Newer
Older
#! /usr/bin/env python
from __future__ import absolute_import
from nose.tools import assert_equals
from .StreamConverter_test import __create_trace
import numpy
from obspy.core import Stream, Stats, Trace, UTCDateTime
arigdon-usgs
committed
assert_almost_equal = numpy.testing.assert_almost_equal
assert_array_equal = numpy.testing.assert_array_equal
arigdon-usgs
committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def test_create_empty_trace():
"""TimeseriesUtility_test.test_create_empty_trace()
"""
trace1 = _create_trace([1, 1, 1, 1, 1], 'H', UTCDateTime("2018-01-01"))
trace2 = _create_trace([2, 2], 'E', UTCDateTime("2018-01-01"))
observatory = 'Test'
interval = 'minute'
network = 'NT'
location = 'R0'
trace3 = TimeseriesUtility.create_empty_trace(
starttime=trace1.stats.starttime,
endtime=trace1.stats.endtime,
observatory=observatory,
channel='F',
type='variation',
interval=interval,
network=network,
station=trace1.stats.station,
location=location)
timeseries = Stream(traces=[trace1, trace2])
# For continuity set stats to be same for all traces
for trace in timeseries:
trace.stats.observatory = observatory
trace.stats.type = 'variation'
trace.stats.interval = interval
trace.stats.network = network
trace.stats.station = trace1.stats.station
trace.stats.location = location
timeseries += trace3
assert_equals(len(trace3.data), trace3.stats.npts)
assert_equals(timeseries[0].stats.starttime, timeseries[2].stats.starttime)
TimeseriesUtility.pad_timeseries(
timeseries=timeseries,
starttime=trace1.stats.starttime,
endtime=trace1.stats.endtime)
assert_equals(len(trace3.data), trace3.stats.npts)
assert_equals(timeseries[0].stats.starttime, timeseries[2].stats.starttime)
# Change starttime by more than 1 delta
starttime = trace1.stats.starttime
endtime = trace1.stats.endtime
TimeseriesUtility.pad_timeseries(timeseries, starttime - 90, endtime + 90)
assert_equals(len(trace3.data), trace3.stats.npts)
assert_equals(timeseries[0].stats.starttime, timeseries[2].stats.starttime)
def test_get_stream_gaps():
"""TimeseriesUtility_test.test_get_stream_gaps()
confirms that gaps are found in a stream
"""
stream = Stream([
__create_trace('H', [numpy.nan, 1, 1, numpy.nan, numpy.nan]),
__create_trace('Z', [0, 0, 0, 1, 1, 1])
])
for trace in stream:
# set time of first sample
trace.stats.starttime = UTCDateTime('2015-01-01T00:00:00Z')
# set sample rate to 1 second
trace.stats.delta = 1
# find gaps
gaps = TimeseriesUtility.get_stream_gaps(stream)
assert_equals(len(gaps['H']), 2)
# gap at start of H
gap = gaps['H'][0]
assert_equals(gap[0], UTCDateTime('2015-01-01T00:00:00Z'))
assert_equals(gap[1], UTCDateTime('2015-01-01T00:00:00Z'))
# gap at end of H
gap = gaps['H'][1]
assert_equals(gap[0], UTCDateTime('2015-01-01T00:00:03Z'))
assert_equals(gap[1], UTCDateTime('2015-01-01T00:00:04Z'))
# no gaps in Z channel
assert_equals(len(gaps['Z']), 0)
def test_get_stream_gaps_channels():
"""TimeseriesUtility_test.test_get_stream_gaps_channels()
test that gaps are only checked in specified channels.
