The dataRetrieval R package

Laura De Cicco! and Robert Hirsch!

L United States Geological Survey

March 14, 2013

Contents
T Tach [ataReirieval 9
2__General USGS Web Retrievals| 3
RI Tntroductionl. 3
2.2 Site Informationl L 4
[2.2.1 getSiteFileDatalo 4
[2.2.2 getDataAvailability].o o 5
2.3 Parameter Information| Lo oL L 6
2.4 Daily Values|. 7
2.5 Unit Values oo 9
2.6 Water Quality Values| o o 11
2.7 STORET Water Quality Retrievals| 12
2.8 URL Constructionl oo 13
(3 Data Retrievals Structured For Use In The EGRET Package| 13
BI INFO Datal 14
[3.2 Daily Data] 14
[3.3 Sample Datal 15
[3.4 Censored Values: Summation Explanation|. 16

[3.5.1 getDailyDatakFromkFile| o0 000 17

[3.5.2 getSampleDataFromkFilel 00000000000 18

[3.6 Merge Report| 19
BT _EGRETPIOE . . -« o o o oo e e e e e e e 20

[A Getting Started in R| 22
(A.1 New to R7. o o e e e e e 22
[A.2 R User: Installing dataRetrievall. 22
[A.3 R Developers: Installing dataRetrieval from gitHub|. 23
IB_Columns Names| 25
(B.1 INFO dataframel 25
[B.2 Water Quality Portal[. oo 26

[C Creating tables in Microsoft from R| 28

1 Introduction to dataRetrieval

The dataRetrieval package was created to simplify the process of getting hydrologic data in
the R enviornment. It has been specifically designed to work seamlessly with the EGRET
R package: Exploration and Graphics for RivEr Trends (EGRET). See: https://github.
com/USGS-R/EGRET/wiki for information on EGRET. EGRET is designed to provide analysis
of water quality data sets using the WRTDS method of data analysis (WRTDS is Weighted
Regressions on Time, Discharge and Season) as well as analysis of streamflow trends using
robust time-series smoothing techniques. Both of these capabilities provide both tabular and
graphical analyses of long-term data sets.

The dataRetrieval package is designed to retrieve many of the major data types of USGS
hydrologic data that are available on the web, but also allows users to make use of other data
that they supply from spreadsheets. Section 2 provides examples of how one can obtain raw
data from USGS sources on the web and ingest them into data frames within the R environment.
The functionality described in section 2 is for general use and is not tailored for the specific
uses of the EGRET package. The functionality described in section 3 is tailored specifically to
obtaining input from the web and structuring them specifically for use in the EGRET package.
The functionality described in section 4 is for converting hydrologic data from user-supplied
spreadsheets and structuring them specifically for use in the EGRET package.

https://github.com/USGS-R/EGRET/wiki
https://github.com/USGS-R/EGRET/wiki

For information on getting started in R and installing the package, see Appendix (Al:
Getting Started.

2 General USGS Web Retrievals

In this section, we will run through 5 examples, documenting how to get raw data from the
web. This includes site information , measured parameter information , historical
daily values, real-time (unit) values , and water quality data or . We will
use the Choptank River near Greensboro, MD as an example. The site-1D for this gage station
is 01491000. Daily discharge measurements are available as far back as 1948. Additionally,
forms of nitrate have been measured dating back to 1964. The functions/examples in this
section are for raw data retrieval. This may or may not be the easiest data to work with. In
the next section, we will use functions that retrieve and process the data in a dataframe that
may prove more friendly for R analysis.

2.1 Introduction

The United States Geological Survey organizes their hydrological data in standard structure.
Streamgages are located throughout the United States, and each streamgage has a unique 1D.
Often (but not always), these ID’s are 8 digits. The first step to finding data is discoving this
8-digit ID. One potential tool for discovering data is Environmental Data Discovery and Trans-
formation (EnDDaT): http://cida.usgs.gov/enddat/. Follow the example on the EnDDaT
web page to learn how to discover USGS stations and available data from any location in the
United States.

Once the site-ID is known, the next required input for USGS data retrievals is the 'param-
eter code’. This is a 5-digit code that specifies what measured paramater is being requested.
A complete list of possible USGS parameter codes can be found at:

http://nwis.waterdata.usgs.gov/usa/nwis/pmcodes?radio_pm_search=param_group&pm_
group=All+--+include+all+parameter+groups&pm_search=&casrn_search=&srsname_search=
&format=html_table&show=parameter_group_nm&show=parameter_nm&show=casrn&show=srsname&show=
parameter_units

Not every station will measure all parameters. A short list of commonly measured param-
eters is shown in Table

For real-time data, the parameter code and site ID will suffice. For most variables that are
measured on a continuous basis, the USGS stores the historical data as daily values. These
daily values may be in the form of statistics such as the daily mean values, but they can also
include daily maximums, minimums or medians. These different statistics are specified by a
5-digit "stat code". A complete list of stat codes can be found here:

http://nwis.waterdata.usgs.gov/nwis/help/7read_file=stat&format=table

http://cida.usgs.gov/enddat/
http://nwis.waterdata.usgs.gov/usa/nwis/pmcodes?radio_pm_search=param_group&pm_group=All+--+include+all+parameter+groups&pm_search=&casrn_search=&srsname_search=&format=html_table&show=parameter_group_nm&show=parameter_nm&show=casrn&show=srsname&show=parameter_units
http://nwis.waterdata.usgs.gov/usa/nwis/pmcodes?radio_pm_search=param_group&pm_group=All+--+include+all+parameter+groups&pm_search=&casrn_search=&srsname_search=&format=html_table&show=parameter_group_nm&show=parameter_nm&show=casrn&show=srsname&show=parameter_units
http://nwis.waterdata.usgs.gov/usa/nwis/pmcodes?radio_pm_search=param_group&pm_group=All+--+include+all+parameter+groups&pm_search=&casrn_search=&srsname_search=&format=html_table&show=parameter_group_nm&show=parameter_nm&show=casrn&show=srsname&show=parameter_units
http://nwis.waterdata.usgs.gov/usa/nwis/pmcodes?radio_pm_search=param_group&pm_group=All+--+include+all+parameter+groups&pm_search=&casrn_search=&srsname_search=&format=html_table&show=parameter_group_nm&show=parameter_nm&show=casrn&show=srsname&show=parameter_units
http://nwis.waterdata.usgs.gov/nwis/help/?read_file=stat&format=table

Table 1: Common USGS Parameter Codes
pCode shortName

00060 Discharge [cfs]
00065 Gage height [ft]
00010 Temperature [C]
00045 Precipitation [in]
00400 pH

Some common stat codes are shown in Table 2

Table 2: Commonly found USGS Stat Codes
StatCode shortName

00001 Maximum
00002 Minimum
00003 Mean

00008 Median

2.2 Site Information
2.2.1 getSiteFileData

Use the getSiteFileData function to obtain all of the information available for a particular
USGS site such as full station name, drainage area, latitude, and longitude:

> library(dataRetrieval)

> # Site ID for Choptank River near Greensboro, MD
> siteNumber <- "01491000"

> ChoptankInfo <- getSiteFileData(siteNumber)

A list of the available columns are found in Appendix INFO dataframe. Pulling out
a specific example piece of information, in this case station name can be done as follows:

> ChoptankInfo$station.nm

[1] "CHOPTANK RIVER NEAR GREENSBORO, MD"

Site information is obtained from http://waterservices.usgs.gov/rest/Site-Test-Tool.
html

http://waterservices.usgs.gov/rest/Site-Test-Tool.html
http://waterservices.usgs.gov/rest/Site-Test-Tool.html

2.2.2 getDataAvailability

To find out the available data at a particular USGS site, including measured parameters, period
of record, and number of samples (count), use the getDataAvailability function:

> # Continuing from the previous example:
> ChoptankAvailableData <- getDataAvailability(siteNumber)
> head(ChoptankAvailableData)

parameter_cd statCd startDate endDate count service
2 00010 00001 1988-10-01 2012-06-24 940 dv
3 00010 00002 2010-10-01 2012-06-24 575 dv
4 00010 00003 2010-10-01 2012-06-24 575 dv
5 00060 00003 1948-01-01 2013-03-13 23814 dv
6 00095 00001 2010-10-01 2012-06-24 551 dv
7 00095 00002 2010-10-01 2012-06-24 b51 dv

There is an additional argument to the getDataAvailability called longNames, which de-
faults to FALSE. Setting longNames to TRUE will cause the function to make a web service
call for each parameter and return expanded information on that parameter. Currently, this is
a very slow process because each parameter code makes a unique web service call. If the site
does not have many measured parameters, setting longNames to TRUE is reasonable.

It is also possible to only request parameter information for a subset of variables. In the
following example, we retrieve just the daily mean parameter information from the Choptank
data availability dataframe (excluding all unit value and water quality values). getMultiplePa-
rameterNames is the function that is embedded in the getDataAvailability, but here can be
used as a standalone function.

#Now, make a call to get all of the parameter information:
pCodeINFO <- getMultipleParameterNames (ChoptankDailyData$parameter_cd)

> # Continuing from the previous example:

> # This pulls out just the daily data:

> ChoptankDailyData <- subset (ChoptankAvailableData, "dv" == service)
> # This pulls out the mean:

> ChoptankDailyData <- subset (ChoptankDailyData,"00003" == statCd)
>

>

Percent complete:
20 40 60 80 100

> #Merge the available dataframe with the parameter information dataframe:
> ChoptankDailyData <- merge(ChoptankDailyData,pCodeINFO,by="parameter_cd")

The daily data at the Choptank River site can be displayed in a I¥TEXtable using the xtable
package. See Appendix [C]for instructions on converting an R dataframe to a table in Microsoft

Excel or Word.

> tableData <- with(ChoptankDailyData,
data.frame (shortName=srsname,
Start=as.character (startDate),
End=as.character (endDate),
Count=as.character (count),
Units=parameter_units)

)

> data.table <- xtable(tableData,label="tab:gda",
caption="Daily mean data availabile at the Choptank River")

> print(data.table,

caption.placement="top",include.rownames=FALSE)

Table 3: Daily mean data availabile at the Choptank River

shortName Start End Count Units
Temperature, water 2010-10-01 2012-06-24 575 deg C
Stream flow, mean. daily 1948-01-01 2013-03-13 23814 cfs

Specific conductance 2010-10-01 2012-06-24 551 uS/cm @25C
Suspended sediment concentration (SSC) 1980-10-01 1991-09-30 3651 mg/1
Suspended sediment discharge 1980-10-01 1991-09-30 3652 tons/day

2.3 Parameter Information

To obtain all of the available information concerning a measured parameter, use the getPa-

rameterInfo function:

> # Using defaults:
> parameterCd <- "00618"

> parameterINFO <- getParameterInfo(parameterCd)

> colnames (parameterINF0)

[1] "parameter_cd" "parameter_group_nm" "parameter_nm"
[4] "casrn" "srsname" "parameter_units"

Pulling out a specific example piece of information, in this case parameter name can be

done as follows:

> parameterINFO$parameter_nm

[1] "Nitrate, water, filtered, milligrams per liter as nitrogen"

Parameter information is obtained from http://nwis.waterdata.usgs.gov/nwis/pmcodes/

2.4 Daily Values

To obtain historic daily records of USGS data, use the retrieveNWISData function. The
arguments for this function are siteNumber, parameterCd, startDate, endDate, statCd, and a
logical (true/false) interactive. There are 2 default argument: statCd (defaults to "00003"),
and interactive (defaults to TRUE). If you want to use the default values, you do not need to
list them in the function call. Setting the "interactive" option to true will walk you through
the function. It might make more sense to run large batch collections with the interactive
option set to FALSE.

