diff --git a/catalog/alaska_et_2020_era-interim_reanalysis/collection.json b/catalog/alaska_et_2020_era-interim_reanalysis/collection.json new file mode 100644 index 0000000000000000000000000000000000000000..74d43c545453805e9e4e90ba5f23a6bc7b78fdbe --- /dev/null +++ b/catalog/alaska_et_2020_era-interim_reanalysis/collection.json @@ -0,0 +1,152 @@ +{ + "type": "Collection", + "id": "alaska_et_2020_era-interim_reanalysis", + "stac_version": "1.0.0", + "description": "alaska_et_2020_era-interim_reanalysis", + "links": [ + { + "rel": "root", + "href": "../catalog.json", + "type": "application/json" + }, + { + "rel": "parent", + "href": "../catalog.json", + "type": "application/json" + } + ], + "stac_extensions": [ + "https://stac-extensions.github.io/datacube/v2.2.0/schema.json" + ], + "cube:dimensions": { + "time": { + "type": "temporal", + "description": "time", + "extent": [ + "1979-04-01T00:00:00Z", + "2017-09-30T00:00:00Z" + ], + "step": "NaT" + }, + "x": { + "type": "spatial", + "description": "x coordinate of projection", + "axis": "x", + "extent": [ + -2610000.0, + 2610000.0 + ], + "step": 20000.0, + "reference_system": "{\"$schema\":\"https://proj.org/schemas/v0.5/projjson.schema.json\",\"type\":\"ProjectedCRS\",\"name\":\"unknown\",\"base_crs\":{\"name\":\"unknown\",\"datum\":{\"type\":\"GeodeticReferenceFrame\",\"name\":\"unknown\",\"ellipsoid\":{\"name\":\"WGS 84\",\"semi_major_axis\":6378137,\"inverse_flattening\":298.257223563}},\"coordinate_system\":{\"subtype\":\"ellipsoidal\",\"axis\":[{\"name\":\"Longitude\",\"abbreviation\":\"lon\",\"direction\":\"east\",\"unit\":\"degree\"},{\"name\":\"Latitude\",\"abbreviation\":\"lat\",\"direction\":\"north\",\"unit\":\"degree\"}]}},\"conversion\":{\"name\":\"unknown\",\"method\":{\"name\":\"Polar Stereographic (variant B)\",\"id\":{\"authority\":\"EPSG\",\"code\":9829}},\"parameters\":[{\"name\":\"Latitude of standard parallel\",\"value\":64,\"unit\":\"degree\",\"id\":{\"authority\":\"EPSG\",\"code\":8832}},{\"name\":\"Longitude of origin\",\"value\":-152,\"unit\":\"degree\",\"id\":{\"authority\":\"EPSG\",\"code\":8833}},{\"name\":\"False easting\",\"value\":0,\"unit\":\"metre\",\"id\":{\"authority\":\"EPSG\",\"code\":8806}},{\"name\":\"False northing\",\"value\":0,\"unit\":\"metre\",\"id\":{\"authority\":\"EPSG\",\"code\":8807}}]},\"coordinate_system\":{\"subtype\":\"Cartesian\",\"axis\":[{\"name\":\"Easting\",\"abbreviation\":\"E\",\"direction\":\"south\",\"meridian\":{\"longitude\":90},\"unit\":\"metre\"},{\"name\":\"Northing\",\"abbreviation\":\"N\",\"direction\":\"south\",\"meridian\":{\"longitude\":180},\"unit\":\"metre\"}]}}" + }, + "y": { + "type": "spatial", + "axis": "y", + "description": "y coordinate of projection", + "extent": [ + -5413582.2906, + -193582.29059999995 + ], + "step": 20000.0, + "reference_system": "{\"$schema\":\"https://proj.org/schemas/v0.5/projjson.schema.json\",\"type\":\"ProjectedCRS\",\"name\":\"unknown\",\"base_crs\":{\"name\":\"unknown\",\"datum\":{\"type\":\"GeodeticReferenceFrame\",\"name\":\"unknown\",\"ellipsoid\":{\"name\":\"WGS 84\",\"semi_major_axis\":6378137,\"inverse_flattening\":298.257223563}},\"coordinate_system\":{\"subtype\":\"ellipsoidal\",\"axis\":[{\"name\":\"Longitude\",\"abbreviation\":\"lon\",\"direction\":\"east\",\"unit\":\"degree\"},{\"name\":\"Latitude\",\"abbreviation\":\"lat\",\"direction\":\"north\",\"unit\":\"degree\"}]}},\"conversion\":{\"name\":\"unknown\",\"method\":{\"name\":\"Polar Stereographic (variant B)\",\"id\":{\"authority\":\"EPSG\",\"code\":9829}},\"parameters\":[{\"name\":\"Latitude of standard parallel\",\"value\":64,\"unit\":\"degree\",\"id\":{\"authority\":\"EPSG\",\"code\":8832}},{\"name\":\"Longitude