≥5) = 0.0395, use 1 km grid 
spacing of point sources or small faults on the horizontal plane to simulate uniform distribution (for 
depth distribution use 1 km spacing inclusive of 5 and 10 km, so there are 6 depths - 5, 6, 7, 8, 9, and 
10 km, equal weighting) 
Magnitude Density Function: truncated exponential model, Mmin = 5.0, Mmax= 6.5, b-value = 0.9 
 
Fault B: L = 85 km, fault plane depths = 0-12 km, strike-slip, dip 90°, slip rate = 2 mm/yr 
Magnitude Density Function: characteristic model (Youngs and Coppersmith [1985]), b-value = 0.9, 
Mmin = 5.0, Mchar = 6.75, Mmax = 7.0 
 
Fault C: L = 50 km, fault plane depths = 0-12 km, strike-slip, dip 90°, slip rate = 1 mm/yr 
Magnitude Density Function: characteristic model (Youngs and Coppersmith [1985]), b-value = 0.9, 
Mmin = 5.0, Mchar = 6.5, Mmax = 6.75 
 
Ground motion model: Sadigh et al. (1997), rock, σ untruncated 
 
Rupture plane (for faults): 

Log (A) = M – 4   σA= 0 
Log (W) = (0.5*M) – 2.15  σW= 0 
 Log (L) = (0.5*M) – 1.85  σL= 0 
 Aspect Ratio (L/W) = 2 
 Maintain the aspect ratio defined until maximum width is reached, then increase length  
 (conservation of area at the expense of aspect ratio) 
 Uniform distribution along strike and down dip 
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Case 2.1 – Multiple sources, Deaggregation (continued) 
 
Deaggregation: Provide deaggregation results for the following three PGA values at Site 1: 

 a.  PGA 0.05g 
b.  The PGA corresponding to a hazard (annual exceedance probability) of 0.001. 
c.  PGA 0.35g 

 
Tables: Provide a table for each PGA with distance (Rrup), magnitude, and epsilon* bins. Distance 
bins should each be 10 20 km, starting at 0 km and ending at 100 km with an extra bin for >100 km 
(5 6 bins). Magnitude bins should each be 0.1 M, starting at M 5.0 and ending at M 7.0 (20 bins). The 
epsilon* bins should be defined as <-1, -1 to 0, 0 to 1, 1 to 2, >2 (5 bins). 

Distance (km) Magnitude Epsilon* Deaggregation Results 

0-10  0-20 5.0-5.1 <-1 

10-20  20-40 5.0-5.1 <-1 

à
 5.0-5.1 <-1 

80-90  80-100 5.0-5.1 <-1 

90-100  >100 5.0-5.1 <-1 

0-10  0-20 5.1-5.2 <-1 

10-20  20-40 5.1-5.2 <-1 

à
 5.1-5.2 <-1 

80-90  80-100 5.1-5.2 <-1 

90-100  >100 5.1-5.2 <-1 

à
 

6.9-7.0 <-1 

à
 

>2 
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Averages: Provide the mean values      ,     ,        for each PGA at Site 1. For this test case the distance 
term is Rrup (further explanation on deaggregation terms attached). 

M R ε *



Site Latitude  Longitude Comment 

1 0.00000 -65.00000 In center of area source 

Site coordinates 

Latitude  Longitude Comment 

0.44966 -65.38222 West end of Fault B 

0.44966 -64.61778 East end of Fault B 

-0.22483 -65.22484 West end of Fault C 

-0.22483 -64.77516 East end of Fault C 

Fault coordinates 

1 
r = 100 km 

Fault B 

Fault C 

Figure 2.1 – Multiple sources, Deaggregation 

50 km 
85 km 

50 km 
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25 km 

N 
  

(above) (looking West) 

