Skip to content
Snippets Groups Projects
Commit 2104d19b authored by Cain, Payton David's avatar Cain, Payton David
Browse files

Remove commented notebook methods

parent da643cbe
No related branches found
No related tags found
2 merge requests!146Release CMO metadata to production,!58Affine running process
...@@ -4,7 +4,8 @@ from typing import List, Tuple ...@@ -4,7 +4,8 @@ from typing import List, Tuple
from .LeastSq import LeastSq from .LeastSq import LeastSq
# TODO: DEFAULT IMPLEMENTATION FOR LEAST SQUARES?
# TODO: GET_STACKED_ORDINATES SO METHOD CAN BE SHARED
class NoConstraints(LeastSq): class NoConstraints(LeastSq):
def calculate( def calculate(
self, self,
...@@ -17,7 +18,6 @@ class NoConstraints(LeastSq): ...@@ -17,7 +18,6 @@ class NoConstraints(LeastSq):
# #
# [A[0,0], A[1,0], A[2,0], A[0,1], A[1,1], A[2,1], ...] # [A[0,0], A[1,0], A[2,0], A[0,1], A[1,1], A[2,1], ...]
abs_stacked = self.get_stacked_absolutes(absolutes) abs_stacked = self.get_stacked_absolutes(absolutes)
# return generate_affine_0(ord_hez, abs_xyz, weights)
# RHS, or independent variables # RHS, or independent variables
# (reduces degrees of freedom by 4: # (reduces degrees of freedom by 4:
# - 4 for the last row of zeros and a one) # - 4 for the last row of zeros and a one)
......
...@@ -36,8 +36,6 @@ class QRFactorization(SVD): ...@@ -36,8 +36,6 @@ class QRFactorization(SVD):
weighted_absolutes = self.get_weighted_values(values=absolutes, weights=weights) weighted_absolutes = self.get_weighted_values(values=absolutes, weights=weights)
weighted_ordinates = self.get_weighted_values(values=ordinates, weights=weights) weighted_ordinates = self.get_weighted_values(values=ordinates, weights=weights)
# return generate_affine_9(ord_hez, abs_xyz, weights)
# LHS, or dependent variables # LHS, or dependent variables
abs_stacked = self.get_stacked_values( abs_stacked = self.get_stacked_values(
values=absolutes, values=absolutes,
......
...@@ -19,7 +19,6 @@ class RotationTranslationXY(SVD): ...@@ -19,7 +19,6 @@ class RotationTranslationXY(SVD):
weights = np.ones_like(ordinates[0]) weights = np.ones_like(ordinates[0])
weighted_ordinates = self.get_weighted_values(values=ordinates, weights=weights) weighted_ordinates = self.get_weighted_values(values=ordinates, weights=weights)
weighted_absolutes = self.get_weighted_values(values=absolutes, weights=weights) weighted_absolutes = self.get_weighted_values(values=absolutes, weights=weights)
# return generate_affine_8(ord_hez, abs_xyz, weights)
# generate weighted "covariance" matrix # generate weighted "covariance" matrix
H = np.dot( H = np.dot(
self.get_stacked_values( self.get_stacked_values(
......
...@@ -16,7 +16,6 @@ class ZRotationShear(LeastSq): ...@@ -16,7 +16,6 @@ class ZRotationShear(LeastSq):
# LHS, or dependent variables # LHS, or dependent variables
# #
abs_stacked = self.get_stacked_absolutes(absolutes) abs_stacked = self.get_stacked_absolutes(absolutes)
# return generate_affine_1(ord_hez, abs_xyz, weights)
# RHS, or independent variables # RHS, or independent variables
# (reduces degrees of freedom by 8: # (reduces degrees of freedom by 8:
# - 2 for making x,y independent of z; # - 2 for making x,y independent of z;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment