diff --git a/workflows/archive/macav2_historical_monthly_create_collection_from_zarr.ipynb b/workflows/archive/macav2_historical_monthly_create_collection_from_zarr.ipynb
index 7cfacd9c78f58ca4aee1664ff6a8ecab53ca5306..a2a3cfae07bcd41cf1117bd62f32baa0d3b37e9f 100644
--- a/workflows/archive/macav2_historical_monthly_create_collection_from_zarr.ipynb
+++ b/workflows/archive/macav2_historical_monthly_create_collection_from_zarr.ipynb
@@ -33,7 +33,8 @@
     "import pandas as pd\n",
     "import json\n",
     "import numpy as np\n",
-    "import metpy\n",
+    "import pyproj\n",
+    "from pyproj import Transformer\n",
     "import cartopy.crs as ccrs\n",
     "import cfunits\n",
     "import json\n",
@@ -213,8 +214,37 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "ds  = ds.metpy.parse_cf()\n",
-    "crs = ds[list(ds.keys())[0]].metpy.cartopy_crs"
+    "# use pyproj to automatically extract crs info\n",
+    "crs = pyproj.CRS.from_cf(ds.crs.attrs)\n",
+    "\n",
+    "# alternatively, create the appropriate cartopy projection\n",
+    "# crs = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian, \n",
+    "#                             central_latitude=crs_info.latitude_of_projection_origin,\n",
+    "#                             standard_parallels=crs_info.standard_parallel)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2e4b4c28-1a02-4fdf-8498-274728ea0d2c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "ds.crs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8566c769-1638-48eb-8717-fccdb6cfc0c1",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "crs.to_proj4()"
    ]
   },
   {
@@ -245,14 +275,63 @@
     "# coordinates must be from WGS 84 datum\n",
     "# left, bottom, right, top\n",
     "\n",
-    "# Note: try changing around the commented out lines below to get type float ratherthan a numpy float\n",
-    "#coord_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float), ds[dim_names_dict['Y']].data.min().compute().astype(float), ds[dim_names_dict['X']].data.max().compute().astype(float), ds[dim_names_dict['Y']].data.max().compute().astype(float)]\n",
-    "#coord_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['X']].data.max().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.max().compute().astype(float).tolist()]\n",
-    "coord_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]\n",
-    "print(coord_bounds)\n",
-    "print(f'\\ncoord_bounds data type: {type(coord_bounds[0])}')\n",
+    "# Note: try changing around the commented out lines below to get type float rather than a numpy float\n",
+    "#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float), ds[dim_names_dict['Y']].data.min().compute().astype(float), ds[dim_names_dict['X']].data.max().compute().astype(float), ds[dim_names_dict['Y']].data.max().compute().astype(float)]\n",
+    "#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['X']].data.max().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.max().compute().astype(float).tolist()]\n",
+    "spatial_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]\n",
+    "print(spatial_bounds)\n",
+    "print(f'\\nspatial_bounds data type: {type(spatial_bounds[0])}')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1fa7c721-aecd-4ea6-8f8d-226cc75e10bb",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "XX, YY = np.meshgrid(ds[dim_names_dict['X']].data, ds[dim_names_dict['Y']].data)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5fa66fb7-ea2f-4a09-b5db-7c6f42a2694c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "transformer = Transformer.from_crs(crs, \"EPSG:4326\", always_xy=True)\n",
+    "lon, lat = transformer.transform(XX.ravel(), YY.ravel())"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c28a05a0-8bde-4a99-80ee-f0385cfed090",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "print(f'lower left coordinates (WGS84): {min(lon)}, {min(lat)}')\n",
+    "print(f'upper right coordinates (WGS84): {max(lon)}, {max(lat)}')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "84a630f9-c527-43c5-8da4-1ee386c78c59",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
     "# create a spatial extent object \n",
-    "spatial_extent = pystac.SpatialExtent(bboxes=[coord_bounds])"
+    "spatial_extent = pystac.SpatialExtent(bboxes=[[min(lon).item(), min(lat).item(), max(lon).item(), max(lat).item()]])"
    ]
   },
   {
@@ -439,17 +518,6 @@
     "reference list of cartopy projections: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html"
    ]
   },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "ea452f62-5644-49b6-8a4e-7dc4f649fd1a",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# print out crs information in dataset\n",
-    "print(crs)"
-   ]
-  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -666,8 +734,8 @@
     "# we do not recommend including redundant dimensions (do not include x,y if you have lon,lat)\n",
     "# note that the extent of each dimension should be pulled from the dataset\n",
     "dims_dict = {dim_names_dict['T']: pystac.extensions.datacube.Dimension({'type': 'temporal', 'description': stac_helpers.get_long_name(ds, dim_names_dict['T']), 'extent': [temporal_extent_lower.strftime('%Y-%m-%dT%XZ'), temporal_extent_upper.strftime('%Y-%m-%dT%XZ')], 'step':time_step}),\n",
-    "             dim_names_dict['X']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'x', 'description': stac_helpers.get_long_name(ds, dim_names_dict['X']), 'extent': [xy_bounds[0], xy_bounds[2]], 'step': x_step, 'reference_system': projjson}),\n",
-    "             dim_names_dict['Y']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': stac_helpers.get_long_name(ds, dim_names_dict['Y']), 'extent': [xy_bounds[1], xy_bounds[3]], 'step': y_step, 'reference_system': projjson}),\n",
+    "             dim_names_dict['X']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'x', 'description': stac_helpers.get_long_name(ds, dim_names_dict['X']), 'extent': [spatial_bounds[0], spatial_bounds[2]], 'step': x_step, 'reference_system': projjson}),\n",
+    "             dim_names_dict['Y']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': stac_helpers.get_long_name(ds, dim_names_dict['Y']), 'extent': [spatial_bounds[1], spatial_bounds[3]], 'step': y_step, 'reference_system': projjson}),\n",
     "            }"
    ]
   },