Newer
Older
import numpy as np
from .Absolute import Absolute
from .MeasurementType import (
MeasurementType as mt,
DECLINATION_TYPES,
INCLINATION_TYPES,
MARK_TYPES,
)
from .Measurement import AverageMeasurement, Measurement, average_measurement
from .Diagnostics import Diagnostics
def calculate(reading: Reading, adjust_reference: bool = True) -> Reading:
"""Calculate absolutes and scale value using residual method.
Parameters
-------
reading: reading to calculate absolutes from.
Returns
-------
new reading object with calculated absolutes and scale_value.
NOTE: rest of reading object is shallow copy.
# reference measurement, used to adjust absolutes
reference = reading[mt.WEST_DOWN][0]
# calculate inclination
inclination, f, mean = calculate_I(
hemisphere=reading.hemisphere, measurements=reading.measurements
)
corrected_f = f + reading.pier_correction
# calculate absolutes
absoluteH, absoluteZ = calculate_HZ_absolutes(
corrected_f=corrected_f,
inclination=inclination,
mean=mean,
reference=adjust_reference and reference or None,
absoluteD, average_mark, meridian, azimuth, magnetic_azimuth = calculate_D_absolute(
azimuth=reading.azimuth,
h_baseline=absoluteH.baseline,
measurements=reading.measurements,
reference=adjust_reference and reference or None,
scale_value = None
scale_measurements = reading[mt.NORTH_DOWN_SCALE]
if scale_measurements:
scale_value = calculate_scale_value(
corrected_f=corrected_f,
inclination=inclination,
measurements=scale_measurements,
diagnostics = Diagnostics(
meridian=meridian,
mean_mark=average_mark,
magnetic_azimuth=magnetic_azimuth,
mark_azimuth=azimuth,
declination=absoluteD.absolute,
inclination=inclination,
h_component=absoluteH.absolute,
z_component=absoluteZ.absolute,
)
# create new reading object
calculated = Reading(
absolutes=[absoluteD, absoluteH, absoluteZ],
scale_value=scale_value,
diagnostics=diagnostics,
**reading.dict(exclude={"absolutes", "scale_value", "diagnostics"}),
def calculate_D_absolute(
measurements: List[Measurement],
azimuth: float,
h_baseline: float,
reference: Measurement,
) -> Absolute:
"""Calculate D absolute.
Parameters
----------
measurements: list with at least declination and mark measurements.
azimuth: azimuth to mark in decimal degrees.
h_baseline: calculated H baseline value.
reference: reference measurement used to adjust absolute.
Returns
-------
D Absolute
Cain, Payton David
committed
"""
mean = average_measurement(measurements, DECLINATION_TYPES)
reference = reference or mean
# average mark
average_mark = average_measurement(measurements, MARK_TYPES).angle
# adjust based on which is larger
mark_up = average_measurement(measurements, [mt.FIRST_MARK_UP]).angle
mark_down = average_measurement(measurements, [mt.FIRST_MARK_DOWN]).angle
if mark_up < mark_down:
average_mark += 90
else:
average_mark -= 90
# declination measurements
declination_measurements = [
average_measurement(measurements, [t]) for t in DECLINATION_TYPES
]
# average declination meridian
meridian = np.average(
[
m.angle
+ np.degrees(
m.measurement_type.meridian
* (np.arcsin(m.residual / np.sqrt((m.h + h_baseline) ** 2 + m.e ** 2)))
)
- np.degrees(np.arctan(m.e / (m.h + h_baseline)))
for m in declination_measurements
]
)
# calculate south-facing meridian for diagnostics
south_meridian = np.average(
[
m.angle
+ np.degrees(
m.measurement_type.meridian
* (np.arcsin(m.residual / np.sqrt((m.h + h_baseline) ** 2 + m.e ** 2)))
)
- np.degrees(np.arctan(m.e / (m.h + h_baseline)))
for m in [
average_measurement(measurements, [t])
for t in [mt.SOUTH_UP, mt.SOUTH_DOWN]
]
]
)
mark_azimuth = azimuth
if azimuth > 180:
# add subtract average mark angle from average meridian angle and add
# azimuth to get the declination baseline
d_b = (meridian - average_mark) + azimuth + shift
d_abs = d_b + np.degrees(np.arctan(reference.e / (reference.h + h_baseline)))
# for diagnostics
if average_mark > 180:
average_mark -= 90
return (
Absolute(
element="D",
absolute=d_abs,
baseline=d_b,
shift=shift,
starttime=mean.time,
endtime=mean.endtime,
),
average_mark,
mark_azimuth,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def calculate_HZ_absolutes(
inclination: float,
corrected_f: float,
mean: AverageMeasurement,
reference: Measurement,
) -> Tuple[Absolute, Absolute]:
"""Calculate H and Z absolutes.