of origin\",\"value\":-152,\"unit\":\"degree\",\"id\":{\"authority\":\"EPSG\",\"code\":8833}},{\"name\":\"False easting\",\"value\":0,\"unit\":\"metre\",\"id\":{\"authority\":\"EPSG\",\"code\":8806}},{\"name\":\"False northing\",\"value\":0,\"unit\":\"metre\",\"id\":{\"authority\":\"EPSG\",\"code\":8807}}]},\"coordinate_system\":{\"subtype\":\"Cartesian\",\"axis\":[{\"name\":\"Easting\",\"abbreviation\":\"E\",\"direction\":\"south\",\"meridian\":{\"longitude\":90},\"unit\":\"metre\"},{\"name\":\"Northing\",\"abbreviation\":\"N\",\"direction\":\"south\",\"meridian\":{\"longitude\":180},\"unit\":\"metre\"}]}}" + } + }, + "cube:variables": { + "lat": { + "dimensions": [ + "y", + "x" + ], + "type": "auxiliary", + "description": "latitude", + "unit": "degrees_north" + }, + "lon": { + "dimensions": [ + "y", + "x" + ], + "type": "auxiliary", + "description": "longitude", + "unit": "degrees_east" + }, + "et0": { + "dimensions": [ + "time", + "y", + "x" + ], + "type": "data", + "description": "Reference Evapotranspiration", + "unit": "mm" + }, + "polar_stereographic": { + "dimensions": [], + "type": "data", + "description": "CRS definition", + "unit": null + } + }, + "extent": { + "spatial": { + "bbox": [ + [ + -179.9994659423828, + 37.233001708984375, + 179.9990692138672, + 88.26099395751953 + ] + ] + }, + "temporal": { + "interval": [ + [ + "1979-04-01T00:00:00Z", + "2017-09-30T00:00:00Z" + ] + ] + } + }, + "license": "CC0-1.0", + "assets": { + "zarr-s3-osn": { + "href": "s3://mdmf/gdp/alaska_et_2020_era-interim_reanalysis.zarr/", + "type": "application/vnd+zarr", + "description": "Open Storage Network Pod S3 API access to collection zarr group", + "xarray:open_kwargs": { + "chunks": {}, + "engine": "zarr", + "consolidated": true + }, + "xarray:storage_options": { + "anon": true, + "client_kwargs": { + "endpoint_url": "https://usgs.osn.mghpcc.org/" + } + }, + "roles": [ + "data", + "zarr", + "s3" + ] + }, + "zarr-s3": { + "href": "s3://nhgf-development/workspace/DataConversion/alaska_et_2020_era-interim_reanalysis.zarr/", + "type": "application/vnd+zarr", + "description": "S3 access to collection zarr group", + "xarray:open_kwargs": { + "chunks": {}, + "engine": "zarr", + "consolidated": true + }, + "xarray:storage_options": { + "requester_pays": true + }, + "roles": [ + "data", + "zarr", + "s3" + ] + } + } +} \ No newline at end of file diff --git a/catalog/catalog.json b/catalog/catalog.json index 008d97940bcf02795e944300589326695ae61c59..cd528551849400fa40ebd2519d3a4ed0ee6286ca 100644 --- a/catalog/catalog.json +++ b/catalog/catalog.json @@ -18,6 +18,11 @@ "rel": "child", "href": "./alaska_et_2020_ccsm4_historical_simulation/collection.json", "type": "application/json" + }, + { + "rel": "child", + "href": "./alaska_et_2020_era-interim_reanalysis/collection.json", + "type": "application/json" } ] } \ No newline at end of file diff --git a/workflows/archive/alaska_et_2020_ccsm4_historical_simulation_create_collection_from_zarr.ipynb b/workflows/archive/alaska_et_2020_ccsm4_historical_simulation_create_collection_from_zarr.ipynb index 33c18edf188b43b856a1b1b0d1a8d3b6ce430a11..af637ec4f8940ddf56a5caa2c236863496c15112 100644 --- a/workflows/archive/alaska_et_2020_ccsm4_historical_simulation_create_collection_from_zarr.ipynb +++ b/workflows/archive/alaska_et_2020_ccsm4_historical_simulation_create_collection_from_zarr.ipynb @@ -730,18 +730,6 @@ "# print(*find_paths(d))" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "bca0536f-6d72-4640-b540-5ce5d13e7006", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "if catalog.get_child(collection_id)" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/workflows/archive/alaska_et_2020_era-interim_reanalysis_create_collection_from_zarr.ipynb b/workflows/archive/alaska_et_2020_era-interim_reanalysis_create_collection_from_zarr.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..e385f15e621602e1d087d1421fb83f914cdf9b6a --- /dev/null +++ b/workflows/archive/alaska_et_2020_era-interim_reanalysis_create_collection_from_zarr.ipynb @@ -0,0 +1,771 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6c10e07b-1e60-4926-af1d-fa75dc78e5d4", + "metadata": { + "tags": [] + }, + "source": [ + "# CONUS404 Daily Zarr -> Collection Exploratory Workflow\n", + "This is a workflow for transforming the CONUS404 daily zarr dataset into a [STAC collection](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md). We use the [datacube extension](https://github.com/stac-extensions/datacube) to define the spatial and temporal dimensions of the zarr store, as well as the variables it contains.\n", + "\n", + "To simplify this workflow so that it can scale to many datasets, a few simplifying suggestions and assumptions are made:\n", + "1. For USGS data, we can use the CC0-1.0 license. For all other data we can use Unlicense. Ref: https://spdx.org/licenses/\n", + "2. I am assuming all coordinates are from the WGS84 datum if not specified." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "201e0945-de55-45ff-b095-c2af009a4e62", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pystac\n", + "from pystac.extensions.datacube import CollectionDatacubeExtension, AssetDatacubeExtension, AdditionalDimension, DatacubeExtension\n", + "import xarray as xr\n", + "import cf_xarray\n", + "import os\n", + "import fsspec\n", + "import cf_xarray\n", + "import hvplot.xarray\n", + "import pandas as pd\n", + "import json\n", + "import numpy as np\n", + "import metpy\n", + "import cartopy.crs as ccrs\n", + "import cfunits\n", + "import json" + ] + }, + { + "cell_type": "markdown", + "id": "20b00e88-5a13-46b3-9787-d9ac2d4e7bd6", + "metadata": {}, + "source": [ + "## Open up NHGF STAC Catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "adf6c59d-58cd-48b1-a5fd-3bb205a3ef56", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# define folder location where your STAC catalog json file is\n", + "catalog_path = os.path.join('..', '..', 'catalog')\n", + "# open catalog\n", + "catalog = pystac.Catalog.from_file(os.path.join(catalog_path, 'catalog.json'))" + ] + }, + { + "cell_type": "markdown", + "id": "996e60ba-13e4-453a-8534-e62ce747f0fa", + "metadata": {}, + "source": [ + "## Collection Metadata Input" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "482d204d-b5b6-40e5-ac42-55b459be1097", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# name for STAC collection\n", + "collection_id = 'alaska_et_2020_era-interim_reanalysis'\n", + "# description of STAC collection\n", + "collection_description = 'alaska_et_2020_era-interim_reanalysis'\n", + "# license for dataset\n", + "collection_license = 'CC0-1.0'" + ] + }, + { + "cell_type": "markdown", + "id": "116b5837-8e85-4ae7-964a-803533ded714", + "metadata": {}, + "source": [ + "## Asset Metadata Input" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dd6fa323-132a-4794-8c80-576933f547a0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# url to zarr store that you want to create a collection for\n", + "zarr_url = 's3://mdmf/gdp/alaska_et_2020_era-interim_reanalysis.zarr/'\n", + "\n", + "# define keyword arguments needed for opening the dataset with xarray\n", + "# ref: https://github.com/stac-extensions/xarray-assets\n", + "xarray_opendataset_kwargs = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n", + " \"xarray:storage_options\": {\"anon\": True, \"client_kwargs\": {\"endpoint_url\":\"https://usgs.osn.mghpcc.org/\"}}}\n", + "# description