Skip to content
Snippets Groups Projects
Flag.py 5.27 KiB
Newer Older
  • Learn to ignore specific revisions
  • Hobbs, Alexandra (Contractor)'s avatar
    Hobbs, Alexandra (Contractor) committed
    from typing import Dict, Union, List, Optional
    
    from datetime import timedelta
    
    import numpy as np
    from obspy import UTCDateTime
    from pydantic import BaseModel, Field, validator
    from enum import Enum
    
    
    
    class FlagCategory(str, Enum):
        ARTIFICIAL_DISTURBANCE = "ARTIFICIAL_DISTURBANCE"
        GAP = "GAP"
        EVENT = "EVENT"
        OTHER = "OTHER"
    
    
    
    class Flag(BaseModel):
        """
            Base class for flagging features in magnetic timeseries data.
    
            Flag example:
            ```
            automatic_flag = Metadata(
                created_by='ex_algorithm',
                start_time=UTCDateTime('2023-01-01T03:05:10'),
                end_time=UTCDateTime('2023-01-01T03:05:11'),
                network='NT',
                station='BOU',
                channel='BEH',
                category=MetadataCategory.FLAG,
                comment="spike detected",
                priority=1,
                data_valid=False,
                metadata= ArtificialDisturbance{
                    "description": "Spike in magnetic field strength",
                    "field_work": false,
                    "corrected": false,
    
                    "artificial_disturbance_type": ArtificialDisturbanceType.SPIKE,
    
                    "deviation": None,
            }
        )
            ```
        """
    
        description: str = Field(..., description="Description of the flag")
        field_work: bool = Field(..., description="Flag signaling field work")
        corrected: int = Field(..., description="Corrected ID for processing stage")
    
    
    
    class ArtificialDisturbanceType(str, Enum):
        SPIKES = "SPIKES"
        OFFSET = "OFFSET"
        ARTIFICIAL_DISTURBANCES = "ARTIFICIAL_DISTURBANCES"
    
    
    class ArtificialDisturbance(Flag):
        """
        This class is used to flag artificial disturbances.
    
        Artificial disturbances consist of the following types:
    
        SPIKES = Single data points that are outliers in the timeseries.
        OFFSET = A relatively constant shift or deviation in the baseline magnetic field.
        ARTIFICIAL_DISTURBANCES = A catch-all for a continuous period of unwanted variations, may include multiple spikes, offsets and/or gaps.
    
        Attributes
        ----------
        artificial_disturbance_type:ArtificialDisturbanceType
            The type of artificial disturbance(s).
        source: str
            Source of the disturbance if known or suspected.
        deviation: float
           Deviation of an offset in nt.
        spikes: np.ndarray
            NumPy array of timestamps as UTCDateTime. Can be a single spike or many spikes.
    
        """
    
        artificial_disturbance_type: ArtificialDisturbanceType
    
    Hobbs, Alexandra (Contractor)'s avatar
    Hobbs, Alexandra (Contractor) committed
        deviation: Optional[float] = None
        source: Optional[str] = None
        spikes: Optional[np.ndarray] = None
    
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            self.flag_category = "ARTIFICIAL_DISTURBANCE"
    
    
    
    class Gap(Flag):
        """
        This class is used to flag gaps in data.
    
        A gap is a period where data is missing or not recorded.
    
        Attributes
        ----------
        cause: str
            Cause of gap, e.g., network outage.
        handling: str
            How the gap is being handled, e.g., backfilled.
        """
    
        cause: str = None
        handling: str = None
    
    
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            self.flag_category = "GAP"
    
    
    
    class EventType(str, Enum):
        GEOMAGNETIC_STORM = "GEOMAGNETIC_STORM"
        GEOMAGNETIC_SUBSTORM = "GEOMAGNETIC_SUBSTORM"
        EARTHQUAKE = "EARTHQUAKE"
        OTHER = "OTHER"
    
    
    class Event(Flag):
        """
        This class is used to flag an event of interest such as a geomagnetic storm or earthquake.
    
        Attributes
        ----------
        event_type : EventType
            The type of event.
        scale : str
            Geomagnetic storm scale or Richter scale magnitude.
        index : int
            Planetary K-index, DST index or some other index.
        url : str
            A url related to the event. Could be NOAA SWPC, USGS Earthquakes page or another site.
        """
    
        event_type: EventType
        index: int = None
        scale: str = None
        url: str = None
    
    
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            self.flag_category = "EVENT"
    
    
    
    # More example usage:
    timestamps_array = np.array(
        [
            UTCDateTime("2023-11-16T12:00:0"),
            UTCDateTime("2023-11-16T12:01:10"),
            UTCDateTime("2023-11-16T12:02:30"),
        ]
    )
    
    spikes_data = {
        "starttime": "2023-11-16 12:00:00",
        "endtime": "2023-11-16 12:02:30",
        "description": "Spikes description",
        "field_work": False,
        "corrected": 32265,
        "disturbance_type": ArtificialDisturbanceType.SPIKES,
        "source": "processing",
        "spikes": timestamps_array,
    }
    
    offset_data = {
        "description": "Offset description",
        "field_work": False,
        "corrected": 47999,
        "disturbance_type": ArtificialDisturbanceType.OFFSET,
        "source": "Bin change",
        "deviation": 10.0,
    }
    geomagnetic_storm_data = {
        "description": "Geomagnetic storm",
        "field_work": False,
        "corrected": 36999,
        "event_type": EventType.GEOMAGNETIC_STORM,
        "scale": "G3",
        "index": 7,
        "url": "https://www.swpc.noaa.gov/products/planetary-k-index",
    }
    
    spike_instance = ArtificialDisturbance(**spikes_data)
    offset_instance = ArtificialDisturbance(**offset_data)
    
    
    print(spike_instance.model_dump())
    print(offset_instance.model_dump())