Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
geomag-algorithms
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ghsc
National Geomagnetism Program
geomag-algorithms
Commits
31eabbb6
Commit
31eabbb6
authored
9 years ago
by
Eddie McWhirter
Browse files
Options
Downloads
Patches
Plain Diff
Fix indentation, removed unused import in SQ Dist Algorithm.
parent
a5019152
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
geomagio/algorithm/SQDistAlgorithm.py
+314
-306
314 additions, 306 deletions
geomagio/algorithm/SQDistAlgorithm.py
with
314 additions
and
306 deletions
geomagio/algorithm/SQDistAlgorithm.py
+
314
−
306
View file @
31eabbb6
...
...
@@ -10,373 +10,381 @@
"""
import
numpy
as
np
import
datetime
as
dt
from
scipy.optimize
import
fmin_l_bfgs_b
def
RMSE
(
params
,
*
args
):
"""
Wrapper function passed to scipy.optimize.fmin_l_bfgs_b in
"""
Wrapper function passed to scipy.optimize.fmin_l_bfgs_b in
order to find optimal Holt-Winters prediction coefficients.
Parameters
----------
Parameters
----------
Returns
-------
"""
# extract parameters to fit
alpha
,
beta
,
gamma
=
params
Returns
-------
"""
# extract parameters to fit
alpha
,
beta
,
gamma
=
params
# extract arguments
yobs
=
args
[
0
]
method
=
args
[
1
]
m
=
args
[
2
]
s0
=
args
[
3
]
l0
=
args
[
4
]
b0
=
args
[
5
]
hstep
=
args
[
6
]
zthresh
=
args
[
7
]
# extract arguments
yobs
=
args
[
0
]
method
=
args
[
1
]
m
=
args
[
2
]
s0
=
args
[
3
]
l0
=
args
[
4
]
b0
=
args
[
5
]
hstep
=
args
[
6
]
zthresh
=
args
[
7
]
if
method
==
"
additive
"
:
# call Holt-Winters with additive seasonality
yhat
,
_
,
_
,
_
,
_
,
_
,
_
,
_
=
additive
(
yobs
,
m
,
alpha
=
alpha
,
beta
=
beta
,
gamma
=
gamma
,
l0
=
l0
,
b0
=
b0
,
s0
=
s0
,
zthresh
=
zthresh
,
hstep
=
hstep
)
if
method
==
"
additive
"
:
# call Holt-Winters with additive seasonality
yhat
,
_
,
_
,
_
,
_
,
_
,
_
,
_
=
additive
(
yobs
,
m
,
alpha
=
alpha
,
beta
=
beta
,
gamma
=
gamma
,
l0
=
l0
,
b0
=
b0
,
s0
=
s0
,
zthresh
=
zthresh
,
hstep
=
hstep
)
else
:
print
'
Method must be additive or ...
'
raise
Exception
else
:
print
'
Method must be additive or ...
'
raise
Exception
# calculate root-mean-squared-error of predictions
rmse
=
np
.
sqrt
(
np
.
nanmean
([(
m
-
n
)
**
2
for
m
,
n
in
zip
(
yobs
,
yhat
)])
)
# calculate root-mean-squared-error of predictions
rmse
=
np
.
sqrt
(
np
.
nanmean
([(
m
-
n
)
**
2
for
m
,
n
in
zip
(
yobs
,
yhat
)])
)
return
rmse
return
rmse
def
additive
(
yobs
,
m
,
alpha
=
None
,
beta
=
None
,
gamma
=
None
,
phi
=
1
,
yhat0
=
None
,
s0
=
None
,
l0
=
None
,
b0
=
None
,
sigma0
=
None
,
zthresh
=
6
,
fc
=
0
,
hstep
=
0
):
"""
Primary function for Holt-Winters smoothing/forecasting with
"""
Primary function for Holt-Winters smoothing/forecasting with
damped linear trend and additive seasonal component.