The dates (start and end) need to be in the format "YYYY-MM-DD" (note: the user does
need to include the quotes). Setting the start date to "" will indicate to the program to ask
for the earliest date, setting the end date to "" will ask for the latest available date.

> # Continuing with our Choptank River example

> parameterCd <- "00060" # Discharge (cfs)

> startDate <- "" # Will request earliest date

> endDate <- "" # Will request latest date

> discharge <- retrieveNWISData(siteNumber, parameterCd, startDate, endDate)

A dataframe is returned that looks like the following:

agency_cd site_no datetime X02_00060_00003 X02_00060_00003_cd

1 USGS 01491000 1948-01-01 190 A
2 USGS 01491000 1948-01-02 900 A
3 USGS 01491000 1948-01-03 480 A
4 USGS 01491000 1948-01-04 210 A
5 USGS 01491000 1948-01-05 210 A
6 USGS 01491000 1948-01-06 220 A

The variable datetime is automatically imported as a Date. Each requested parameter
has a value and remark code column. The names of these columns depend on the requested
parameter and stat code combinations. USGS remark codes are often "A" (approved for
publication) or "P" (provisional data subject to revision). A more complete list of remark
codes can be found here: http://waterdata.usgs.gov/usa/nwis/help?codes_help

Another example that doesn’t use the defaults would be a request for mean and maximum
daily temperature and discharge in early 2012:

http://nwis.waterdata.usgs.gov/nwis/pmcodes/
http://waterdata.usgs.gov/usa/nwis/help?codes_help

vV V. Vv Vv Vv

\%

parameterCd <- c("00010","00060") # Temperature and discharge

statCd <- c("00001","00003") # Mean and maximum

startDate <- "2012-01-01"

endDate <- "2012-06-30"

temperatureAndFlow <- retrieveNWISData(siteNumber, parameterCd,
startDate, endDate, StatCd=statCd,interactive=FALSE)

Daily data is pulled from http://waterservices.usgs.gov/rest/DV-Test-Tool.htmll

An example of plotting the above data (Figure [1)):

with(temperatureAndFlow, plot(
datetime, X01_00010_00003,
xlab="Date",ylab="Temperature [C]"
))

par (new=TRUE)

with (temperatureAndFlow, plot(
datetime, X02_00060_00003,
col="red",type="1",xaxt="n",yaxt="n",xlab="",ylab="",axes=FALSE
J)

axis(4,col="red",col.axis="red")

mtext ("Discharge [cfs]",side=4,1ine=3,col="red")

title(paste(ChoptankInfo$station.nm, "2012",sep=" "))

There are occasions where NWIS values are not reported as numbers, instead there might

be text describing a certain event such as "Ice". Any value that cannot be converted to a
number will be reported as NA in this package.

http://waterservices.usgs.gov/rest/DV-Test-Tool.html

CHOPTANK RIVER NEAR GREENSBORO, MD 2012

o o
o -3
®
2 = 3
@ <
g o |
5 S
[N
LO p—
— O
Jan Mar May Jul
Date

Figure 1: Temperature and discharge plot of Choptank River in 2012.

2.5 Unit Values

Any data that are collected at regular time intervals (such as 15-minute or hourly) are known
as "Unit Values" - many of these are delivered on a real time basis and very recent data (even
less than an hour old in many cases) are available through the function retrieveUnitNWISData.
Some of these Unit Values are available for the past several years, and some are only available
for a recent time period such as 120 days or a year. Here is an example of a retrieval of such
data.

parameterCd <- "00060" # Discharge (cfs)

startDate <- "2013-03-12"

or use (yesterday): startDate <- as.character(Sys.Date()-1)

endDate <- "2013-03-13"

or use (today): endDate <- as.character(Sys.Date())

dischargeToday <- retrieveUnitNWISData(siteNumber, parameterCd,
startDate, endDate)

V V.V Vv VvV

Which produces the following dataframe:

agency_cd site_no datetime tz_cd X02_00060 X02_00060_cd
1 USGS 01491000 2013-03-12 00:00:00 EST 190 P
2 USGS 01491000 2013-03-12 00:15:00 EST 187 P

3 USGS 01491000 2013-03-12 00:30:00 EST 187 P
4 USGS 01491000 2013-03-12 00:45:00 EST 187 P
5 USGS 01491000 2013-03-12 01:00:00 EST 192 P
6 USGS 01491000 2013-03-12 01:15:00 EST 184 P

Note that time now becomes important, so the variable datetime is a POSIXct, and the
time zone is included in a separate column. Data is pulled from http://waterservices.usgs.
gov/rest/IV-Test-Tool.html. There are occasions where NWIS values are not reported as
numbers, instead a common example is "Ice". Any value that cannot be converted to a number
will be reported as NA in this package.

A simple plotting example is shown in Figure

> with(dischargeToday, plot(
datetime, X02_00060,
ylab="Discharge [cfs]",xlab=""

J)
> title(ChoptankInfo$station.nm)

10

http://waterservices.usgs.gov/rest/IV-Test-Tool.html
http://waterservices.usgs.gov/rest/IV-Test-Tool.html

CHOPTANK RIVER NEAR GREENSBORO, MD

o
o —]
@ @
(]
L, m
(&) o
9
c AN
< —
3
= o
(a) N
[qV}
3 _ LR
— | | |

Tue Wed Thu

Figure 2: Real-time discharge plot of Choptank River from March 12-13, 2013.

