Newer
Older
Hal Simpson
committed
"""Controller class for geomag algorithms"""
import TimeseriesUtility
import TimeseriesFactoryException
class Controller(object):
"""Controller for geomag algorithms.
Parameters
----------
the factory that will read in timeseries data
the factory that will output the timeseries data
Hal Simpson
committed
algorithm: Algorithm
the algorithm(s) that will procees the timeseries data
Notes
-----
Hal Simpson
committed
Run simply sends all the data in a stream to edge. If a startime/endtime is
provided, it will send the data from the stream that is within that
time span.
Update will update any data that has changed between the source, and
the target during a given timeframe. It will also attempt to
recursively backup so it can update all missing data.
def __init__(self, inputFactory, outputFactory, algorithm):
self._inputFactory = inputFactory
self._algorithm = algorithm
self._outputFactory = outputFactory
Hal Simpson
committed
def run(self, options):
Hal Simpson
committed
"""run controller
options: dictionary
The dictionary of all the command line arguments. Could in theory
contain other options passed in by the controller.
algorithm = self._algorithm
input_channels = algorithm.get_input_channels()
output_channels = self._get_output_channels(
algorithm.get_output_channels(),
options.outchannels)
# get input
start, end = self._algorithm.get_input_interval(
start=options.starttime,
end=options.endtime)
timeseries = self._inputFactory.get_timeseries(
starttime=start,
endtime=end,
channels=input_channels)
# process
processed = algorithm.process(timeseries)
# output
self._outputFactory.put_timeseries(
timeseries=processed,
starttime=options.starttime,
endtime=options.endtime,
Hal Simpson
committed
channels=output_channels)
Hal Simpson
committed
Hal Simpson
committed
def run_as_update(self, options):
Hal Simpson
committed
"""Updates data.
Parameters
----------
options: dictionary
The dictionary of all the command line arguments. Could in theory
contain other options passed in by the controller.
Hal Simpson
committed
Notes
-----
Finds gaps in the target data, and if there's new data in the input
source, calls run with the start/end time of a given gap to fill
in.
It checks the start of the target data, and if it's missing, and
there's new data available, it backs up the starttime/endtime,
and recursively calls itself, to check the previous period, to see
if new data is available there as well. Calls run for each new
period, oldest to newest.
Hal Simpson
committed
"""
algorithm = self._algorithm
input_channels = algorithm.get_input_channels()
output_channels = self._get_output_channels(
algorithm.get_output_channels(),
options.outchannels)
# request output to see what has already been generated
output_timeseries = self._outputFactory.get_timeseries(
starttime=options.starttime,
endtime=options.endtime,
channels=output_channels)
# find gaps in output, so they can be updated
output_gaps = TimeseriesUtility.get_stream_gaps(output_timeseries)
for gap in output_gaps:
start, end = algorithm.get_input_interval(
start=gap[0],
end=gap[1])
input_timeseries = self._inputFactory.get_timeseries(
starttime=start,
endtime=end,
channels=input_channels)
input_gaps = TimeseriesUtility.get_stream_gaps(input_timeseries)
if len(input_gaps) > 0:
# TODO: are certain gaps acceptable?
Hal Simpson
committed
continue
# check for fillable gap at start
if gap[0] == options.starttime:
# found fillable gap at start, recurse to previous interval
interval = options.endtime - options.starttime
self.run_as_update({
'outchannels': options.outchannels,
'starttime': options.starttime - interval,
'endtime': options.starttime
})
# fill gap
self.run({
'outchannels': options.outchannels,
'starttime': gap[0],
'endtime': gap[1]
})
def _get_output_channels(self, algorithm_channels, commandline_channels):
"""get output channels
Parameters
----------
algorithm_channels: array_like
list of channels required by the algorithm
commandline_channels: array_like
list of channels requested by the user
Notes
-----
We want to return the channels requested by the user, but we require
that they be in the list of channels for the algorithm.
"""
if commandline_channels is not None:
for channel in commandline_channels:
if channel not in algorithm_channels:
raise TimeseriesFactoryException(
'Output "%s" Channel not in Algorithm'
% channel)
return commandline_channels
return algorithm_channels