Parameters
----------
yobs : input series to be smoothed/forecast
m : number of
"
seasons
"
Parameters
----------
yobs : input series to be smoothed/forecast
m : number of
"
seasons
"
KEYWORDS:
alpha : the level smoothing parameter (0<=alpha<=1)
KEYWORDS:
alpha : the level smoothing parameter (0<=alpha<=1)
(if None, alpha will be estimated; default)
beta : the slope smoothing parameter (0<=beta<=1)
beta : the slope smoothing parameter (0<=beta<=1)
(if None, beta will be estimated; default)
gamma : the seasonal adjustment smoothing parameter (0<=gamma<=1)
gamma : the seasonal adjustment smoothing parameter (0<=gamma<=1)
(if None, gamma will be estimated; default)
phi : the dampening factor for slope (0<=phi<=1)
phi : the dampening factor for slope (0<=phi<=1)
(if None, phi will be estimated; default is 1)
yhat0 : initial yhats for hstep>0 (len(yhat0) == hstep)
yhat0 : initial yhats for hstep>0 (len(yhat0) == hstep)
(if None, yhat0 will be set to NaNs)
s0 : initial set of seasonal adjustments
s0 : initial set of seasonal adjustments
(if None, default is [yobs[i] - a[0] for i in range(m)])
l0 : initial level (i.e., l(t-hstep))
l0 : initial level (i.e., l(t-hstep))
(if None, default is mean(yobs[0:m]))
b0 : initial slope (i.e., b(t-hstep))
b0 : initial slope (i.e., b(t-hstep))
(if None, default is (mean(yobs[m:2*m]) - mean(yobs[0:m]))/m )
sigma0 : initial standard-deviation estimate (len(sigma0) == hstep+1)
sigma0 : initial standard-deviation estimate (len(sigma0) == hstep+1)
(if None, default is [sqrt(var(yobs))] * (hstep+1) )
zthresh : z-score threshold to determine whether yhat is updated by
zthresh : z-score threshold to determine whether yhat is updated by
smoothing observations, or by simulation alone; if exceeded,
only sigma is updated to reflect latest observation
(default is 6)
fc : the number of steps beyond the end of yobs (the available
fc : the number of steps beyond the end of yobs (the available
observations) to forecast
(default is 0)
hstep : the number of steps ahead to predict yhat[i]
hstep : the number of steps ahead to predict yhat[i]
which forces an hstep prediction at each time step
(default is 0)
Returns
-------
yhat : series of smoothed/forecast values (aligned with yobs(t))
shat : series of seasonal adjustments (aligned with yobs(t))
sigmahat :
series of time-varying standard deviations (aligned with yobs(t))
yhat0next : use as yhat0 when function called again with new observations
s0next : use as s0 when function called again with new observations
l0next : use as l0 when function called again with new observations
b0next : use as b0 when function called again with new observations
sigma0next: use as sigma0 when function called again with new observations
alpha : optimized alpha (if input alpha is None)
beta : optimized beta (if input beta is None)
gamma : optimized gamma (if input gamma is None)
phi : optimized phi (if input phi is None)
rmse : root mean squared error metric from optimization
Returns
-------
yhat : series of smoothed/forecast values (aligned with yobs(t))
shat : series of seasonal adjustments (aligned with yobs(t))
sigmahat :series of time-varying standard deviations (aligned with yobs(t))
yhat0next : use as yhat0 when function called again with new observations
s0next : use as s0 when function called again with new observations
l0next : use as l0 when function called again with new observations
b0next : use as b0 when function called again with new observations
sigma0next: use as sigma0 when function called again with new observations
alpha : optimized alpha (if input alpha is None)
beta : optimized beta (if input beta is None)
gamma : optimized gamma (if input gamma is None)
phi : optimized phi (if input phi is None)
rmse : root mean squared error metric from optimization
(only if alpha or beta or gamma were optimized)
NOTES:
* The adaptive standard deviation (sigma), multiplied by zthresh to determine
NOTES:
* The adaptive standard deviation (sigma), multiplied by zthresh to
determine
which observations should be smoothed or ignored, is always updated using
the latest error if a valid observation is available. This way, if what
seemed a spike in real-time was actually a more permanent baseline shift,
the algorithm will adjust to the new baseline once sigma grows enough to
accommodate the errors.
