diff --git a/workflows/archive/Red_River_future_create_collection_from_zarr.ipynb b/workflows/archive/Red_River_future_create_collection_from_zarr.ipynb index ce941d3b7b0e6c5edc2e0f5df7ef8e68b534229a..9f282764d46d174773965276901fc0341f6ae510 100644 --- a/workflows/archive/Red_River_future_create_collection_from_zarr.ipynb +++ b/workflows/archive/Red_River_future_create_collection_from_zarr.ipynb @@ -207,6 +207,18 @@ "## Get crs info" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "4228e138-c46d-45fd-8f74-80f27972179c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "crs_var = 'crs'" + ] + }, { "cell_type": "code", "execution_count": null, @@ -215,7 +227,7 @@ "outputs": [], "source": [ "# use pyproj to automatically extract crs info\n", - "crs = pyproj.CRS.from_cf(ds.crs.attrs)\n", + "crs = pyproj.CRS.from_cf(ds[crs_var].attrs)\n", "\n", "# alternatively, create the appropriate cartopy projection\n", "# crs = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian, \n", @@ -771,7 +783,7 @@ "vars_dict={}\n", "for v in vars:\n", " unit = stac_helpers.get_unit(ds, v)\n", - " var_type = stac_helpers.get_var_type(ds, v)\n", + " var_type = stac_helpers.get_var_type(ds, v, crs_var)\n", " long_name = stac_helpers.get_long_name(ds, v)\n", " vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})" ]