12 km 

Fault B 

Fault C 

1 

1 

Note: figures not to scale 

12 km 

5 km 
5 km 

Area 



Point Latitude  Longitude 

0 0.8993 -65.0000 

1 0.8971 -64.9373 

2 0.8906 -64.8748 

3 0.8797 -64.8130 

4 0.8645 -64.7521 

5 0.8451 -64.6924 

6 0.8216 -64.6342 

7 0.7940 -64.5778 

8 0.7627 -64.5234 

9 0.7276 -64.4714 

10 0.6899 -64.4219 

11 0.6469 -64.3753 

12 0.6017 -64.3316 

13 0.5537 -64.2913 

14 0.5029 -64.2544 

15 0.4496 -64.2211 

16 0.3942 -64.1917 

17 0.3369 -64.1662 

18 0.2779 -64.1447 

19 0.2176 -64.1274 

20 0.1562 -64.1143 

21 0.0940 -64.1056 

22 0.0314 -64.1012 

23 -0.0314 -64.1012 

24 -0.0940 -64.1056 

25 -0.1562 -64.1143 

26 -0.2176 -64.1274 

27 -0.2779 -64.1447 

Area source coordinates 
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Point Latitude  Longitude 

28 -0.3369 -64.1662 

29 -0.3942 -64.1917 

30 -0.4496 -64.2211 

31 -0.5029 -64.2544 

32 -0.5537 -64.2913 

33 -0.6017 -64.3316 

34 -0.6469 -64.3753 

35 -0.6889 -64.4219 

36 -0.7276 -64.4714 

37 -0.7627 -64.5234 

38 -0.7940 -64.5778 

39 -0.8216 -64.6342 

40 -0.8451 -64.6924 

41 -0.8645 -64.7521 

42 -0.8797 -64.8130 

43 -0.8906 -64.8748 

44 -0.8971 -64.9373 

45 -0.8993 -65.0000 

46 -0.8971 -65.0627 

47 -0.8906 -65.1252 

48 -0.8797 -65.1870 

49 -0.8645 -65.2479 

50 -0.8451 -65.3076 

51 -0.8216 -65.3658 

52 -0.7940 -65.4222 

53 -0.7627 -65.4766 

54 -0.7276 -65.5286 

Area source coordinates 
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Point Latitude  Longitude 

55 -0.6889 -65.5781 

56 -0.6469 -65.6247 

57 -0.6017 -65.6684 

58 -0.5537 -65.7087 

59 -0.5029 -65.7456 

60 -0.4496 -65.7789 

61 -0.3942 -65.8083 

62 -0.3369 -65.8338 

63 -0.2779 -65.8553 

64 -0.2176 -65.8726 

65 -0.1562 -65.8857 

66 -0.0940 -65.8944 

67 -0.0314 -65.8988 

68 0.0314 -65.8988 

69 0.0940 -65.8944 

70 0.1562 -65.8857 

71 0.2176 -65.8726 

72 0.2779 -65.8553 

73 0.3369 -65.8338 

74 0.3942 -65.8083 

75 0.4496 -65.7789 

76 0.5029 -65.7456 

77 0.5537 -65.7087 

78 0.6017 -65.6684 

79 0.6469 -65.6247 

80 0.6889 -65.5781 

81 0.7276 -65.5286 



Point Latitude  Longitude 

82 0.7627 -65.4766 

83 0.7940 -65.4222 

84 0.8216 -65.3658 

85 0.8451 -65.3076 

86 0.8645 -65.2479 

87 0.8797 -65.1870 

88 0.8906 -65.1252 

89 0.8971 -65.0627 

90 0.8993 -65.0000 

Area source coordinates 
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(Point 90 is a duplicate of point 0 and closes the circle) 



Case 2.1 Explanation – Multiple sources, Deaggregation 
 
Epsilon* 
 
The epsilon corresponding to a particular ground motion would just be epsilon, but in PSHA we 
calculate the probability of EXCEEDING a particular ground motion. Therefore, the epsilon (which 
we’ve denoted epsilon*) actually corresponds to any ground motion greater than the ground motion 
specified, and can be thought of as the minimum epsilon needed to exceed that ground motion, as 
illustrated below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean deagreggation values 
 
Starting with the typical equation for a seismic hazard analysis, the total annual rate of events, ν, with 
spectral accelerations, Sa, that exceed a specified value, z, is given by: 
 
 
 
 
 
Where Ni(Mmin) is the annual rate of earthquakes with magnitude greater than or equal to Mmin, r is 
the distance from the source to the site, m is earthquake magnitude, fm(m) and fr(r) are probability 
density functions for magnitude and distance, and P(Sa>z|m,r) is the conditional probability of 
observing a spectral acceleration, Sa, greater than z for a given earthquake magnitude and distance. 
 
