diff --git a/2_process.R b/2_process.R index 83aa138d786aa147e751ca4316a079770a8366bd..1b5d8716c0deee0a6f3c1580aef8375855384a4e 100644 --- a/2_process.R +++ b/2_process.R @@ -158,12 +158,11 @@ tar_target(p2_census_acs5sub_education_data, pattern = map(p2_census_acs5sub_education_layers), iteration = "list"), -# household related variables -# S1101_C01_001 = Estimate!!Total!!HOUSEHOLDS!!Total households -# S1101_C04_001 = Estimate!!Female householder, no spouse present, family household!!HOUSEHOLDS!!Total households +# household and rent related variables +# B25010_001 = Estimate!!Average household size --!!Total:Average Household Size of Occupied Housing Units by Tenure # B25064_001 = Estimate!!Median gross rent tar_target(p2_census_acs5_household_layers, - c("S1101_C01_001", "S1101_C04_001", "B25064_001")), + c("B25010_001", "B25064_001")), tar_target(p2_census_acs5sub_household_data, get_census_data(geography = 'county', variable = p2_census_acs5_household_layers, states = p1_census_states, year = 2022, proj = p1_proj, diff --git a/3_visualize.R b/3_visualize.R index 72b5fba2362f17a4049889a32e3aabb74eeda076..16f7a21343476ebcb05e897fd795a674e520580e 100644 --- a/3_visualize.R +++ b/3_visualize.R @@ -7,6 +7,7 @@ p3_targets <- list( p3_med_income_png, plot_census_map( census_data = p2_perc_census_acs5_layers_sf[[2]], + lim_vals = c(0, 155000), percent_leg = FALSE, var = 'estimate', conus_sf = p1_conus_sf, @@ -44,16 +45,15 @@ p3_targets <- list( format = "file" ), tar_target( - p3_perc_occ_households_png, + p3_avg_household_size_png, plot_census_map( - census_data = p2_census_acs5profile_household_sf, - percent_leg = TRUE, - lim_vals = c(0, 100), - break_vals = c(0, 25, 50, 75, 100), + census_data = p2_census_acs5sub_household_data[[1]], + percent_leg = FALSE, + lim_vals = c(1, 5), var = 'estimate', conus_sf = p1_conus_sf, - outfile_path = "3_visualize/out/perc_occupied_households_2022.png", - leg_title = "Percent occupied housing units, 2022", + outfile_path = "3_visualize/out/avg_household_size_2022.png", + leg_title = "Average household size, 2022", viz_config_df = p0_viz_config_df, viz_config_pal = p0_viz_config_pal$demographic_characteristics, width = p0_viz_config_df$width_desktop, @@ -67,8 +67,9 @@ p3_targets <- list( tar_target( p3_median_rent_png, plot_census_map( - census_data = p2_census_acs5sub_household_data[[3]], + census_data = p2_census_acs5sub_household_data[[2]], percent_leg = FALSE, + lim_vals = c(0, 3000), var = 'estimate', conus_sf = p1_conus_sf, outfile_path = "3_visualize/out/median_rent_2022.png", diff --git a/3_visualize/src/plot_utils.R b/3_visualize/src/plot_utils.R index c7e4cdd42bf08e247dc85f588a77073377358dfa..2a3223b359a3495a2291f57374e2e36ec9b926c8 100644 --- a/3_visualize/src/plot_utils.R +++ b/3_visualize/src/plot_utils.R @@ -49,7 +49,7 @@ plot_census_map <- function(census_data, conus_sf, leg_title, outfile_path, var, scale_fill_gradientn( colors = colorRampPalette(c("#eef0ff", viz_config_pal))(100), name = leg_title, - limits = c(0, max(census_data[[var]], na.rm = TRUE)), + limits = lim_vals, labels = scales::comma, na.value="#F5F5F5")