Parameters
----------
inclination: calculated inclination.
corrected_f: calculated f with pier correction.
mean: mean of inclination ordinates.
reference: reference measurement used to adjust absolutes.
Returns
-------
Tuple
- H Absolute
- Z Absolute
"""
inclination_radians = np.radians(inclination)
h_abs = corrected_f * np.cos(inclination_radians)
z_abs = corrected_f * np.sin(inclination_radians)
h_b = np.sqrt(h_abs ** 2 - mean.e ** 2) - mean.h
z_b = z_abs - mean.z
# adjust absolutes to reference measurement
h_abs = np.sqrt((h_b + reference.h) ** 2 + (reference.e) ** 2)
z_abs = z_b + reference.z
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# return absolutes
return (
Absolute(
element="H",
baseline=h_b,
absolute=h_abs,
starttime=mean.time,
endtime=mean.endtime,
),
Absolute(
element="Z",
baseline=z_b,
absolute=z_abs,
starttime=mean.time,
endtime=mean.endtime,
),
)
def calculate_I(
measurements: List[Measurement], hemisphere: Literal[-1, 1] = 1
) -> Tuple[float, float, Measurement]:
"""Calculate inclination and f from measurements.
Parameters
----------
measurements: list with at least inclination measurements.
hemisphere: +1 for northern hemisphere (default), -1 for southern hemisphere.
Returns
-------
Tuple
- inclination angle in decimal degrees
- uncorrected calculated f
- mean of inclination measurements
Cain, Payton David
committed
"""
mean = average_measurement(measurements, INCLINATION_TYPES)
inclination_measurements = [
average_measurement(measurements, [t]) for t in INCLINATION_TYPES
]
# get initial inclination angle, assumed to be the southdown angle
inclination = average_measurement(measurements, [mt.SOUTH_DOWN]).angle
if inclination >= 90:
inclination -= 180
# loop until inclination converges
last_inclination = inclination + 1
while abs(last_inclination - inclination) > 0.0001:
# set temporary inclination variable to hold previous step's inclination
last_inclination = inclination
# Update measurement f based on inclination
inclination_radians = np.radians(inclination)
m.f = (
mean.f
+ (m.h - mean.h) * np.cos(inclination_radians)
+ (m.z - mean.z) * np.sin(inclination_radians)
+ ((m.e) ** 2 - (mean.e) ** 2) / (2 * mean.f)
(
m.measurement_type.shift
+ m.measurement_type.meridian
* (
+m.angle
+ m.measurement_type.direction
* (hemisphere * np.degrees(np.arcsin(m.residual / m.f)))
# calculate uncorrected f
f = np.average([m.f for m in inclination_measurements])
def calculate_scale_value(
measurements: List[Measurement], inclination: float, corrected_f: float
) -> float:
"""Calculate scale value.
Parameters
----------
measurements: measurements to be used for scale calculation.
should have type NORTH_DOWN_SCALE.
inclination: calculated inclination.
corrected_f: calculated f with pier correction.
Returns
-------
Calculated scale value.
Cain, Payton David
committed
"""
m1, m2 = measurements[0], measurements[-1]
field_change = np.degrees(
(
-np.sin(inclination_radians) * (m2.h - m1.h)
+ np.cos(inclination_radians) * (m2.z - m1.z)
/ corrected_f
) + (m2.angle - m1.angle)
residual_change = m2.residual - m1.residual
scale_value = corrected_f * field_change / np.abs(residual_change)
return scale_value