2.6 Water Quality Values

To get USGS water quality data from water samples collected at the streamgage (as distinct
from unit values collected through some type of automatic monitor) we can use the Water
Quality Data Portal: http://www.waterqualitydata.us/. The raw data are obtained from
the function getRawQWData, with the similar input arguments: siteNumber, parameterCd,
startDate, endDate, and interactive. The difference is in parameterCd, in this function multiple
parameters can be queried using a ";" separator, and setting parameterCd to "" will return
all of the measured observations. The raw data can be overwelming (see Appendix , a
simplified version of the data can be obtained using getQWData.There is a large amount of
data returned for each observation.

> # Dissolved Nitrate parameter codes:

> parameterCd <- c("00618","71851")

> startDate <- "1979-10-11"

> endDate <- "2012-12-18"

> dissolvedNitrate <- getRaw@WData(siteNumber, parameterCd,
startDate, endDate)

> dissolvedNitrateSimple <- getQWData(siteNumber, parameterCd,

startDate, endDate)
> names (dissolvedNitrateSimple)

11

http://www.waterqualitydata.us/

CHOPTANK RIVER NEAR GREENSBORO, MD

To)
N
— O
z o 7
(%]
° wu _
> -
IS
— O
o < |
g
£ 1
Z o |
o
S -
1985 1990 1995 2000 2005 2010
Date
Figure 3: Nitrate plot of Choptank River.
[1] "dateTime" "qualifier.71851" "value.71851" "qualifier.00618"

[5] "value.00618"

Note that in this dataframe, datetime is imported as Dates (no times are included), and the
qualifier is either blank or "<" signifying a censored value. A plotting example is shown in

Figure [3]

> with(dissolvedNitrateSimple, plot(
dateTime, value.00618,
xlab="Date",ylab = paste(parameterINFO$srsname,
"[",parameterINFO$parameter_units,"]")
J)
> title(ChoptankInfo$station.nm)

2.7 STORET Water Quality Retrievals

There are additional data sets available on the Water Quality Data Portal (http://www.
waterqualitydata.us/). These data sets can be housed in either the STORET (data from
EPA) or NWIS database. Since STORET does not use USGS parameter codes, a "characteristic
name" must be supplied. The following example retrieves specific conductance from a DNR
site in Wisconsin.

12

http://www.waterqualitydata.us/
http://www.waterqualitydata.us/

> specificCond <- getW@PData('WIDNR_WQX-10032762',
'Specific conductance', '', '')
> head (specificCond)

dateTime qualifier.Specific conductance value.Specific conductance

1 2011-02-14 1360
2 2011-02-17 1930
3 2011-03-03 1240
4 2011-03-10 1480
5 2011-03-29 1130
6 2011-04-07 1200

2.8 URL Construction

There may be times when you might be interested in seeing the URL (web address) that was
used to obtain the raw data. The constructNWISURL function returns the URL. Aside from
input variables that have already been described, there is a new argument "service". The
service argument can be "dv" (daily values), "uv" (unit values), "qw" (NWIS water quality
values), or "wqgp" (general Water Quality Portal values).

> # Dissolved Nitrate parameter codes:

> pCode <- c("00618","71851")

> startDate <- "1964-06-11"

> endDate <- "2012-12-18"

> url_qw <- constructNWISURL (siteNumber,pCode,startDate,endDate, 'qw')

> url_dv <- constructNWISURL (siteNumber, "00060",startDate,endDate, 'dv',statCd="00003")
> url_uv <- constructNWISURL (siteNumber, "00060",startDate, endDate, 'uv')

3 Data Retrievals Structured For Use In The EGRET Package

Rather than using the raw data as retrieved by the web, the dataRetrieval package also includes
functions that return the data in a structure that has been designed to work with the EGRET
R package (https://github.com/USGS-R/EGRET/wiki). In general, these dataframes may be
much more 'R-friendly’ than the raw data, and will contain additional date information that
allows for efficient data analysis.

In this section, we use 3 dataRetrieval functions to get sufficient data to perform an EGRET
analysis. We will continue analyzing the Choptank River. We will be retrieving essentially the
same data that were retrieved in the previous section, but in this case it will be structured
into three EGRET-specific dataframes. The daily discharge data will be placed in a dataframe
called Daily. The nitrate sample data will be placed in a dataframe called Sample. The data
about the site and the parameter will be placed in a dataframe called INFO. Although these

13

https://github.com/USGS-R/EGRET/wiki

dataframes were designed to work with the EGRET R package, they can be very useful for a
wide range of hydrologic studies that don’t use EGRET.

3.1 INFO Data

The function to obtain metadata, or data about the streamgage and measured parameters is
getMetaData. This function combines getSiteFileData and getParameterInfo, producing one
dataframe called INFO.

> parameterCd <- "00618"
> INFO <-getMetaData (siteNumber,parameterCd, interactive=FALSE)

Column names in the INFO dataframe are listed in Appendix 2 (B.1)).