for zarr url asset attached to collection (zarr_url)\n", + "asset_description = \"Open Storage Network Pod S3 API access to collection zarr group\"\n", + "# roles to tag zarr url asset with\n", + "asset_roles = [\"data\",\"zarr\",\"s3\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e1441cd4-e94c-4902-af46-8f1af470eb6b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# url to zarr store that you want to create a collection for\n", + "zarr_url2 = 's3://nhgf-development/workspace/DataConversion/alaska_et_2020_era-interim_reanalysis.zarr/'\n", + "\n", + "# define keyword arguments needed for opening the dataset with xarray\n", + "# ref: https://github.com/stac-extensions/xarray-assets\n", + "xarray_opendataset_kwargs2 = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n", + " \"xarray:storage_options\":{\"requester_pays\":True}}\n", + "# description for zarr url asset attached to collection (zarr_url)\n", + "asset_description2 = \"S3 access to collection zarr group\"\n", + "# roles to tag zarr url asset with\n", + "asset_roles2 = [\"data\",\"zarr\",\"s3\"]" + ] + }, + { + "cell_type": "markdown", + "id": "b213b74f-ad17-4774-93b6-3b62be616b45", + "metadata": { + "tags": [] + }, + "source": [ + "## Data Exploration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "708f2cf5-79ab-49af-8067-de31d0d13ee6", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# open and view zarr dataset\n", + "fs2 = fsspec.filesystem('s3', anon=True, endpoint_url='https://usgs.osn.mghpcc.org/')\n", + "ds = xr.open_dataset(fs2.get_mapper(zarr_url), engine='zarr', \n", + " backend_kwargs={'consolidated':True}, chunks={})\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "0bc7e9b3-ad62-4b10-a18e-66b7ed2d35dc", + "metadata": {}, + "source": [ + "## Identify x, y, t dimensions of dataset\n", + "May require user input if dimensions cannot be auto-detected." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab91268f-7200-4cb1-979a-c7d75531d2c0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "dims_auto_extract = ['X', 'Y', 'T']\n", + "def extract_dim(ds, d):\n", + " try:\n", + " dim_list = ds.cf.axes[d]\n", + " assert len(dim_list)==1, f'There are too many {d} dimensions in this dataset.'\n", + " dim = dim_list[0]\n", + " except KeyError:\n", + " print(f\"Could not auto-extract {d} dimension name.\")\n", + " print(\"Look at the xarray output above showing the dataset dimensions.\")\n", + " dim = str(input(f\"What is the name of the {d} dimension of this dataset?\"))\n", + " assert dim in ds.dims, \"That is not a valid dimension name for this dataset\"\n", + " print(f\"name of {d} dimension: {dim}\\n\")\n", + " return dim\n", + "\n", + "dim_names_dict = {}\n", + "for d in dims_auto_extract:\n", + " dim_names_dict[d] = extract_dim(ds, d)\n", + "print(f\"Dimension dictionary: {dim_names_dict}\")" + ] + }, + { + "cell_type": "markdown", + "id": "bad1118b-32ce-4191-939a-21fd58167ea6", + "metadata": {}, + "source": [ + "## Get crs info" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8307fb3a-ca11-4c19-bcdc-c95ac7275b1c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds = ds.metpy.parse_cf()\n", + "crs = ds[list(ds.keys())[0]].metpy.cartopy_crs" + ] + }, + { + "cell_type": "markdown", + "id": "8fbfecfb-9886-4d06-a34c-6471cb0a6053", + "metadata": {}, + "source": [ + "## Plot a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4eb4d027-4266-4a0b-8f16-bacfbef06242", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# # plot a map of a single variable\n", + "# var_to_plot = 'SNOW'\n", + "# da = ds[var_to_plot].sel(time='2014-03-01 