* The standard deviation also updates when no obserations are present, but
* The standard deviation also updates when no obserations are present, but
does so according to Hyndman et al (2005) prediction intervals. The result
is a sigma that grows over gaps, and for forecasts beyond yobs[-1].
"""
# set some default values
if
l0
is
None
:
l
=
np
.
nanmean
(
yobs
[
0
:
int
(
m
)])
else
:
l
=
l0
if
not
np
.
isscalar
(
l0
):
raise
Exception
,
"
l0 must be a scalar
"
if
b0
is
None
:
b
=
(
np
.
nanmean
(
yobs
[
m
:
2
*
m
])
-
np
.
nanmean
(
yobs
[
0
:
m
]))
/
m
b
=
0
if
np
.
isnan
(
b
)
else
b
# replace NaN with 0
else
:
b
=
b0
if
not
np
.
isscalar
(
b0
):
raise
Exception
,
"
b0 must be a scalar
"
if
yhat0
is
None
:
yhat
=
[
np
.
nan
for
i
in
range
(
hstep
)]
else
:
yhat
=
list
(
yhat0
)
if
len
(
yhat
)
!=
hstep
:
raise
Exception
,
"
yhat0 must have length %d
"
%
hstep
if
s0
is
None
:
s
=
[
yobs
[
i
]
-
l
for
i
in
range
(
m
)]
s
=
[
i
if
~
np
.
isnan
(
i
)
else
0
for
i
in
s
]
# replace NaNs with 0s
else
:
s
=
list
(
s0
)
if
len
(
s
)
!=
m
:
raise
Exception
,
"
s0 must have length %d
"
%
m
if
sigma0
is
None
:
# NOTE: maybe default should be vector of zeros???
sigma
=
[
np
.
sqrt
(
np
.
nanvar
(
yobs
))]
*
(
hstep
+
1
)
else
:
sigma
=
list
(
sigma0
)
if
len
(
sigma
)
!=
(
hstep
+
1
):
raise
Exception
,
"
sigma0 must have length %d
"
%
(
hstep
+
1
)
#
# Optimal parameter estimation if requested
# FIXME: this should probably be extracted to a separate module function.
#
retParams
=
False
if
(
alpha
==
None
or
beta
==
None
or
gamma
==
None
or
phi
==
None
):
# estimate parameters
retParams
=
True
if
fc
>
0
:
print
"
WARNING: non-zero fc is not used in estimation mode
"
if
alpha
!=
None
:
# allows us to fix alpha
boundaries
=
[(
alpha
,
alpha
)]
initial_values
=
[
alpha
]
else
:
boundaries
=
[(
0
,
1
)]
initial_values
=
[
0.3
]
# FIXME: should add alpha0 option
if
beta
!=
None
:
# allows us to fix beta
boundaries
.
append
((
beta
,
beta
))
initial_values
.
append
(
beta
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.1
)
# FIXME: should add beta0 option
if
gamma
!=
None
:
# allows us to fix gamma
boundaries
.
append
((
gamma
,
gamma
))
initial_values
.
append
(
gamma
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.1
)
# FIXME: should add gamma0 option
if
phi
!=
None
:
# allows us to fix phi
boundaries
.
append
((
phi
,
phi
))
initial_values
.
append
(
phi
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.9
)
# FIXME: should add phi0 option
initial_values
=
np
.
array
(
initial_values
)
method
=
'
additive
'
parameters
=
fmin_l_bfgs_b
(
RMSE
,
x0
=
initial_values
,
"""
# set some default values
if
l0
is
None
:
l
=
np
.
nanmean
(
yobs
[
0
:
int
(
m
)])
else
:
l
=
l0
if
not
np
.
