Skip to content
Snippets Groups Projects
MiniSeedFactory.py 19 KiB
Newer Older
  • Learn to ignore specific revisions
  • """Factory that loads data from earthworm and writes to Edge.
    
    EdgeFactory uses obspy earthworm class to read data from any
    earthworm standard Waveserver using the obspy getWaveform call.
    
    Writing will be implemented with Edge specific capabilities,
    to take advantage of it's newer realtime abilities.
    
    Edge is the USGS earthquake hazard centers replacement for earthworm.
    """
    from __future__ import absolute_import
    import sys
    
    from typing import List, Optional
    
    
    import numpy
    import numpy.ma
    from obspy.clients.neic import client as miniseed
    
    from obspy.core import Stats, Stream, Trace, UTCDateTime
    
    
    from .. import ChannelConverter, TimeseriesUtility
    
    from ..geomag_types import DataInterval, DataType
    
    from ..Metadata import get_instrument
    
    from ..TimeseriesFactory import TimeseriesFactory
    from ..TimeseriesFactoryException import TimeseriesFactoryException
    from ..ObservatoryMetadata import ObservatoryMetadata
    
    from .MiniSeedInputClient import MiniSeedInputClient
    
    from .SNCL import SNCL
    
    
    
    class MiniSeedFactory(TimeseriesFactory):
        """TimeseriesFactory for Edge related data.
    
        Parameters
        ----------
        host: str
            a string representing the IP number of the host to connect to.
        port: integer
            the port number the miniseed query server is listening on.
        observatory: str
            the observatory code for the desired observatory.
        channels: array
            an array of channels {H, D, E, F, Z, MGD, MSD, HGD}.
            Known since channel names are mapped based on interval and type,
            others are passed through, see #_get_edge_channel().
    
        type: {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
            data type
        interval: {'tenhertz', 'second', 'minute', 'hour', 'day'}
            data interval
    
        observatoryMetadata: ObservatoryMetadata object
            an ObservatoryMetadata object used to replace the default
            ObservatoryMetadata.
        locationCode: str
            the location code for the given edge server, overrides type
            in get_timeseries/put_timeseries
    
        convert_channels: array
            list of channels to convert from volt/bin to nT
    
    
        See Also
        --------
        TimeseriesFactory
    
        Notes
        -----
        This is designed to read from any earthworm style waveserver, but it
            currently only writes to an edge. Edge mimics an earthworm style
            waveserver close enough that we hope to maintain that compatibility
            for reading.
        """
    
    
        def __init__(
            self,
    
            write_port: int = 7974,
            observatory: Optional[str] = None,
            channels: Optional[List[str]] = None,
            type: Optional[DataType] = None,
            interval: Optional[DataInterval] = None,
            observatoryMetadata: Optional[ObservatoryMetadata] = None,
            locationCode: Optional[str] = None,
            convert_channels: Optional[List[str]] = None,
    
            TimeseriesFactory.__init__(self, observatory, channels, type, interval)
    
            self.client = miniseed.Client(host, port)
            self.observatoryMetadata = observatoryMetadata or ObservatoryMetadata()
            self.locationCode = locationCode
            self.interval = interval
            self.host = host
            self.port = port
            self.write_port = write_port
    
            self.convert_channels = convert_channels or []
    
            self.write_client = MiniSeedInputClient(self.host, self.write_port)
    
        def get_timeseries(
            self,
    
            starttime: UTCDateTime,
            endtime: UTCDateTime,
            observatory: Optional[str] = None,
            channels: Optional[List[str]] = None,
            type: Optional[DataType] = None,
            interval: Optional[DataInterval] = None,
    
            add_empty_channels: bool = True,
    
        ) -> Stream:
    
            """Get timeseries data
    
            Parameters
            ----------
    
            starttime: UTCDateTime
                time of first sample
            endtime: UTCDateTime
                time of last sample
            add_empty_channels: bool
                if True, returns channels without data as empty traces
    
            observatory: str
    
                observatory code
            channels: array
    
                list of channels to load
    
            type: {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
                data type
            interval: {'tenhertz', 'second', 'minute', 'hour', 'day'}
                data interval
    
            timeseries: Stream
    
                timeseries object with requested data.
    