3.2 Daily Data

The function to obtain the daily values (discharge in this case) is getDVData. It requires
the inputs siteNumber, ParameterCd, StartDate, EndDate, interactive, and convert. Most of
these arguments are described in the previous section, however "convert" is a new argument
(defaults to TRUE), and it tells the program to convert the values from cubic feet per second
(cfs) to cubic meters per second (cms). For EGRET applications with NWIS web retrieval,
do not use this argument (the default is TRUE), EGRET assumes that discharge is always
in cubic meters per second. If you don’t want this conversion and are not using EGRET, set
convert=FALSE in the function call.

siteNumber <- "01491000"

startDate <- "1964-01-01"

endDate <- "2013-01-01"

This call will get NWIS data that is in cfs, and convert it

to cms since we didn't override the default in the convert argument:

Daily <- getDVData(siteNumber, "00060", startDate, endDate,interactive=FALSE)

V V.V Vv Vv VvV

Details of the Daily dataframe are listed below:

14

ColumnName Type Description Units

Date Date Date date

Q number Discharge cms
Julian number Number of days since January 1, 1850 days
Month integer ~ Month of the year [1-12] months
Day integer Day of the year [1-366] days
DecYear number Decimal year years
MonthSeq integer ~ Number of months since January 1, 1850 months
Qualifier string Qualifing code character
i integer Index of days from the start of the data frame days
LogQ number Natural logarithm of Q numeric
Q7 number 7 day running average of Q cms
Q30 number 30 running average of Q cms

If there are discharge values of zero, the code will add a small constant to all of the daily
discharges. This constant is 0.001 times the mean discharge. The code will also report on the
number of zero values and the size of the constant. EGRET should only be used if the number
of zero values is a very small fraction of the total days in the record (say less than 0.1% of the
days). Columns Q7 and Q30 are the 7 and 30 day running averages for the 7 or 30 days ending
on this specific date.

3.3 Sample Data

The function to obtain sample data from the water quality portal is getSampleData. The ar-
guments for this function are also siteNumber, ParameterCd, StartDate, EndDate, interactive.
These are the same inputs as getRawQWData or getQWData as described in the previous
section.

> Sample <-getSampleData (siteNumber,parameterCd,
startDate, endDate,interactive=FALSE)

Details of the Sample dataframe are listed below:

!Flow columns are populated from data in the Daily dataframe after calling the mergeReport function.

15

Table 4: Sample dataframe

ColumnName Type Description Units
Date Date Date date
ConcLow number Lower limit of concentration mg/L
ConcHigh number Upper limit of concentration mg/L
Uncen integer Uncensored data (1=true, O=false) integer
ConcAve number Average of ConcLow and ConcHigh mg/L
Julian number Number of days since January 1, 1850 days
Month integer ~ Month of the year [1-12] months
Day integer Day of the year [1-366] days
DecYear number Decimal year years
MonthSeq integer ~ Number of months since January 1, 1850 months
SinDY number Sine of DecYear numeric
CosDY number Cosine of DecYear numeric
Q! number Discharge cms
LogQ ! number Natural logarithm of flow numeric

3.4 Censored Values: Summation Explanation

In the typical case where none of the data are censored (that is, no values are reported as "less-
than" values) the ConcLow = ConcHigh = ConcAve all of which are equal to the reported
value and Uncen=0. In the typical form of censoring where a value is reported as less than the
reporting limit, then ConcLow = NA, ConcHigh = reporting limit, ConcAve = 0.5 * reporting
limit, and Uncen = 1.

As an example to understand how the dataRetrieval package handles a more complex
censoring problem, let us say that in 2004 and earlier, we computed a total phosphorus (tp)
as the sum of dissolved phosphorus (dp) and particulate phosphorus (pp). From 2005 and
onward, we have direct measurements of total phosphorus (tp). A small subset of this fictional
data looks like this:

cdate rdp dp rpp pp rtp tp
2003-02-15 0.02 0.50
2003-06-30 < 0.01 0.30
2004-09-15 < 0.00 < 0.20
2005-01-30 0.43
2005-05-30 < 0.05
2005-10-30 < 0.02

The dataRetrieval package will "add up" all the values in a given row to form the total for
that sample. Thus, you only want to enter data that should be added together. For example,
we might know the value for dp on 5/30/2005, but we don’t want to put it in the table because
under the rules of this data set, we are not suppose to add it in to the values in 2005.

16

For every sample, the EGRET package requires a pair of numbers to define an interval
in which the true value lies (ConcLow and ConcHigh). In a simple non-censored case (the
reported value is above the detection limit), ConcLow equals ConcHigh and the interval col-
lapses down to a single point.In a simple censored case, the value might be reported as <0.2,
then ConcLow=NA and ConcHigh=0.2. We use NA instead of 0 as a way to elegantly handle
future logarithm calculations.

For the more complex example case, let us say dp is reported as <0.01 and pp is reported
as 0.3. We know that the total must be at least 0.3 and could be as much as 0.31. Therefore,
ConcLow=0.3 and ConcHigh=0.31. Another case would be if dp is reported as <0.005 and pp
is reported <0.2. We know in this case that the true value could be as low as zero, but could
be as high as 0.205. Therefore, in this case, ConcLow=NA and ConcHigh=0.205. The Sample
dataframe for the example data is therefore:

Date ConcLow ConcHigh Uncen ConcAve Julian Month Day DecYear MonthSeq

1 2003-02-15 0.520 0.520 1 0.520 55927 2 46 2003.124 1838

2 2003-06-30 0.310 0.310 1 0.310 56062 6 181 2003.493 1842

3 2004-09-15 0.205 0.205 1 0.205 56505 9 259 2004.706 1857

4 2005-01-30 0.430 0.430 1 0.430 56642 1 30 2005.081 1861

5 2005-05-30 0.050 0.050 1 0.050 56762 5 150 2005.408 1865

6 2005-10-30 0.020 0.020 1 0.020 56915 10 303 2005.827 1870
SinDY CosDY

1 0.70406552 0.7101350

2 0.04290476 -0.9990792

3 -0.96251346 -0.2712339

4 0.48505985 0.8744810

5 0.54391895 -0.8391378

6 -0.88668032 0.4623830

3.5 User-Generated Data Files

Aside from retrieving data from the USGS web services, the dataRetrieval package includes
functions to generate the Daily and Sample data frame from local files.