00:00').load()\n", + "# da.hvplot.quadmesh(x='lon', y='lat', rasterize=True,\n", + "# geo=True, tiles='OSM', alpha=0.7, cmap='turbo')" + ] + }, + { + "cell_type": "markdown", + "id": "5e057a6c-06fb-4406-823b-e81c58e520e4", + "metadata": {}, + "source": [ + "## Plot a time series at a specific point\n", + "This can help you verify a variable's values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c7de2681-88c2-4597-857c-8f169c596f8b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# # enter lat, lon of point you want to plot time series for\n", + "# lat,lon = 39.978322,-105.2772194\n", + "# time_start = '2013-01-01 00:00'\n", + "# time_end = '2013-12-31 00:00'\n", + "# x, y = crs.transform_point(lon, lat, src_crs=ccrs.PlateCarree()) # PlateCaree = Lat,Lon\n", + "# da = ds[var_to_plot].sel(x=x, y=y, method='nearest').sel(time=slice(time_start,time_end)).load()\n", + "# da.hvplot(x=dim_names_dict['T'], grid=True)" + ] + }, + { + "cell_type": "markdown", + "id": "a8c3ed37-8564-400b-a7fb-25bd5e43d21c", + "metadata": {}, + "source": [ + "## Create Collection Extent" + ] + }, + { + "cell_type": "markdown", + "id": "69f0d837-68a5-4fed-9a14-5d75cfbb0da4", + "metadata": {}, + "source": [ + "### Spatial Extent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d46805e0-8e94-4ebe-aa01-d9a2d7051459", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# pull out lat/lon bbox for data\n", + "# coordinates must be from WGS 84 datum\n", + "# left, bottom, right, top\n", + "# Note: I'm not sure why but I have some trouble getting the data type right here - \n", + "# I've included all the options I've had to run to get it to not be a regular float rather \n", + "# than a numpy float below - switch the commented line if you have this issue\n", + "#coord_bounds = [ds.lon.data.min().compute().astype(float).tolist(), ds.lat.data.min().compute().astype(float), ds.lon.data.max().compute().astype(float), ds.lat.data.max().compute().astype(float)]\n", + "coord_bounds = [ds.lon.data.min().compute().astype(float).tolist(), ds.lat.data.min().compute().astype(float).tolist(), ds.lon.data.max().compute().astype(float).tolist(), ds.lat.data.max().compute().astype(float).tolist()]\n", + "#coord_bounds = [ds.lon.data.min().astype(float).item(), ds.lat.data.min().astype(float).item(), ds.lon.data.max().astype(float).item(), ds.lat.data.max().astype(float).item()]\n", + "print(coord_bounds)\n", + "# create a spatial extent object \n", + "spatial_extent = pystac.SpatialExtent(bboxes=[coord_bounds])" + ] + }, + { + "cell_type": "markdown", + "id": "a04c8fca-1d33-43ac-9e2b-62d7be2887f7", + "metadata": {}, + "source": [ + "### Temporal Extent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "41a84995-867c-4152-8c57-85e3758bbb77", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# pull out first and last timestamps\n", + "temporal_extent_lower = pd.Timestamp(ds[dim_names_dict['T']].data.min())\n", + "temporal_extent_upper = pd.Timestamp(ds[dim_names_dict['T']].data.max())\n", + "print(f'min: {temporal_extent_lower} \\nmax: {temporal_extent_upper}')\n", + "# create a temporal extent object\n", + "temporal_extent = pystac.TemporalExtent(intervals=[[temporal_extent_lower, temporal_extent_upper]])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1b1e37c4-5348-46ad-abc9-e005b5d6c02b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent)" + ] + }, + { + "cell_type": "markdown", + "id": "cfb71202-03df-45b5-ac2f-0dc2ee1ab780", + "metadata": {}, + "source": [ + "## Create pystac collection" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e96811b-95ae-406a-9728-55fc429d4e1f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "if catalog.get_child(collection_id):\n", + " collection = catalog.get_child(collection_id)\n", + " print(\"existing collection opened\")\n", + " collection.extent=collection_extent\n", + " collection.description=collection_description\n", + " collection.license=collection_license\n", + "else:\n", + " collection = pystac.Collection(id=collection_id,\n", + " description=collection_description,\n", + " extent=collection_extent,\n", + " license=collection_license)\n", + " print(\"new collection created\")" + ] + }, + { + "cell_type": "markdown", + "id": "a21c76e8-cd57-4eb5-a33f-7c668a3b3205", + "metadata": {}, + "source": [ + "## Add zarr url asset to collection" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "094832af-d22b-4359-b0f6-cf687acce5cc", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "asset_id = \"zarr-s3-osn\"\n", + "asset = pystac.Asset(href=zarr_url,\n", + " description=asset_description,\n", + " media_type=\"application/vnd+zarr\",\n", + " roles=asset_roles,\n", + " extra_fields = xarray_opendataset_kwargs)\n", + "collection.add_asset(asset_id, asset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0c298d07-f234-4a08-986d-87f4a39e9ae6", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "asset_id2 = \"zarr-s3\"\n", + "asset2 = pystac.Asset(href=zarr_url2,\n", + " description=asset_description2,\n", + " media_type=\"application/vnd+zarr\",\n", + " roles=asset_roles2,\n", + " extra_fields = xarray_opendataset_kwargs2)\n", + "collection.add_asset(asset_id2, asset2)" + ] + }, + { + "cell_type": "markdown", + "id": "f67cd5c9-db33-45c2-bc21-480cd67354f4", + "metadata": {}, + "source": [ + "## Add datacube extension to collection" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fc00946d-2880-491d-9b3b-3aeeb4414d6c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# instantiate extention on collection\n", + "dc = DatacubeExtension.ext(collection, add_if_missing=True)" + ] + }, + { + "cell_type": "markdown", + "id": "8bdd77a2-7587-485e-afb7-42af3a822241", + "metadata": {}, + "source": [ + "### Add cube dimensions (required field for extension)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "120a4914-3302-44a5-a282-0308ac84f040", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# list out dataset dimensions\n", + "# When writing data to Zarr, Xarray sets this attribute on all variables based on the variable dimensions. When reading a Zarr group, Xarray looks for this attribute on all arrays,\n", + "# raising an error if it can’t be found.\n", + "dims = list(ds.dims)\n", + "print(dims)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00a18a29-fb9a-4b56-8009-493122997b16", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# get x, y bounds for extent of those dimensions (required)\n", + "xy_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]\n", + "print(xy_bounds)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f49d6d7-9e30-4144-909b-fa1238e6c77a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_step(dim_name):\n", + " dim_vals = ds[dim_name].values\n", + " diffs = [d2 - d1 for d1, d2 in zip(dim_vals, dim_vals[1:])]\n", + " unique_steps = np.unique(diffs)\n", + " # set step - if all steps are the same length\n", + " # datacube spec specifies to use null for irregularly spaced steps\n", + " if len(unique_steps)==1:\n", + " step = unique_steps[0].astype(float).item()\n", + " else:\n", + " step = None\n", + " return(step)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a20d12bf-a511-4c5e-84d0-77e2ec551518", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_long_name(ds, v):\n", + " # try to get long_name attribute from variable\n", + " try:\n", + " long_name = ds[v].attrs['long_name']\n", + " # otherwise, leave