            Raises
            ------
            TimeseriesFactoryException
                if invalid values are requested, or errors occur while
                retrieving timeseries.
            """
            observatory = observatory or self.observatory
            channels = channels or self.channels
            type = type or self.type
            interval = interval or self.interval
    
            if starttime > endtime:
                raise TimeseriesFactoryException(
    
                    'Starttime before endtime "%s" "%s"' % (starttime, endtime)
                )
    
            # obspy factories sometimes write to stdout, instead of stderr
    
            original_stdout = sys.stdout
            try:
    
                # get the timeseries
    
                timeseries = Stream()
    
                for channel in channels:
    
                        data = self._convert_timeseries(
                            starttime, endtime, observatory, channel, type, interval
                        )
    
                        data = self._get_timeseries(
    
                            starttime,
                            endtime,
                            observatory,
                            channel,
                            type,
                            interval,
                            add_empty_channels,
    
                        if len(data) == 0:
                            continue
    
                    timeseries += data
            finally:
    
                sys.stdout = original_stdout
    
    
            self._post_process(timeseries, starttime, endtime, channels)
    
            return timeseries
    
    
        def put_timeseries(
            self,
    
            timeseries: Stream,
            starttime: Optional[UTCDateTime] = None,
            endtime: Optional[UTCDateTime] = None,
            observatory: Optional[str] = None,
            channels: Optional[List[str]] = None,
            type: Optional[DataType] = None,
            interval: Optional[DataInterval] = None,
    
            """Put timeseries data
    
            Parameters
            ----------
    
            timeseries: Stream
    
                timeseries object with data to be written
            observatory: str
    
                observatory code
            channels: array
    
                list of channels to load
    
            type: {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
                data type
            interval: {'tenhertz', 'second', 'minute', 'hour', 'day'}
                data interval
    
    
            Notes
            -----
            Streams sent to timeseries are expected to have a single trace per
                channel and that trace should have an ndarray, with nan's
                representing gaps.
            """
            stats = timeseries[0].stats
            observatory = observatory or stats.station or self.observatory
            channels = channels or self.channels
            type = type or self.type or stats.data_type
            interval = interval or self.interval or stats.data_interval
    
    
            if starttime is None or endtime is None:
    
                starttime, endtime = TimeseriesUtility.get_stream_start_end_times(
    
            for channel in channels:
                if timeseries.select(channel=channel).count() == 0:
                    raise TimeseriesFactoryException(
    
                        'Missing channel "%s" for output, available channels %s'
                        % (channel, str(TimeseriesUtility.get_channels(timeseries)))
                    )
    
            for channel in channels:
    
                self._put_channel(
                    timeseries, observatory, channel, type, interval, starttime, endtime
                )
    
            # close socket
            self.write_client.close()
    
        def get_calculated_timeseries(
    
            self,
            starttime: UTCDateTime,
            endtime: UTCDateTime,
            observatory: str,
            channel: str,
            type: DataType,
            interval: DataInterval,
            components: List[dict],
        ) -> Trace:
    
            """Calculate a single channel using multiple component channels.
    
            Parameters
            ----------
    
            starttime: UTCDateTime
    
            endtime: UTCDateTime
    
            observatory: str
    
            channel: str
    
                single character channel {H, E, D, Z, F}
    
            type: {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
                data type
            interval: {'tenhertz', 'second', 'minute', 'hour', 'day'}
                data interval
    
            components: list
                each component is a dictionary with the following keys:
                    channel: str
                    offset: float
                    scale: float
    
            Returns
            -------
    
                timeseries trace of the converted channel data
            """
            # sum channels
            stats = None
            converted = None
            for component in components:
                # load component
    
                data = self._get_timeseries(
                    starttime, endtime, observatory, component["channel"], type, interval
                )[0]
    
