Newer
Older
from obspy import Stream, Trace, UTCDateTime
from .algorithm import Algorithm, DeltaFAlgorithm, XYZAlgorithm
from .TimeseriesFactory import TimeseriesFactory, TimeseriesUtility
class DerivedTimeseriesFactory(TimeseriesFactory):
factory: TimeseriesFactory
def __init__(self, factory: TimeseriesFactory):
self.factory = factory
super().__init__(
observatory=factory.observatory,
channels=factory.channels,
type=factory.type,
interval=factory.interval,
urlTemplate=factory.urlTemplate,
urlInterval=factory.urlInterval,
)
def get_timeseries(
self,
starttime: UTCDateTime,
endtime: UTCDateTime,
observatory: str,
channels: List[str],
interval: str,
add_empty_channels: bool = True,
derive_missing: bool = True,
type: Optional[str] = None,
type = type or self.type
timeseries = self.factory.get_timeseries(
starttime=starttime,
endtime=endtime,
observatory=observatory,
channels=channels,
interval=interval,
add_empty_channels=False,
)
missing = get_missing(timeseries, channels)
if missing and derive_missing:
timeseries += self._get_derived_channels(
starttime=starttime,
endtime=endtime,
observatory=observatory,
channels=channels,
data_type=type,
interval=interval,
timeseries=timeseries,
)
missing = get_missing(timeseries, channels)
if missing and add_empty_channels:
Cain, Payton David
committed
for channel in missing:
timeseries += self._get_empty_trace(
Cain, Payton David
committed
starttime=starttime,
endtime=endtime,
observatory=observatory,
channel=channel,
data_type=type,
interval=interval,
)
# file-based factories return all channels found in file
timeseries = Stream([t for t in timeseries if t.stats.channel in channels])
self._set_metadata(
stream=timeseries.select(channel=channel),
observatory=observatory,
channel=channel,
type=type,
interval=interval,
)
return timeseries
def _get_derived_channels(
self,
starttime: UTCDateTime,
endtime: UTCDateTime,
observatory: str,
channels: List[str],
data_type: str,
interval: str,
timeseries: Stream,
):
"""calculate derived channels"""
input_timeseries = timeseries.copy()
input_channels = []
for channel in channels:
input_channels += self._get_derived_input_channels(channel, data_type)
missing_inputs = get_missing(input_timeseries, list(set(input_channels)))
if missing_inputs:
input_timeseries += self.factory.get_timeseries(
starttime=starttime,
endtime=endtime,
observatory=observatory,
channels=missing_inputs,
type=data_type,
interval=interval,
add_empty_channels=True,
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
)
output_timeseries = Stream()
for channel in channels:
if channel in get_missing(output_timeseries, channels):
derived = self._derive_trace(
input_timeseries=input_timeseries,
channel=channel,
data_type=data_type,
)
for channel in get_missing(
output_timeseries, TimeseriesUtility.get_channels(stream=derived)
):
output_timeseries += derived.select(channel=channel)
return output_timeseries
def _get_derived_input_channels(self, channel: str, data_type: str) -> List[str]:
"""get channels required to calculate desired channel"""
if data_type == "variation":
if channel == "G":
return ["H", "E", "Z", "F"]
elif channel in ["X", "Y", "D"]:
return ["H", "E"]
else:
if channel == "G":
return ["X", "Y", "Z", "F"]
elif channel in ["H", "D"]:
return ["X", "Y"]
return []
def _derive_trace(
self, input_timeseries: Stream, channel: str, data_type: str
) -> Stream:
"""Process timeseries based on desired channel
Note: All derived channels are returned
"""
if data_type == "variation":
if channel == "G":
return DeltaFAlgorithm(informat="obs").process(
timeseries=input_timeseries
)
elif channel in ["X", "Y"]:
return XYZAlgorithm(informat="obs", outformat="geo").process(
timeseries=input_timeseries
)
elif channel == "D":
return XYZAlgorithm(informat="obs", outformat="obsd").process(
timeseries=input_timeseries
)
else:
if channel == "G":
return DeltaFAlgorithm(informat="geo").process(
timeseries=input_timeseries
)
elif channel in ["H", "D"]:
return XYZAlgorithm(informat="geo", outformat="mag").process(
timeseries=input_timeseries
)
return Stream()
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def _get_empty_trace(
self,
starttime: UTCDateTime,
endtime: UTCDateTime,
observatory: str,
channel: str,
data_type: str,
interval: str,
network: str = "NT",
location: str = "",
) -> Trace:
"""creates empty trace"""
return self.factory._get_empty_trace(
starttime,
endtime,
observatory,
channel,
data_type,
interval,
network=network,
location=location,
)
def _set_metadata(
self, stream: Stream, observatory: str, channel: str, type: str, interval: str
):
"""set metadata for a given stream/channel
Parameters
----------
observatory
observatory code
channel
edge channel code {MVH, MVE, MVD, ...}
type
data type {definitive, quasi-definitive, variation}
interval
interval length {minute, second}
"""
return self.factory._set_metadata(stream, observatory, channel, type, interval)
def get_missing(input: Stream, desired: List[str]) -> List[str]:
"""Return missing channels from input"""
present = TimeseriesUtility.get_channels(stream=input)
return list(set(desired).difference(set(present)))