From 282b3b4318e1ebdc78495e96e8752b2cb4c15d42 Mon Sep 17 00:00:00 2001 From: amsnyder <asnyder@usgs.gov> Date: Mon, 8 Apr 2024 12:43:35 -0500 Subject: [PATCH] fix crs var detection --- ...reate_collection_from_zarr_conus404-daily.ipynb | 14 ++++++++++++-- .../create_item_from_zarr_conus404-daily.ipynb | 14 ++++++++++++-- 2 files changed, 24 insertions(+), 4 deletions(-) diff --git a/workflows/examples/create_collection_from_zarr_conus404-daily.ipynb b/workflows/examples/create_collection_from_zarr_conus404-daily.ipynb index 29e27fc1..58161e5a 100644 --- a/workflows/examples/create_collection_from_zarr_conus404-daily.ipynb +++ b/workflows/examples/create_collection_from_zarr_conus404-daily.ipynb @@ -194,6 +194,16 @@ "If there is no crs info that can be automatically extracted from the dataset with pyproj, you will need to manually identify the crs and create a crs object. This reference list of cartopy projections may be a helpful resource: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "239d3b00-77f9-4178-954b-ba81a2b34512", + "metadata": {}, + "outputs": [], + "source": [ + "crs_var = 'crs'" + ] + }, { "cell_type": "code", "execution_count": null, @@ -202,7 +212,7 @@ "outputs": [], "source": [ "# use pyproj to automatically extract crs info\n", - "crs = pyproj.CRS.from_cf(ds.crs.attrs)\n", + "crs = pyproj.CRS.from_cf(ds[crs_var].attrs)\n", "\n", "# alternatively, create the appropriate cartopy projection\n", "# crs = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian, \n", @@ -821,7 +831,7 @@ "vars_dict={}\n", "for v in vars:\n", " unit = stac_helpers.get_unit(ds, v)\n", - " var_type = stac_helpers.get_var_type(ds, v)\n", + " var_type = stac_helpers.get_var_type(ds, v, crs_var)\n", " long_name = stac_helpers.get_long_name(ds, v)\n", " vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})" ] diff --git a/workflows/examples/create_item_from_zarr_conus404-daily.ipynb b/workflows/examples/create_item_from_zarr_conus404-daily.ipynb index 250d7781..ad517d53 100644 --- a/workflows/examples/create_item_from_zarr_conus404-daily.ipynb +++ b/workflows/examples/create_item_from_zarr_conus404-daily.ipynb @@ -178,6 +178,16 @@ "If there is no crs info that can be automatically extracted from the dataset with pyproj, you will need to manually identify the crs and create a crs object. This reference list of cartopy projections may be a helpful resource: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "6bae3ab0-b0cc-4486-aaaf-209c4d30ec1f", + "metadata": {}, + "outputs": [], + "source": [ + "crs_var = 'crs'" + ] + }, { "cell_type": "code", "execution_count": null, @@ -186,7 +196,7 @@ "outputs": [], "source": [ "# use pyproj to automatically extract crs info\n", - "crs = pyproj.CRS.from_cf(ds.crs.attrs)\n", + "crs = pyproj.CRS.from_cf(ds[crs_var].attrs)\n", "\n", "# alternatively, create the appropriate cartopy projection\n", "# crs = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian, \n", @@ -808,7 +818,7 @@ "vars_dict={}\n", "for v in vars:\n", " unit = stac_helpers.get_unit(ds, v)\n", - " var_type = stac_helpers.get_var_type(ds, v)\n", + " var_type = stac_helpers.get_var_type(ds, v, crs_var)\n", " long_name = stac_helpers.get_long_name(ds, v)\n", " vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})" ] -- GitLab