                # convert to nT
                nt = data.data * component["scale"] + component["offset"]
                # add to converted
                if converted is None:
                    converted = nt
    
                    stats = Stats(data.stats)
    
                else:
                    converted += nt
            # set channel parameter to U, V, or W
            stats.channel = channel
            # create empty trace with adapted stats
    
            out = TimeseriesUtility.create_empty_trace(
                stats.starttime,
                stats.endtime,
                stats.station,
                stats.channel,
                stats.data_type,
                stats.data_interval,
                stats.network,
                stats.station,
                stats.location,
            )
    
        def _convert_stream_to_masked(self, timeseries: Stream, channel: str) -> Stream:
    
            """convert geomag edge traces in a timeseries stream to a MaskedArray
                This allows for gaps and splitting.
            Parameters
            ----------
    
            stream: Stream
                a stream retrieved from a geomag edge representing one channel
            channel: str
                the channel to be masked
    
            Returns
            -------
    
            stream: Stream
                a stream with all traces converted to masked arrays
    
            """
            stream = timeseries.copy()
            for trace in stream.select(channel=channel):
                trace.data = numpy.ma.masked_invalid(trace.data)
            return stream
    
    
        def _get_timeseries(
            self,
    
            starttime: UTCDateTime,
            endtime: UTCDateTime,
            observatory: str,
            channel: str,
            type: DataType,
            interval: DataInterval,
    
            add_empty_channels: bool = True,
    
            """get timeseries data for a single channel.
    
            Parameters
            ----------
    
            starttime: UTCDateTime
    
                the starttime of the requested data
    
            endtime: UTCDateTime
    
                the endtime of the requested data
    
            observatory: str
    
                observatory code
    
            channel: str
    
                single character channel {H, E, D, Z, F}
    
            type: {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
                data type
            interval: {'tenhertz', 'second', 'minute', 'hour', 'day'}
                interval length
            add_empty_channels: bool
    
                if True, returns channels without data as empty traces
    
                timeseries trace of the requested channel data
            """
    
                station=observatory,
                data_type=type,
                interval=interval,
                element=channel,
                location=self.locationCode,
    
    Erin (Josh) Rigler's avatar
    Erin (Josh) Rigler committed
            # geomag-algorithms *should* treat starttime/endtime as inclusive everywhere;
            # according to its author, EdgeCWB is inclusive of starttime, but exclusive of
            # endtime, to satisfy seismic standards/requirements, to precision delta/2;
            half_delta = TimeseriesUtility.get_delta_from_interval(interval) / 2
    
            data = self.client.get_waveforms(
    
    Erin (Josh) Rigler's avatar
    Erin (Josh) Rigler committed
                sncl.network,
                sncl.station,
                sncl.location,
                sncl.channel,
                starttime,
                endtime + half_delta,
    
            for trace in data:
                trace.data = trace.data.astype(data[0].data.dtype)
    
            data.merge()
    
            if data.count() == 0 and add_empty_channels:
    
                    starttime=starttime,
                    endtime=endtime,
                    observatory=observatory,
    
                    data_type=type,
                    interval=interval,
    
                    location=sncl.location,
    
            if data.count() != 0:
                TimeseriesUtility.pad_and_trim_trace(
                    trace=data[0], starttime=starttime, endtime=endtime
                )
    
            self._set_metadata(data, observatory, channel, type, interval)
    
        def _convert_timeseries(
    
            self,
            starttime: UTCDateTime,
            endtime: UTCDateTime,
            observatory: str,
            channel: str,
            type: DataType,
            interval: DataInterval,
        ) -> Trace:
    
            """Generate a single channel using multiple components.
    