empty\n", + " except:\n", + " long_name = None\n", + " return long_name" + ] + }, + { + "cell_type": "markdown", + "id": "e7dc357c-91ec-49ae-83e5-400f791f9792", + "metadata": {}, + "source": [ + "#### user input needed - you will need to look at the crs information and create a cartopy crs object after identifying the projection type:\n", + "reference list of cartopy projections: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ea452f62-5644-49b6-8a4e-7dc4f649fd1a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# print ot crs information in dataset\n", + "print(crs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "686ce5f8-f10f-40a5-9780-0bbf85507f26", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# the datacube extension can accept reference_system information as a numerical EPSG code, \n", + "# WKT2 (ISO 19162) string or PROJJSON object.\n", + "# we will use a projjson, as was done by Microsoft Planetary Computer here:\n", + "# https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n", + "# https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n", + "projjson = crs.to_json()\n", + "print(projjson)" + ] + }, + { + "cell_type": "markdown", + "id": "00a5e041-081d-428d-ac2e-75d16de205e6", + "metadata": {}, + "source": [ + "#### user input needed - you will need to copy all of the dimensions from above into the dict and fill in the appropriate attributes(type, axis, extent):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a443497-67a9-4dce-a8e9-b08d31a88223", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# create a dictionary of datacube dimensions you would like to assign to this dataset\n", + "# dimension name should come from the coordinates printed above\n", + "# we do not recommend including redundant dimensions (do not include x,y if you have lon,lat)\n", + "# note that the extent of each dimension should be pulled from the dataset\n", + "dims_dict = {'time': pystac.extensions.datacube.Dimension({'type': 'temporal', 'description': get_long_name(ds, 'time'), 'extent': [temporal_extent_lower.strftime('%Y-%m-%dT%XZ'), temporal_extent_upper.strftime('%Y-%m-%dT%XZ')], 'step': pd.Timedelta(get_step('time')).isoformat()}),\n", + " 'x': pystac.extensions.datacube.Dimension({'type': 'spatial', 'description': get_long_name(ds, 'x'), 'axis': 'x', 'extent': [xy_bounds[0], xy_bounds[2]], 'step': get_step('x'), 'reference_system': projjson}),\n", + " 'y': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': get_long_name(ds, 'y'), 'extent': [xy_bounds[1], xy_bounds[3]], 'step': get_step('y'), 'reference_system': projjson}),\n", + " }" + ] + }, + { + "cell_type": "markdown", + "id": "0f277883-a3fd-425f-966a-ca2140d0ef2f", + "metadata": {}, + "source": [ + "### Add cube variables (optional field for extension)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "92510876-7853-4d24-8563-c69f9012aeb6", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# define functions to pull out datacube attributes and validate format\n", + "def get_unit(ds, v):\n", + " # check if unit is defined for variable\n", + " try:\n", + " unit = ds[v].attrs['units']\n", + " except:\n", + " unit = None\n", + " # check if unit comes from https://docs.unidata.ucar.edu/udunits/current/#Database\n", + " # datacube extension specifies: The unit of measurement for the data, preferably compliant to UDUNITS-2 units (singular).\n", + " # gdptools expects this format as well\n", + " try:\n", + " cfunits.Units(unit).isvalid\n", + " except:\n", + " print(\"Unit is not valid as a UD unit.