isscalar
(
l0
):
raise
Exception
,
"
l0 must be a scalar
"
if
b0
is
None
:
b
=
(
np
.
nanmean
(
yobs
[
m
:
2
*
m
])
-
np
.
nanmean
(
yobs
[
0
:
m
]))
/
m
b
=
0
if
np
.
isnan
(
b
)
else
b
# replace NaN with 0
else
:
b
=
b0
if
not
np
.
isscalar
(
b0
):
raise
Exception
,
"
b0 must be a scalar
"
if
yhat0
is
None
:
yhat
=
[
np
.
nan
for
i
in
range
(
hstep
)]
else
:
yhat
=
list
(
yhat0
)
if
len
(
yhat
)
!=
hstep
:
raise
Exception
,
"
yhat0 must have length %d
"
%
hstep
if
s0
is
None
:
s
=
[
yobs
[
i
]
-
l
for
i
in
range
(
m
)]
s
=
[
i
if
~
np
.
isnan
(
i
)
else
0
for
i
in
s
]
# replace NaNs with 0s
else
:
s
=
list
(
s0
)
if
len
(
s
)
!=
m
:
raise
Exception
,
"
s0 must have length %d
"
%
m
if
sigma0
is
None
:
# NOTE: maybe default should be vector of zeros???
sigma
=
[
np
.
sqrt
(
np
.
nanvar
(
yobs
))]
*
(
hstep
+
1
)
else
:
sigma
=
list
(
sigma0
)
if
len
(
sigma
)
!=
(
hstep
+
1
):
raise
Exception
,
"
sigma0 must have length %d
"
%
(
hstep
+
1
)
#
# Optimal parameter estimation if requested
# FIXME: this should probably be extracted to a separate module function.
#
retParams
=
False
if
(
alpha
==
None
or
beta
==
None
or
gamma
==
None
or
phi
==
None
):
# estimate parameters
retParams
=
True
if
fc
>
0
:
print
"
WARNING: non-zero fc is not used in estimation mode
"
if
alpha
!=
None
:
# allows us to fix alpha
boundaries
=
[(
alpha
,
alpha
)]
initial_values
=
[
alpha
]
else
:
boundaries
=
[(
0
,
1
)]
initial_values
=
[
0.3
]
# FIXME: should add alpha0 option
if
beta
!=
None
:
# allows us to fix beta
boundaries
.
append
((
beta
,
beta
))
initial_values
.
append
(
beta
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.1
)
# FIXME: should add beta0 option
if
gamma
!=
None
:
# allows us to fix gamma
boundaries
.
append
((
gamma
,
gamma
))
initial_values
.
append
(
gamma
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.1
)
# FIXME: should add gamma0 option
if
phi
!=
None
:
# allows us to fix phi
boundaries
.
append
((
phi
,
phi
))
initial_values
.
append
(
phi
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.9
)
# FIXME: should add phi0 option
initial_values
=
np
.
array
(
initial_values
)
method
=
'
additive
'
parameters
=
fmin_l_bfgs_b
(
RMSE
,
x0
=
initial_values
,
args
=
(
yobs
,
method
,
m
,
s
,
l
,
b
,
hstep
,
zthresh
),
bounds
=
boundaries
,
approx_grad
=
True
)
alpha
,
beta
,
gamma
=
parameters
[
0
]
rmse
=
parameters
[
1
]
alpha
,
beta
,
gamma
=
parameters
[
0
]
rmse
=
parameters
[
1
]
# endif (alpha == None or beta == None or gamma == None)
# endif (alpha == None or beta == None or gamma == None)
#
# Now begin the actual Holt-Winters algorithm
#
#
# Now begin the actual Holt-Winters algorithm
#
# ensure mean of seasonal adjustments is zero by setting first element of
# r equal to mean(s)
r
=
[
np
.
nanmean
(
s
)]
# ensure mean of seasonal adjustments is zero by setting first element of
# r equal to mean(s)
r
=
[
np
.