            Finds metadata, then calls _get_converted_timeseries for actual
            conversion.
    
    
            starttime: UTCDateTime
    
            endtime: UTCDateTime
    
                the endtime of the requested data
            observatory : str
                observatory code
            channel : str
                single character channel {H, E, D, Z, F}
    
            type : {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
                data type
            interval : {'tenhertz', 'second', 'minute', 'hour', 'day'}
                data interval
    
                timeseries trace of the requested channel data
            """
    
            out = Stream()
    
            metadata = get_instrument(observatory, starttime, endtime)
            # loop in case request spans different configurations
    
            for entry in metadata:
                entry_endtime = entry["end_time"]
                entry_starttime = entry["start_time"]
                instrument = entry["instrument"]
    
                instrument_channels = instrument["channels"]
                if channel not in instrument_channels:
                    # no idea how to convert
                    continue
                # determine metadata overlap with request
    
                start = (
                    starttime
                    if entry_starttime is None or entry_starttime < starttime
                    else entry_starttime
                )
                end = (
                    endtime
                    if entry_endtime is None or entry_endtime > endtime
                    else entry_endtime
                )
    
                out += self.get_calculated_timeseries(
                    start,
                    end,
                    observatory,
                    channel,
                    type,
                    interval,
                    instrument_channels[channel],
                )
    
        def _post_process(
            self,
            timeseries: Stream,
            starttime: UTCDateTime,
            endtime: UTCDateTime,
            channels: List[str],
        ):
    
            """Post process a timeseries stream after the raw data is
                    is fetched from querymom. Specifically changes
                    any MaskedArray to a ndarray with nans representing gaps.
                    Then calls pad_timeseries to deal with gaps at the
                    beggining or end of the streams.
    
            Parameters
            ----------
    
            timeseries: Stream
    
                The timeseries stream as returned by the call to get_waveforms
    
            starttime: UTCDateTime
    
                the starttime of the requested data
    
            endtime: UTCDateTime
    
                the endtime of the requested data
    
            channels: array
    
                list of channels to load
    
            Notes: the original timeseries object is changed.
            """
            for trace in timeseries:
                if isinstance(trace.data, numpy.ma.MaskedArray):
                    trace.data.set_fill_value(numpy.nan)
                    trace.data = trace.data.filled()
    
    
            if "D" in channels:
                for trace in timeseries.select(channel="D"):
                    trace.data = ChannelConverter.get_radians_from_minutes(trace.data)
    
    
            TimeseriesUtility.pad_timeseries(timeseries, starttime, endtime)
    
    
        def _put_channel(
    
            self,
            timeseries: Stream,
            observatory: str,
            channel: str,
            type: DataType,
            interval: DataInterval,
            starttime: UTCDateTime,
            endtime: UTCDateTime,
    
            """Put a channel worth of data
    
            Parameters
            ----------
    
            timeseries: Stream
    
                timeseries object with data to be written
            observatory: str
    
                observatory code
    
            channel: str
                channel to load
    
            type: {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
                data type
            interval: {'tenhertz', 'second', 'minute', 'hour', 'day'}
                data interval
            starttime: UTCDateTime
            endtime: UTCDateTime
    
            # use separate traces when there are gaps
            to_write = timeseries.select(channel=channel)
            to_write = TimeseriesUtility.mask_stream(to_write)
            to_write = to_write.split()
            to_write = TimeseriesUtility.unmask_stream(to_write)
            # relabel channels from internal to edge conventions
    
                station=observatory,
                data_type=type,
                interval=interval,
                element=channel,
    
                location=self.locationCode,
    
                trace.stats.station = sncl.station
    
                trace.stats.location = sncl.location
    
                trace.stats.network = sncl.network
                trace.stats.channel = sncl.channel
    
            # finally, send to edge
            self.write_client.send(to_write)
    
            stream: Stream,
    
            observatory: str,
            channel: str,
    
            type: DataType,
            interval: DataInterval,
    
        ):
            """set metadata for a given stream/channel
            Parameters
            ----------
    
            observatory: str
    
            channel: str
    
                edge channel code {MVH, MVE, MVD, ...}
    
            type: {'adjusted', 'definitive', 'quasi-definitive', 'variation'}
                data type
            interval: {'tenhertz', 'second', 'minute', 'hour', 'day'}
                data interval
    
            """
            for trace in stream:
                self.observatoryMetadata.set_metadata(
                    trace.stats, observatory, channel, type, interval
                )