\")\n", + " unit = str(input(\"Please enter a valid unit for {v} from here: https://docs.unidata.ucar.edu/udunits/current/#Database\"))\n", + " assert cfunits.Units(unit).isvalid\n", + " return unit\n", + "\n", + "def get_var_type(ds, v):\n", + " if v in ds.coords:\n", + " # type = auxiliary for a variable that contains coordinate data, but isn't a dimension in cube:dimensions.\n", + " # For example, the values of the datacube might be provided in the projected coordinate reference system, \n", + " # but the datacube could have a variable lon with dimensions (y, x), giving the longitude at each point.\n", + " var_type = 'auxiliary'\n", + " # type = data for a variable indicating some measured value, for example \"precipitation\", \"temperature\", etc.\n", + " else:\n", + " var_type = 'data'\n", + " return var_type" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e9272931-fc0b-4f2a-9546-283033e9cde8", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# pull list of vars from dataset\n", + "vars = list(ds.variables)\n", + "\n", + "# drop metpy_crs coordinate we have added\n", + "if 'metpy_crs' in ds.coords:\n", + " ds = ds.drop_vars('metpy_crs')\n", + "\n", + "# spec says that the keys of cube:dimensions and cube:variables should be unique together; a key like lat should not be both a dimension and a variable.\n", + "# we will drop all values in dims from vars\n", + "vars = [v for v in vars if v not in dims]\n", + "\n", + "# Microsoft Planetary Computer includes coordinates and crs as variables here:\n", + "# https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n", + "# https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n", + "# we will keep those in the var list\n", + "\n", + "# create dictionary of dataset variables and associated dimensions\n", + "vars_dict={}\n", + "for v in vars:\n", + " unit = get_unit(ds, v)\n", + " var_type = get_var_type(ds, v)\n", + " long_name = get_long_name(ds, v)\n", + " vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})" + ] + }, + { + "cell_type": "markdown", + "id": "11ad5352-884c-4472-8864-4570a96f66e5", + "metadata": {}, + "source": [ + "### Finalize extension" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "10141fd4-91d6-491d-878b-02653720891d", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# add dimesions and variables to collection extension\n", + "dc.apply(dimensions=dims_dict, variables=vars_dict)" + ] + }, + { + "cell_type": "markdown", + "id": "615ca168-75fb-4135-9941-0ef5fe4fd1cb", + "metadata": {}, + "source": [ + "## Add STAC Collection to Catalog and Save" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e2120a55-3d04-4122-a93f-29afcdb8cb1b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# # helper to find items of wrong type\n", + "# d = collection.to_dict()\n", + "# def find_paths(nested_dict, prepath=()):\n", + "# for k, v in nested_dict.items():\n", + "# try:\n", + "# path = prepath + (k,)\n", + "# if type(v) is np.float64: # found value\n", + "# yield path\n", + "# elif hasattr(v, 'items'): # v is a dict\n", + "# yield from find_paths(v, path) \n", + "# except:\n", + "# print(prepath)\n", + "\n", + "# print(*find_paths(d))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4b75791b-6b2d-40be-b7c6-330a60888fb5", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "if catalog.get_child(collection_id):\n", + " collection.normalize_and_save(root_href=os.path.join(catalog_path, collection_id), catalog_type=pystac.CatalogType.SELF_CONTAINED)\n", + "else:\n", + " catalog.add_child(collection)\n", + " catalog.normalize_and_save(root_href=catalog_path, catalog_type=pystac.CatalogType.SELF_CONTAINED)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "global-global-pangeo", + "language": "python", + "name": "conda-env-global-global-pangeo-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}