The mean magnitude and mean distance values are the weighted averages with the weights given by 
the deaggregation. More specifically, the mean is the conditional mean given the exceedance of the 
specified ground motion. The equation for the mean magnitude is given by multiplying the 
magnitude inside the hazard integral (in other words multiplying the magnitude by the marginal 
hazard). Likewise, the equation for the mean distance is given by multiplying the distance inside the 
hazard integral: 
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Case 2.1 Explanation – Multiple sources, Deaggregation (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mean epsilon* is computed in exactly the same way, but for clarity, let’s first rewrite the seismic 
hazard equation to replace the                          term with an equation that explicitly shows ε*: 
 
 
 
 
 
 
 
 
 
Where Φ( ) is the standard normal cumulative distribution function, and ε* is computed by: 
 
  
 
 
 
Now the equation for the mean epsilon* is given by multiplying the epsilon* inside the hazard 
integral:  
 
 
 
 
 
 
 
For an example of how to compute the mean magnitude, mean distance, and mean epsilon*, please 
see the excel file, “Deaggregation.” 
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R =
Ni (Mmin ) Rfmi (m) fri (r)P(Sa > z m, r)dr dm

m=Mmin

Mmax

∫
r=0

∞

∫
i=1

NSource

∑

ν (Sa > z)

ε *=
Ni (Mmin ) ε* fmi (m) fri (r)[1−Φ(ε

*)]dr dm
m=Mmin

Mmax

∫
r=0

∞

∫
i=1

NSource

∑

ν (Sa > z)

M =

Ni (Mmin ) Mfmi (m) fri (r)P(Sa > z m, r)dr dm
m=Mmin

Mmax

∫
r=0

∞

∫
i=1

NSource

∑

ν (Sa > z)

ε* =
ln z− lnSa
σ lnSa

P(Sa > z m, r) =1−Φ(ε*)

P(Sa > z m, r)

ν (Sa > z) = Ni (Mmin ) fmi (m) fri (r)[1−Φ(ε
*)]dr dm

m=Mmin

Mmax

∫
r=0

∞

∫
i=1

Nsource

∑



Case 2.2 – NGA West 2 Ground Motion Models 
  
Description: Calculate the hazard for the six sites shown in Figure 2.2 due to Fault 3 using the 
specified NGA West 2 ground motion models.  
 
Magnitude Density Function: truncated exponential, Mmin = 5.0, Mmax= 7.0, b-value = 0.9 
 
Source: Fault 3, L = 85 km, fault plane depths = 0-12 km, strike-slip, dip 90°, slip rate = 2 mm/yr 
 
Ground motion models: 

a1.  Abrahamson, Silva, and Kamai 2014, σ = 0 
a2.  Abrahamson, Silva, and Kamai 2014, σ untruncated 
b1.  Boore, Stewart, Seyhan, and Atkinson 2014, σ = 0 
b2.  Boore, Stewart, Seyhan, and Atkinson 2014, σ untruncated 
c1.  Campbell and Bozorgnia 2014, σ = 0 
c2.  Campbell and Bozorgnia 2014, σ untruncated 
d1.  Chiou and Youngs 2014, σ = 0 
d2.  Chiou and Youngs 2014, σ untruncated 

 
Damping ratio = 5% 
VS30 = 760 m/s 
VS30 is measured 
Z1.0 = 0.048 km 
Z2.5 = 0.607 km 
Region = California 

  
Rupture plane: 

Log (A) = M – 4   σA= 0 
Log (W) = (0.5*M) – 2.15  σW= 0 
 Log (L) = (0.5*M) – 1.85  σL= 0 
 Aspect Ratio (L/W) = 2 
 Maintain the aspect ratio defined until maximum width is reached, then increase length  
 (conservation of area at the expense of aspect ratio)   
 Uniform distribution along strike and down dip 
 Use a hypocenter depth location in the geometric center of the rupture plane 
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12 km 

