Newer
Older
"""Abstract Timeseries Factory Interface."""
Hal Simpson
committed
import numpy.ma as ma
import obspy
class TimeseriesFactory(object):
"""Base class for timeseries factories.
Attributes
----------
observatory : str
default observatory code, usually 3 characters.
channels : array_like
default list of channels to load, optional.
default ('H', 'D', 'Z', 'F')
type : {'definitive', 'provisional', 'quasi-definitive', 'variation'}
default data type, optional.
default 'variation'.
interval : {'daily', 'hourly', 'minute', 'monthly', 'second'}
data interval, optional.
default 'minute'.
"""
def __init__(self, observatory=None, channels=('H', 'D', 'Z', 'F'),
type='variation', interval='minute'):
self.observatory = observatory
self.channels = channels
self.type = type
self.interval = interval
def get_timeseries(self, starttime, endtime, observatory=None,
channels=None, type=None, interval=None):
"""Get timeseries data.
Support for specific channels, types, and intervals varies
between factory and observatory. Subclasses should raise
TimeseriesFactoryException if the data is not available, or
if an error occurs accessing data.
Parameters
----------
starttime : UTCDateTime
time of first sample in timeseries.
endtime : UTCDateTime
time of last sample in timeseries.
observatory : str
observatory code, usually 3 characters, optional.
uses default if unspecified.
channels : array_like
list of channels to load, optional.
uses default if unspecified.
type : {'definitive', 'provisional', 'quasi-definitive', 'variation'}
data type, optional.
uses default if unspecified.
interval : {'daily', 'hourly', 'minute', 'monthly', 'second'}
data interval, optional.
uses default if unspecified.
Returns
-------
obspy.core.Stream
stream containing traces for requested timeseries.
Raises
------
TimeseriesFactoryException
if any parameters are unsupported, or errors occur loading data.
"""
raise NotImplementedError('"get_timeseries" not implemented')
def put_timeseries(self, timeseries, starttime=None, endtime=None,
channels=None, type=None, interval=None):
"""Store timeseries data.
Parameters
----------
timeseries : obspy.core.Stream
stream containing traces to store.
starttime : UTCDateTime
time of first sample in timeseries to store.
uses first sample if unspecified.
endtime : UTCDateTime
time of last sample in timeseries to store.
uses last sample if unspecified.
channels : array_like
list of channels to store, optional.
uses default if unspecified.
type : {'definitive', 'provisional', 'quasi-definitive', 'variation'}
data type, optional.
uses default if unspecified.
interval : {'daily', 'hourly', 'minute', 'monthly', 'second'}
data interval, optional.
uses default if unspecified.
Raises
------
TimeseriesFactoryException
if any errors occur.
"""
raise NotImplementedError('"put_timeseries" not implemented')
Hal Simpson
committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def create_gap_stream(self, timeseries, channels):
gap_stream = obspy.core.Stream()
for channel in channels:
for trace in timeseries.select(channel=channel):
trace.data = ma.masked_invalid(trace.data)
for data in trace.split():
gap_stream += data
# gaps are returned from getGaps from the point before, to the
# point after, so remove that point to get the gap.
gaps = gap_stream.getGaps()
for gap in gaps:
gap[4] = gap[4] + 60
gap[5] = gap[5] - 60
# sync gaps across channels
full_gaps = []
gap_cnt = len(gaps)
for i in range(0, gap_cnt):
gap = gaps[i]
if self._contained_in_gap(gap, full_gaps):
continue
starttime = gap[4]
endtime = gap[5]
for x in range(i+1, gap_cnt):
nxtgap = gaps[x]
if ((nxtgap[4] >= starttime and nxtgap[4] <= endtime)
or (nxtgap[5] >= starttime and nxtgap[5] <= endtime)):
if nxtgap[4] < starttime:
starttime = nxtgap[4]
if nxtgap[5] > endtime:
endtime = nxtgap[5]
full_gaps.append([starttime, endtime])
return (full_gaps, gaps)
def _contained_in_gap(self, gap, gaps):
starttime = gap[4]
endtime = gap[5]
for gap in gaps:
if starttime >= gap[0] and endtime <= gap[1]:
return True
return False