"""
stream = Stream
stream = Stream([
__create_trace('H', [numpy.nan, 1, 1, numpy.nan, numpy.nan]),
__create_trace('Z', [0, 0, 0, 1, 1, 1])
])
for trace in stream:
# set time of first sample
trace.stats.starttime = UTCDateTime('2015-01-01T00:00:00Z')
# set sample rate to 1 second
trace.stats.delta = 1
# find gaps
gaps = TimeseriesUtility.get_stream_gaps(stream, ['Z'])
assert_equals('H' in gaps, False)
assert_equals(len(gaps['Z']), 0)
def test_get_trace_gaps():
"""TimeseriesUtility_test.test_get_trace_gaps()
confirm that gaps are found in a trace
"""
trace = __create_trace('H', [1, 1, numpy.nan, numpy.nan, 0, 1])
# set time of first sample
trace.stats.starttime = UTCDateTime('2015-01-01T00:00:00Z')
# set sample rate to 1 minute
trace.stats.delta = 60
# find gap
gaps = TimeseriesUtility.get_trace_gaps(trace)
assert_equals(len(gaps), 1)
gap = gaps[0]
assert_equals(gap[0], UTCDateTime('2015-01-01T00:02:00Z'))
assert_equals(gap[1], UTCDateTime('2015-01-01T00:03:00Z'))
def test_get_merged_gaps():
"""TimeseriesUtility_test.test_get_merged_gaps()
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
confirm that gaps are merged
"""
merged = TimeseriesUtility.get_merged_gaps({
'H': [
# gap for 2 seconds, that starts after next gap
[
UTCDateTime('2015-01-01T00:00:01Z'),
UTCDateTime('2015-01-01T00:00:03Z'),
UTCDateTime('2015-01-01T00:00:04Z')
]
],
# gap for 1 second, that occurs before previous gap
'Z': [
[
UTCDateTime('2015-01-01T00:00:00Z'),
UTCDateTime('2015-01-01T00:00:00Z'),
UTCDateTime('2015-01-01T00:00:01Z')
],
[
UTCDateTime('2015-01-01T00:00:05Z'),
UTCDateTime('2015-01-01T00:00:07Z'),
UTCDateTime('2015-01-01T00:00:08Z')
],
]
})
assert_equals(len(merged), 2)
# first gap combines H and Z gaps
gap = merged[0]
assert_equals(gap[0], UTCDateTime('2015-01-01T00:00:00Z'))
assert_equals(gap[1], UTCDateTime('2015-01-01T00:00:03Z'))
# second gap is second Z gap
gap = merged[1]
assert_equals(gap[0], UTCDateTime('2015-01-01T00:00:05Z'))
assert_equals(gap[1], UTCDateTime('2015-01-01T00:00:07Z'))
def test_merge_streams():
"""TimeseriesUtility_test.test_merge_streams()
confirm merge streams treats empty channels correctly
"""
trace1 = __create_trace('H', [1, 1, 1, 1])
trace2 = __create_trace('E', [2, numpy.nan, numpy.nan, 2])
trace3 = __create_trace('F', [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
arigdon-usgs
committed
trace4 = __create_trace('H', [2, 2, 2, 2])
trace5 = __create_trace('E', [3, numpy.nan, numpy.nan, 3])
trace6 = __create_trace('F', [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
npts1 = len(trace1.data)
npts2 = len(trace4.data)
timeseries1 = Stream(traces=[trace1, trace2, trace3])
timeseries2 = Stream(traces=[trace4, trace5, trace6])
for trace in timeseries1:
trace.stats.starttime = UTCDateTime('2018-01-01T00:00:00Z')
trace.stats.npts = npts1
for trace in timeseries2:
trace.stats.starttime = UTCDateTime('2018-01-01T00:02:00Z')
trace.stats.npts = npts2
arigdon-usgs
committed
merged_streams1 = TimeseriesUtility.merge_streams(timeseries1)
# Make sure the empty 'F' was not removed from stream
arigdon-usgs
committed
assert_equals(1, len(merged_streams1.select(channel='F')))
# Merge multiple streams with overlapping timestamps
timeseries = timeseries1 + timeseries2
arigdon-usgs
committed
arigdon-usgs
committed
merged_streams = TimeseriesUtility.merge_streams(timeseries)
assert_equals(len(merged_streams), len(timeseries1))
arigdon-usgs
committed
assert_equals(len(merged_streams[0]), 6)
arigdon-usgs
committed
assert_equals(len(merged_streams[2]), 6)
arigdon-usgs
committed
assert_almost_equal(
merged_streams.select(channel='H')[0].data,
[1, 1, 2, 2, 2, 2])
assert_almost_equal(
merged_streams.select(channel='E')[0].data,
[2, numpy.nan, 3, 2, numpy.nan, 3])
assert_almost_equal(
merged_streams.select(channel='F')[0].data,
[numpy.nan] * 6)
trace7 = __create_trace('H', [1, 1, 1, 1])
arigdon-usgs
committed
trace8 = __create_trace('E', [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
trace9 = __create_trace('F', [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
arigdon-usgs
committed
timeseries3 = Stream(traces=[trace7, trace8, trace9])
arigdon-usgs
committed
npts3 = len(trace7.data)
for trace in timeseries3:
trace.stats.starttime = UTCDateTime('2018-01-01T00:00:00Z')
trace.stats.npts = npts3
merged_streams3 = TimeseriesUtility.merge_streams(timeseries3)
arigdon-usgs
committed
assert_equals(len(timeseries3), len(merged_streams3))
assert_almost_equal(
timeseries3.select(channel='H')[0].data,
[1, 1, 1, 1])
assert_equals(