nanmean
(
s
)]
# determine h-step vector of phis for damped trends
# NOTE: Did away with phiVec altogether, and just use phiHminus1 now;
#
#phiVec = np.array([phi**i for i in range(1,hstep)])
# determine h-step vector of phis for damped trends
# NOTE: Did away with phiVec altogether, and just use phiHminus1 now;
#
#phiVec = np.array([phi**i for i in range(1,hstep)])
# determine sum(c^2) and phi_(j-1) for hstep "prediction interval" outside of
# loop; initialize variables for jstep (beyond hstep) prediction intervals
sumc2_H
=
1
phiHminus1
=
0
for
h
in
range
(
1
,
hstep
):
phiHminus1
=
phiHminus1
+
phi
**
(
h
-
1
)
sumc2_H
=
sumc2_H
+
(
alpha
*
(
1
+
phiHminus1
*
beta
)
+
\
# determine sum(c^2) and phi_(j-1) for hstep "prediction interval" outside
# of
# loop; initialize variables for jstep (beyond hstep) prediction intervals
sumc2_H
=
1
phiHminus1
=
0
for
h
in
range
(
1
,
hstep
):
phiHminus1
=
phiHminus1
+
phi
**
(
h
-
1
)
sumc2_H
=
sumc2_H
+
(
alpha
*
(
1
+
phiHminus1
*
beta
)
+
\
gamma
*
(
1
if
(
h
%
m
==
0
)
else
0
))
**
2
phiJminus1
=
phiHminus1
sumc2
=
sumc2_H
jstep
=
hstep
# convert to, and pre-allocate numpy arrays
# FIXME: this should just be done when checking inputs above
yobs
=
np
.
array
(
yobs
)
sigma
=
np
.
concatenate
((
sigma
,
np
.
zeros
(
yobs
.
size
+
fc
)))
yhat
=
np
.
concatenate
((
yhat
,
np
.
zeros
(
yobs
.
size
+
fc
)))
r
=
np
.
concatenate
((
r
,
np
.
zeros
(
yobs
.
size
+
fc
)))
s
=
np
.
concatenate
((
s
,
np
.
zeros
(
yobs
.
size
+
fc
)))
# smooth/simulate/forecast yobs
for
i
in
range
(
len
(
yobs
)
+
fc
):
# update/append sigma for h steps ahead of i following Hyndman-et-al-2005
# NOTE: this will be over-written if valid observations exist at step i
if
jstep
==
hstep
:
sigma2
=
sigma
[
i
]
*
sigma
[
i
]
sigma
[
i
+
hstep
+
1
]
=
np
.
sqrt
(
sigma2
*
sumc2
)
# predict h steps ahead
yhat
[
i
+
hstep
]
=
l
+
phiHminus1
*
b
+
s
[
i
+
hstep
%
m
]
## NOTE: this was a misguided attempt to smooth s that led to oscillatory
## behavior; this makes perfect sense in hindsight, but I'm leaving
## comments here as a reminder to NOT try this again. -EJR 6/2015
#yhat[i+hstep] = l + (phiVec*b).sum() + np.nanmean(s[i+ssIdx])
# determine discrepancy between observation and prediction at step i
# FIXME: this if-block becomes unneccessary if we remove the fc option,
# and force the user to place NaNs at the end of yobs if/when
# they want forecasts beyond the last available observation
if
i
<
len
(
yobs
):
et
=
yobs
[
i
]
-
yhat
[
i
]
else
:
et
=
np
.
nan
# this if/else block is not strictly necessary, but it makes the logic
# somewhat easier to follow (for me at least -EJR 5/2015)
if
(
np
.
isnan
(
et
)
or
np
.
abs
(
et
)
>
zthresh
*
sigma
[
i
]):
#
# forecast (i.e., update l, b, and s assuming et==0)
#
# no change in seasonal adjustments
r
[
i
+
1
]
=
0
s
[
i
+
m
]
=
s
[
i
]
# update l before b
l
=
l
+
phi
*
b
b
=
phi
*
b
if
np
.