FAULT 3 

2 3 4 1 5 85 km 

25 km 

42.5 km 

5 km 10 km 
10 km 

15 km 

Figure 2.2 – NGA West 2 Ground Motion Models 

5 km 
6 

Latitude  Longitude Comment 

0.38221 -65.00000 North end of fault 

-0.38221 -65.00000 South end of fault 

Site Latitude  Longitude Comment 

1 0.00000 -64.91005 10 km east of fault, at midpoint along strike 

2 0.00000 -65.04497 5 km west of fault, at midpoint along strike 

3 0.00000 -65.08995 10 km west of fault, at midpoint along strike 

4 0.00000 -65.13490 15 km west of fault, at midpoint along strike 

5 0.00000 -65.22483 25 km west of fault, at midpoint along strike 

6 -0.42718 -65.00900 5 km south of southern end, 1 km west 

Fault coordinates 

Site coordinates 

(above) 

1 km 
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2 3 4 1 5 6 

Note: figures not to scale 



Case 2.3 – Hanging Wall 
  
Description: Calculate the hazard for the six sites shown in Figure 2.3 due to a single-magnitude 
event on Fault 4 using the specified NGA West 2 ground motion models.  
 
Magnitude Density Function: delta function at M 7.0 
 
Source: Fault 4, L = 85 km, fault plane depths = 1-12 km, reverse, dip 45°, slip rate = 2 mm/yr 
 
Ground motion models: 

a.  Abrahamson, Silva, and Kamai 2014, σ = 0 
b.  Boore, Stewart, Seyhan, and Atkinson 2014, σ = 0 
c.  Campbell and Bozorgnia 2014, σ = 0 
d.  Chiou and Youngs 2014, σ = 0 

 
Damping ratio = 5% 
VS30 = 760 m/s 
VS30 is measured 
Z1.0 = 0.048 km 
Z2.5 = 0.607 km 
Region = California 

  
Rupture plane: 

Log (A) = M – 4   σA= 0 
Log (W) = (0.5*M) – 2.15  σW= 0 
 Log (L) = (0.5*M) – 1.85  σL= 0 
 Aspect Ratio (L/W) = 2 
 Maintain the aspect ratio defined until maximum width is reached, then increase length  
 (conservation of area at the expense of aspect ratio)   
 Uniform distribution along strike and down dip 
 Use a hypocenter depth location in the geometric center of the rupture plane 
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FAULT 4 

Figure 2.3 – Hanging Wall 

Latitude  Longitude Comment 

0.38221 -65.00000 North end of fault 

-0.38221 -65.00000 South end of fault 

Site Latitude  Longitude Comment 

1 0.00000 -64.91005 10 km east of fault, at midpoint along strike (FW) 

2 0.00000 -65.04497 5 km west of fault, at midpoint along strike (HW) 

3 0.00000 -65.08995 10 km west of fault, at midpoint along strike (HW) 

4 0.00000 -65.13490 15 km west of fault, at midpoint along strike (HW) 

5 0.00000 -65.22483 25 km west of fault, at midpoint along strike (HW) 

6 -0.42718 -65.00900 5 km south of southern end, 1 km west (HW side) 

Fault coordinates 

Site coordinates 

(above) 

11 km 

1 km 
45° 

2 3 4 1 5 85 km 

25 km 

42.5 km 

5 km 10 km 
10 km 

15 km 

5 km 
6 

1 km 
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(looking North) 

2 3 4 1 5 6 

Note: figures not to scale 



Case 2.4 – Uniform, Triangular distribution of hypocenter locations down dip 
 
a. Uniform distribution down dip 
 
Description: Calculate the hazard for the site shown in Figure 2.4 due to a single-magnitude event on 
Fault 5 using the specified NGA West 2 ground motion models. (The purpose of this test is to have a 
comparison for the triangular distribution in part b).  
 
Magnitude Density Function: delta function at M 6.0 
 
Source: Fault 5, L = 25 km, fault plane depths = 0-30 km, strike-slip, dip 90°, slip rate = 2 mm/yr 
 
Ground motion models: Chiou and Youngs 2014, σ = 0 
 

Damping ratio = 5% 
VS30 = 760 m/s 
VS30 is measured 
Z1.0 = 0.048 km 
Z2.5 = 0.607 km 
Region = California 

  
Rupture plane: 

Log (A) = M – 4   σA= 0 
Log (W) = (0.5*M) – 2.15  σW= 0 
 Log (L) = (0.5*M) – 1.85  σL= 0 
 Aspect Ratio (L/W) = 2 
 Maintain the aspect ratio defined until maximum width is reached, then increase length  
 (conservation of area at the expense of aspect ratio)   
 Uniform distribution along strike and down dip 
 Use a hypocenter depth location in the geometric center of the rupture plane 

 
b. Triangular distribution of hypocenter locations down dip 
 
Description:  Use the same specifications above, but replace the uniform distribution down dip with a 
triangular distribution of hypocenter locations down dip (further explanation on triangular 
distribution attached).  
 