numpy.isnan(timeseries3.select(channel='E')[0].data).all(),
True)
assert_equals(
numpy.isnan(timeseries3.select(channel='F')[0].data).all(),
True)
arigdon-usgs
committed
trace10 = __create_trace('H', [1, 1, numpy.nan, numpy.nan, 1, 1])
trace11 = __create_trace('H', [2, 2, 2, 2])
arigdon-usgs
committed
trace10.stats.starttime = UTCDateTime('2018-01-01T00:00:00Z')
trace11.stats.starttime = UTCDateTime('2018-01-01T00:01:00Z')
timeseries4 = Stream(traces=[trace10, trace11])
merged4 = TimeseriesUtility.merge_streams(timeseries4)
assert_equals(len(merged4[0].data), 6)
assert_almost_equal(
merged4.select(channel='H')[0].data,
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def test_pad_timeseries():
"""TimeseriesUtility_test.test_pad_timeseries()
"""
trace1 = _create_trace([1, 1, 1, 1, 1], 'H', UTCDateTime("2018-01-01"))
trace2 = _create_trace([2, 2], 'E', UTCDateTime("2018-01-01"))
timeseries = Stream(traces=[trace1, trace2])
TimeseriesUtility.pad_timeseries(
timeseries=timeseries,
starttime=trace1.stats.starttime,
endtime=trace1.stats.endtime)
assert_equals(len(trace1.data), len(trace2.data))
assert_equals(trace1.stats.starttime, trace2.stats.starttime)
assert_equals(trace1.stats.endtime, trace2.stats.endtime)
# change starttime by less than 1 delta
starttime = trace1.stats.starttime
endtime = trace1.stats.endtime
TimeseriesUtility.pad_timeseries(timeseries, starttime - 30, endtime + 30)
assert_equals(trace1.stats.starttime, starttime)
# Change starttime by more than 1 delta
TimeseriesUtility.pad_timeseries(timeseries, starttime - 90, endtime + 90)
assert_equals(trace1.stats.starttime, starttime - 60)
assert_equals(numpy.isnan(trace1.data[0]), numpy.isnan(numpy.NaN))
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def test_pad_and_trim_trace():
"""TimeseriesUtility_test.test_pad_and_trim_trace()
"""
trace = _create_trace([0, 1, 2, 3, 4], 'X', UTCDateTime("2018-01-01"))
assert_equals(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
assert_equals(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
# starttime between first and second sample
# expect first sample to be removed, start at next sample, end at same
TimeseriesUtility.pad_and_trim_trace(trace,
starttime=UTCDateTime("2018-01-01T00:00:30Z"),
endtime=trace.stats.endtime)
assert_equals(trace.stats.starttime, UTCDateTime("2018-01-01T00:01:00Z"))
assert_equals(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
assert_array_equal(trace.data, [1, 2, 3, 4])
# endtime between last and second to last samples
TimeseriesUtility.pad_and_trim_trace(trace,
starttime=UTCDateTime("2018-01-01T00:00:30Z"),
endtime=UTCDateTime("2018-01-01T00:03:50Z"))
assert_equals(trace.stats.starttime, UTCDateTime("2018-01-01T00:01:00Z"))
assert_equals(trace.stats.endtime, UTCDateTime("2018-01-01T00:03:00Z"))
assert_array_equal(trace.data, [1, 2, 3])
# pad outward
TimeseriesUtility.pad_and_trim_trace(trace,
starttime=UTCDateTime("2018-01-01T00:00:00Z"),
endtime=UTCDateTime("2018-01-01T00:05:00Z"))
assert_equals(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
assert_equals(trace.stats.endtime, UTCDateTime("2018-01-01T00:05:00Z"))
assert_array_equal(trace.data, [numpy.nan, 1, 2, 3, numpy.nan, numpy.nan])
# remove exactly one sample
TimeseriesUtility.pad_and_trim_trace(trace,
starttime=UTCDateTime("2018-01-01T00:00:00Z"),
endtime=UTCDateTime("2018-01-01T00:04:00Z"))
assert_equals(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
assert_equals(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
assert_array_equal(trace.data, [numpy.nan, 1, 2, 3, numpy.nan])
# pad start and trim end
TimeseriesUtility.pad_and_trim_trace(trace,
starttime=UTCDateTime("2017-12-31T23:58:59Z"),
endtime=UTCDateTime("2018-01-01T00:03:00Z"))
assert_equals(trace.stats.starttime, UTCDateTime("2017-12-31T23:59:00Z"))
assert_equals(trace.stats.endtime, UTCDateTime("2018-01-01T00:03:00Z"))
assert_array_equal(trace.data, [numpy.nan, numpy.nan, 1, 2, 3])
# pad end and trim start
TimeseriesUtility.pad_and_trim_trace(trace,
starttime=UTCDateTime("2018-01-01T00:00:00Z"),
endtime=UTCDateTime("2018-01-01T00:04:00Z"))
assert_equals(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
assert_equals(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
assert_array_equal(trace.data, [numpy.nan, 1, 2, 3, numpy.nan])
def _create_trace(data, channel, starttime, delta=60.):
stats = Stats()
stats.channel = channel
stats.delta = delta
stats.starttime = starttime
stats.npts = len(data)
data = numpy.array(data, dtype=numpy.float64)
return Trace(data, stats)