3.5.1 getDailyDataFromFile

getDailyDataFromFile will load a user-supplied text file and convert it to the Daily dataframe.
The file should have two columns, the first dates, the second values. The dates should be
formatted either mm/dd/yyyy or yyyy-mm-dd. Using a 4-digit year is required. This function
has the following inputs: filePath, fileName,hasHeader (TRUE/FALSE), separator, qUnit, and
interactive (TRUE/FALSE). filePath is a string that defines the path to your file. This can
either be a full path, or path relative to your R working directory. The input fileName is a
string that defines the file name (including the extension).

17

Text files that contain this sort of data require some sort of a separator, for example, a
‘csv’ file (comma-separated value) file uses a comma to separate the date and value column. A
tab delimited file would use a tab ("\t") rather than the comma (","). The type of separator
you use can be defined in the function call in the "separator" argument, the default is " ".
Another function input is a logical variable: hasHeader. The default is TRUE. If your data
does not have column names, set this variable to FALSE.

Finally, qUnit is a numeric argument that defines the discharge units used in the input file.
The default is qUnit = 1 which assumes discharge is in cubic feet per second. If the discharge
in the file is already in cubic meters per second then set qUnit = 2. If it is in some other units
(like liters per second or acre-feet per day), the user will have to pre-process the data with a
unit conversion that changes it to either cubic feet per second or cubic meters per second.

So, if you have a file called "ChoptankRiverFlow.txt" located in a folder called "RData" on
the C drive (this is a Window’s example), and the file is structured as follows (tab-separated):

date Qdaily
10/1/1999 107
10/2/1999 85
10/3/1999 76
10/4/1999 76
10/5/1999 113
10/6/1999 98

The call to open this file, convert the flow to cubic meters per second, and populate the
Daily data frame would be:

> fileName <- "ChoptankRiverFlow.txt"
> filePath <- "C:/RData/"
> Daily <- getDailyDataFromFile(filePath,fileName,separator="\t",interactive=FALSE)

3.5.2 getSampleDataFromFile

Similarly to the previous section, getSampleDataFromFile will import a user-generated file and
populate the Sample dataframe. The difference between sample data and flow data is that the
code requires a third column that contains a remark code, either blank or "<", which will tell
the program that the data was ’left-censored’ (or, below the detection limit of the sensor).
Therefore, the data is required to be in the form: date, remark, value. If multiple constituents
are going to be used, the format can be date, remark_A, value_A, remark_b, value_b, etc... An
example of a comma-delimited file would be:

cdate;remarkCode;Nitrate
10/7/1999,,1.4

18

11/4/1999,<,0.99
12/3/1999, ,1.42
1/4/2000,,1.59
2/3/2000,,1.54

The call to open this file, and populate the Sample dataframe would be:

> fileName <- "ChoptankRiverNitrate.csv"
> filePath <- "C:/RData/"
> Sample <- getSampleDataFromFile(filePath,fileName,separator=",",interactive=FALSE)

3.6 Merge Report

Finally, there is a function called mergeReport that will look at both the Daily and Sample
dataframe, and populate Q and LogQ columns into the Sample dataframe. The default argu-
ments are Daily and Sample, however if you want to use other similarly structured dataframes,
you can specify localDaily or localSample. Once mergeReport has been run, the Sample
dataframe will be augumented with the daily discharges for all the days with samples. None
of the water quality functions in EGRET will work without first having run the mergeReport
function.

siteNumber <- "01491000"

parameterCd <- "00631" # Nitrate

startDate <- "1964-01-01"

endDate <- "2013-01-01"

Daily <- getDVData(siteNumber, "00060", startDate, endDate,interactive=FALSE)

Sample <- getSampleData(siteNumber,parameterCd, startDate, endDate, interactive=FALSE)
Sample <- mergeReport ()

V V.V VvV Vv VYV

Discharge Record is 17899 days long, which is 49 years

First day of the discharge record is 1964-01-01 and last day is 2013-01-01
The water quality record has 627 samples

The first sample is from 1973-06-04 and the last sample is from 2012-12-18
Discharge: Minimum, mean and maximum 0.00991 4.02 246

Concentration: Minimum, mean and maximum 0.05 1.1 2.4

Percentage of the sample values that are censored is 0.16 %

> head(Sample)

Date ConcLow ConcHigh Uncen ConcAve Julian Month Day DecYear MonthSeq
1 1973-06-04 1.30 1.30 1 1.30 45079 6 155 1973.422 1482

19

2 1979-09-25 0.52 0.52 1 0.52 47383 9 268 1979.731 1557

3 1979-10-24 0.62 0.62 1 0.62 47412 10 297 1979.810 1558

4 1979-12-05 1.40 1.40 1 1.40 47454 12 339 1979.925 1560

5 1979-12-21 1.20 1.20 1 1.20 47470 12 355 1979.969 1560

6 1980-01-24 0.84 0.84 1 0.84 47504 1 24 1980.064 1561
SinDY CosDY Q LogQ

1 0.4699767 -0.8826788 3.256437 1.180634

2 -0.9927882 -0.1198812 3.398022 1.223193

3 -0.9295235 0.3687629 3.199804 1.163089

4 -0.4547551 0.8906165 2.973269 1.089662

5 -0.1961425 0.9805754 2.944952 1.080093

6 0.3925740 0.9197204 10.901986 2.388945

3.7 EGRET Plots

As has been mentioned, the data is specifically formatted to be used with the EGRET package.
The EGRET package has powerful modeling capabilities using WRTDS, but also has a variety
of graphing and tablular tools to explore the data without using the WRTDS algorithm. See
the EGRET vignette, user guide, and/or wiki (https://github.com/USGS-R/EGRET/wiki) for
detailed information. The following figure is an example of one of the plotting functions that
can be used directly from the dataRetrieval dataframes.

> # Continuing Choptank example from the previous sections
> library (EGRET)
> multiPlotDataOverview ()

20

https://github.com/USGS-R/EGRET/wiki

CHOPTANK RIVER NEAR GREENSBORO, MD

Nitrate

-
—
>
(S
£
c
R
©
=]
c
@
(&)
c
5}
@)

7/6w Ul uoneNUBIUOD

1990 2010

1970

1 10 100

0.01

Discharge in m*/s

i

|
g

¢0+3T 00+3T ¢0-31

puodas Jad sis1eN 219D Ul abreyasig

7/BW Ul uonENUBIUOD

Sampled Days

29Q
AON
120

Bny
Inc

ung
Aepy
1dy
en
ga4
uer

Month

Figure 4: Default multiPlotDataOverview

21

A Getting Started in R

This section describes the options for downloading and installing the dataRetrieval package.

A.1 New to R?

If you are new to R, you will need to first install the latest version of R, which can be found
here: http://www.r-project.org/.

There are many options for running and editing R code, one nice environment to learn R
is RStudio. RStudio can be downloaded here: http://rstudio.org/. Once R and RStudio
are installed, the dataRetrieval package needs to be installed as described in the next section.

At any time, you can get information about any function in R by typing a question mark
before the functions name. This will open a file (in RStudio, in the Help window) that describes
the function, the required arguments, and provides working examples.

> ?removeDuplicates

To see the raw code for a particular code, type the name of the function:

> removeDuplicates

function(localSample=Sample) {
Samplel <- localSample[!duplicated(localSample[c("DecYear","ConcHigh")]),]

return(Samplel)

¥

<environment: namespace:dataRetrieval>

A.2 R User: Installing dataRetrieval

Before installing dataRetrieval, the zoo packages must be installed from CRAN:

> install.packages("zoo")
> install.packages("dataRetrieval", repos="http://usgs-r.github.com", type="source")

It is a good idea to re-start the R enviornment after installing the package, especially if in-
stalling an updated version. Some users have found it necessary to delete the previous version’s
package folder before installing newer version of dataRetrieval. If you are experiencing issues
after updating a package, trying deleting the package folder - the default location for Windows

22

http://www.r-project.org/
http://rstudio.org/

is something like this: C:/Users/userA/Documents/R/win-library/2.15/dataRetrieval, and the
default for a Mac: /Users/userA /Library/R/2.15/library/dataRetrieval. Then, re-install the
package using the directions above. Moving to CRAN should solve this problem.

After installing the package, you need to open the library each time you re-start R. This is
done with the simple command:

> library(dataRetrieval)

Using RStudio, you could alternatively click on the checkbox for dataRetrieval in the Packages
window.

A.3 R Developers: Installing dataRetrieval from gitHub

Alternatively, R-developers can install the latest working version of dataRetrieval directly from
gitHub using the devtools package (available on CRAN). Rtools (for Windows) and appropriate
XTEX tools are required. Be aware that the version installed using this method isn’t necessarily
the same as the version in the stable release branch.

> library(devtools)
> install_github("dataRetrieval", "USGS-R")

To then open the library, simply type:

> library(dataRetrieval)

23

24

B Columns Names

B.1 INFO dataframe

agency.cd
site.no
station.nm
site.tp.cd
lat.va

long.va
dec.lat.va
dec.long.va
coord.meth.cd
coord.acy.cd
coord.datum.cd
dec.coord.datum.cd
district.cd
state.cd
county.cd
country.cd
map.nm
map.scale.fc
alt.va
alt.meth.cd
alt.acy.va
alt.datum.cd
huc.cd

basin.cd
topo.cd
construction.dt
inventory.dt
drain.area.va
contrib.drain.area.va
tz.cd
local.time.fg
reliability.cd
project.no
queryTime
drainSqKm
shortName
staAbbrev
param.nm
param.units
paramShortName
paramNumber
constitAbbrev

25

B.2 Water Quality Portal

There are 62 columns returned from the water quality portal.

Organizationldentifier

OrganizationFormalName

Activityldentifier

ActivityTypeCode

ActivityMediaName
ActivityMediaSubdivisionName

ActivityStartDate

ActivityStart Time.Time

ActivityStart Time.TimeZoneCode
ActivityEndDate

ActivityEndTime.Time
ActivityEndTime.TimeZoneCode
ActivityDepthHeightMeasure.MeasureValue
ActivityDepthHeightMeasure.MeasureUnitCode
ActivityDepthAltitudeReferencePoint Text
ActivityTopDepthHeightMeasure.MeasureValue
ActivityTopDepthHeight Measure. MeasureUnitCode
ActivityBottomDepthHeight Measure. MeasureValue
ActivityBottomDepthHeight Measure. MeasureUnitCode
Projectldentifier
ActivityConductingOrganizationText
MonitoringLocationldentifier
ActivityCommentText

SampleAquifer

HydrologicCondition

HydrologicEvent
SampleCollectionMethod.MethodIdentifier
SampleCollectionMethod.MethodIdentifierContext
SampleCollectionMethod.MethodName
SampleCollectionEquipmentName
ResultDetectionConditionText
CharacteristicName