Triangular distribution of hypocenter locations down dip (0 km, 10 km, 30 km) 
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30 km 

FAULT 5 

1 25 km 

12.5 km 

1 km 

Figure 2.4 - Uniform, Triangular distribution of hypocenter locations down dip 

Latitude  Longitude Comment 

0.11240 -65.00000 North end of fault 

-0.11240 -65.00000 South end of fault 

Site Latitude  Longitude Comment 

1 0.00000 -65.00900 1 km west of fault, at midpoint along strike 

Fault coordinates 

Site coordinates 

(above) 

15	
  

(looking North) 

N 
  

Note: figures not to scale 

1 



z (dow
n dip) 

z2 

z3 

z1 = 0 km 
z2 = 10 km 
z3 = 30 km 

 
 
The location of the rupture plane on the fault in the down dip direction is based on hypocenter 
observations. When the source characterization experts specify a triangular distribution they are 
basing that on hypocenter locations on the fault plane. Therefore, it is not simply the rupture plane 
that follows the triangular distribution, but specifically the hypocenter location on the rupture plane. 
 
We specified the distribution of the hypocenter down dip as a triangle (0 km, 10 km, 30 km). Looking 
at the fault plane, the triangle looks like this: 

W = 30 km 

z1 

Case 2.4 Explanation – Triangular distribution of hypocenter locations down dip 
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The area of the triangle (which is a probability density function) must be equal to 1. With the given 
specifications, the value of y1 is 1/15 km-1 or 0.0667 km-1 (note y1 is not drawn to scale).  

z1 = 0 km 
z2 = 10 km 
z3 = 30 km 
y1 = 0.0667 km-1 
Apdf = 1 

z (dow
n dip) 

z2 

z3 W = 30 km 

z1 

y1 



Case 2.4 Explanation – Triangular distribution of hypocenter locations down dip (continued) 

The location of the hypocenter on the rupture plane itself can be modeled with a probability density 
function. For simplicity, we’re going to use a delta function, with the hypocenter location always in 
the center of the rupture plane, or at one half the rupture plane width: 

rupture plane 

hypocenter 
rupture width 

½ rupture width 
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Now we move the rupture plane down the dip of the fault. Because we don’t allow ruptures to go into 
the air, the first rupture plane’s top edge is at a depth of zero, and it’s hypocenter is at a depth of ½ 
the rupture width. As we move the rupture plane down the dip of the fault, the location of the 
hypocenter corresponds to a probability density on the triangular distribution. Below I’ve used a 
relatively large step size for illustrative purposes only. For the validation exercise you should use a 
step size as small as necessary to reach stable results:  

z (dow
n dip) 

In the above illustration the blue dots represent the portion of the pdf that we sampled. Because the 
entire pdf was not sampled, our probabilities will not sum to one and we must renormalize the pdf so 
that the probabilities sum to one. The pdf should be renormalized based on the hypocenter locations 
that were sampled. 



Case 2.5 – Upper Tails, Mixture Model 
 
a.  Upper Tails 
 
Description: Calculate the hazard for the site shown in Figure 2.5 due to a single-magnitude event on 
Fault 5 6 using the specified NGA West 2 ground motion model. The purpose of this scenario is to 
test the ability to model a normal distribution out to high epsilon values. Because we are interested in 
the upper tails of the distribution, we need to change the PGA values.  Please provide mean hazard 
results (probability of exceedance) for peak horizontal acceleration (PGA) defined at 0.001, 0.01, 
0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, and 7.0 g.  
 
Magnitude Density Function: delta function at M 6.0 
 
Source: Fault 5, L = 25 km, fault plane depths = 0-12 km, strike-slip, dip 90°, slip rate = 2 mm/yr 
 
Ground motion model: Chiou and Youngs 2014, use a fixed σ = 0.65, untruncated 
 

Damping ratio = 5% 
VS30 = 760 m/s 
VS30 is measured 
Z1.0 = 0.048 km 
Z2.5 = 0.607 km 
Region = California 

  
Rupture plane: 

Log (A) = M – 4   σA= 0 
Log (W) = (0.5*M) – 2.15  σW= 0 
 Log (L) = (0.5*M) – 1.85  σL= 0 
 Aspect Ratio (L/W) = 2 
 Maintain the aspect ratio defined until maximum width is reached, then increase length  
 (conservation of area at the expense of aspect ratio)   
 Uniform distribution along strike and down dip 
 Use a hypocenter depth location in the geometric center of the rupture plane 

 
b.  Mixture Model 
 
Description:  Use the same specifications above, but adjust the sigma (still fixed σ = 0.65) 
with the following mixture model specifications (further explanation on mixture models attached): 

 
Mixture Model: two normal distributions 
Distribution 1: weight, wMix1 = 0.5, sigma, σMix1 =  1.2 σ 
Distribution 2: weight, wMix2 = 0.5, sigma, σMix2 =  0.8 σ 
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12 km 

FAULT 5 

Figure 2.5 – Mixture Model 

Latitude  Longitude Comment 

0.11240 -65.00000 North end of fault 

-0.11240 -65.00000 South end of fault 

Fault coordinates 

Site coordinates 

1 25 km 

12.5 km 

15 km 

(above) 

Site Latitude  Longitude Comment 

1 0.00000 -65.13490 15 km west of fault, at midpoint along strike 
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(looking North) 

N 
  

1 

Note: figures not to scale 

FAULT 6 



Case 2.5 Explanation – Mixture Model 
 
 *Note that this explanation uses the CY14 sigma, but the test case now specifies a fixed sigma value. 
 
A mixture model is a combination of two distributions. In our case, the ground motion mixture model 
is a combination of two normal distributions. The mixture model is used because the earthquake data 
do not exactly fit the typical normal distribution at high epsilons. For the case of shallow crustal 
earthquakes, the normal distribution is a good model for ground motions up until the tails of the 
distribution (epsilons of about 2.5) and then the data start to deviate from a normal distribution. If 
you plot the observed shallow crustal earthquake data density against the assumed normal 
distribution from the NGA West 2 GMPEs you will start to see that the data show heavier tails than 
the predicted values (meaning that observations show a higher probability of extremes than provided 
by the normal distribution). For most projects these high epsilon values are beyond the range of 
interest, but for projects like Yucca Mountain this misfit can be important. 
 
The typical approach to represent a heavy-tailed distribution for ground motions is to use a mixture 
model consisting of a weighted mixture of two normal distributions, one with a larger variance, and 
one with a smaller variance. The standard deviation for each distribution is specified as a ratio of the 
standard deviation of the ground motion model. The two mixtures are combined by specifying a 
weight for each distribution. If you calibrate the mixture model using the CY14 residuals, the 
standard deviation ratios are 1.2 and 0.8 and the weight for each distribution is 50%. For this mixture 
model the conditional probability of exceeding a ground motion level Z is given by: 
 
 

σMix2 = 0.8σCY14 

σMix1 = 1.2σCY14 
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The two normal distributions with sigmas equal to 0.8σCY14 and 1.2σCY14 look like this: 

P(Z > z) = wMix1 1−Φ
z−µ
σMix1
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Case 2.5 Explanation – Mixture Model (continued) 
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Comparing the distribution for the CY14 ground motion model with the distribution for the mixture 
model shows that the distributions are nearly the same for the epsilon range -2.5 to 2.5, where the 
single normal distribution was a good fit for the data: 

Mixture Model 

CY14 

The above figure makes it difficult to see how the mixture model accounts for the heavier tails that 
were needed, but if we zoom in at the high epsilon range we can see the increased probability density  
at high epsilons: 

Mixture Model 

CY14 



Case 2.5 Explanation – Mixture Model (continued) 
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In order to see the difference between the two distributions for the full range of epsilons we need to 
compare the distributions on a plot with the probability density (y-axis) on a log scale. This plot 
shows the heavier tails of the mixture model: 

Mixture Model 

CY14 

We could also look at the distributions on a Q-Q plot, where we consider the CY14 model the 
theoretical distribution and the mixture model the observed: 

Mixture Model 

CY14 

Reference for Mixture Model explanation: Southwestern U.S. Ground Motion Characterization 
SSHAC Report, draft. 