ResultSampleFractionText

ResultMeasureValue
ResultMeasure.MeasureUnitCode
MeasureQualifierCode

ResultStatusldentifier

StatisticalBaseCode

ResultValueTypeName

ResultWeightBasisText

26

ResultTimeBasisText
ResultTemperatureBasisText
ResultParticleSizeBasisText

PrecisionValue

ResultComment Text

USGSPCode
ResultDepthHeightMeasure.MeasureValue
ResultDepthHeightMeasure.MeasureUnitCode
ResultDepthAltitudeReferencePoint Text
SubjectTaxonomicName
SampleTissueAnatomyName
ResultAnalyticalMethod.MethodIdentifier
ResultAnalyticalMethod.MethodldentifierContext
Result AnalyticalMethod.MethodName
MethodDescriptionText

LaboratoryName

AnalysisStartDate
ResultLaboratoryComment Text
DetectionQuantitationLimit TypeName
DetectionQuantitationLimitMeasure.MeasureValue
DetectionQuantitationLimitMeasure.MeasureUnitCode
PreparationStartDate

27

C Creating tables in Microsoft from R

There are a few steps that are required in order to create a table in a Microsoft product (Excel,
Word, Powerpoint, etc.) from an R dataframe. There are certainly a variety of good methods,
one of which is detailed here. The example we will step through here will be to create a table
in Microsoft Word based on the dataframe tableData:

ChoptankAvailableData <- getDataAvailability(siteNumber)
ChoptankDailyData <- ChoptankAvailableData["dv" == ChoptankAvailableData$service,]
ChoptankDailyData <- ChoptankDailyData["00003" == ChoptankDailyData$statCd,]

pCodeINFO <- getMultipleParameterNames (ChoptankDailyData$parameter_cd, interactive=FALSE
ChoptankDailyData <- merge (ChoptankDailyData,pCodeINFO,by="parameter_cd")
tableData <- with(ChoptankDailyData,

data. frame (

shortName=srsname,

Start=startDate,

End=endDate,

Count=count,

Units=parameter_units)

)

vV V.V Vv VvV

First, save the dataframe as a tab delimited file (you don’t want to use comma delimited
because there are commas in some of the data elements):

> write.table(tableData, file="tableData.tsv",sep="\t",
row.names = FALSE, quote=FALSE)

This will save a file in your working directory called tableData.tsv. You can see your
working directory by typing getwd() in the R console. Opening the file in a general-purpose
text editor, you should see the following:

shortName Start End Count Units

Temperature, water 2010-10-01 2012-06-24 575 deg C

Stream flow, mean. daily 1948-01-01 2013-03-13 23814 cfs

Specific conductance 2010-10-01 2012-06-24 551 uS/cm ©@25C

Suspended sediment concentration (SSC) 1980-10-01 1991-09-30 3651 mg/l
Suspended sediment discharge 1980-10-01 1991-09-30 3652 tons/day

To open this file in Excel:

1. Open Excel

28

2. Click on the File tab

3. Click on the Open option

4. Browse to the working directory (as shown in the results of getwd())

5. Next to the File name text box, change the dropdown type to All Files (*.*)

6. Double click tableData.tsv

7. A text import wizard will open up, in the first window, choose the Delimited radio button

if it is not automatically picked, then click on Next.

8. In the second window, click on the Tab delimiter if it is not automatically checked, then

click Finished.

9. Use the many formatting tools within Excel to customize the table

From Excel, it is simple to copy and paste the tables in other Microsoft products. An

example using one of the default Excel table formats is here.

shortName

Temperature, water 10/1/2010 | 6/24/2012 575 : deg C
Stream flow, mean. daily 1/1/1948 | 3/13/2013 | 23814 | cfs

Specific conductance 10/1/2010 = 6/24/2012 551 | uSfecm @25C
Suspended sediment concentration (SSC) 10/1/1980 | 9/30/1991 3651 | mg/l
Suspended sediment discharge 10/1/1980 | 9/30/1991 3652 | tons/day

Figure 5: A simple table produced in Microsoft Excel

29

References

[1]

Helsel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques
of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
http://pubs.usgs.gov/twri/twrida3/

Hirsch, R. M., Moyer, D. L. and Archfield, S. A. (2010), Weighted Regressions on
Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay
River Inputs. JAWRA Journal of the American Water Resources Association, 46: 857-
880. doi: 10.1111/;.1752-1688.2010.00482.x http://onlinelibrary.wiley.com/doi/10.
1111/3.1752-1688.2010.00482.x/full

Sprague, L. A., Hirsch, R. M., and Aulenbach, B. T. (2011), Nitrate in the Mississippi
River and Its Tributaries, 1980 to 2008: Are We Making Progress? Environmental Science
& Technology, 45 (17): 7209-7216. doi: 10.1021/es201221s http://pubs.acs.org/doi/
abs/10.1021/es201221s

30

http://pubs.usgs.gov/twri/twri4a3/
http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2010.00482.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2010.00482.x/full
http://pubs.acs.org/doi/abs/10.1021/es201221s
http://pubs.acs.org/doi/abs/10.1021/es201221s

	Introduction to dataRetrieval
	General USGS Web Retrievals
	Introduction
	Site Information
	getSiteFileData
	getDataAvailability

	Parameter Information
	Daily Values
	Unit Values
	Water Quality Values
	STORET Water Quality Retrievals
	URL Construction

	Data Retrievals Structured For Use In The EGRET Package
	INFO Data
	Daily Data
	Sample Data
	Censored Values: Summation Explanation
	User-Generated Data Files
	getDailyDataFromFile
	getSampleDataFromFile

	Merge Report
	EGRET Plots

	Getting Started in R
	New to R?
	R User: Installing dataRetrieval
	R Developers: Installing dataRetrieval from gitHub

	Columns Names
	INFO dataframe
	Water Quality Portal

	Creating tables in Microsoft from R