isnan
(
et
):
# when forecasting, grow sigma=sqrt(var) like a prediction interval;
# sumc2 and jstep will be reset with the next valid observation
phiJminus1
=
phiJminus1
+
phi
**
jstep
sumc2
=
sumc2
+
(
alpha
*
(
1
+
phiJminus1
*
beta
)
+
gamma
*
(
1
if
(
jstep
%
m
==
0
)
else
0
))
**
2
jstep
=
jstep
+
1
else
:
# still update sigma using et when et > zthresh*sigma
# (and is not NaN)
phiJminus1
=
phiHminus1
sumc2
=
sumc2_H
jstep
=
hstep
# convert to, and pre-allocate numpy arrays
# FIXME: this should just be done when checking inputs above
yobs
=
np
.
array
(
yobs
)
sigma
=
np
.
concatenate
((
sigma
,
np
.
zeros
(
yobs
.
size
+
fc
)))
yhat
=
np
.
concatenate
((
yhat
,
np
.
zeros
(
yobs
.
size
+
fc
)))
r
=
np
.
concatenate
((
r
,
np
.
zeros
(
yobs
.
size
+
fc
)))
s
=
np
.
concatenate
((
s
,
np
.
zeros
(
yobs
.
size
+
fc
)))
# smooth/simulate/forecast yobs
for
i
in
range
(
len
(
yobs
)
+
fc
):
# update/append sigma for h steps ahead of i following
# Hyndman-et-al-2005
# NOTE: this will be over-written if valid observations exist at step i
if
jstep
==
hstep
:
sigma2
=
sigma
[
i
]
*
sigma
[
i
]
sigma
[
i
+
hstep
+
1
]
=
np
.
sqrt
(
sigma2
*
sumc2
)
# predict h steps ahead
yhat
[
i
+
hstep
]
=
l
+
phiHminus1
*
b
+
s
[
i
+
hstep
%
m
]
## NOTE: this was a misguided attempt to smooth s that led to
## oscillatory
## behavior; this makes perfect sense in hindsight, but I'm
## leaving
## comments here as a reminder to NOT try this again. -EJR 6/2015
#yhat[i+hstep] = l + (phiVec*b).sum() + np.nanmean(s[i+ssIdx])
# determine discrepancy between observation and prediction at step i
# FIXME: this if-block becomes unneccessary if we remove the fc option,
# and force the user to place NaNs at the end of yobs if/when
# they want forecasts beyond the last available observation
if
i
<
len
(
yobs
):
et
=
yobs
[
i
]
-
yhat
[
i
]
else
:
et
=
np
.
nan
# this if/else block is not strictly necessary, but it makes the logic
# somewhat easier to follow (for me at least -EJR 5/2015)
if
(
np
.
isnan
(
et
)
or
np
.
abs
(
et
)
>
zthresh
*
sigma
[
i
]):
#
# forecast (i.e., update l, b, and s assuming et==0)
#
# no change in seasonal adjustments
r
[
i
+
1
]
=
0
s
[
i
+
m
]
=
s
[
i
]
# update l before b
l
=
l
+
phi
*
b
b
=
phi
*
b
if
np
.
isnan
(
et
):
# when forecasting, grow sigma=sqrt(var) like a prediction
# interval;
# sumc2 and jstep will be reset with the next valid observation
phiJminus1
=
phiJminus1
+
phi
**
jstep
sumc2
=
sumc2
+
(
alpha
*
(
1
+
phiJminus1
*
beta
)
+
gamma
*
(
1
if
(
jstep
%
m
==
0
)
else
0
))
**
2
jstep
=
jstep
+
1
else
:
# still update sigma using et when et > zthresh*sigma
# (and is not NaN)
# NOTE: Bodenham-et-Adams-2013 may have a more robust method
sigma
[
i
+
1
]
=
alpha
*
np
.
abs
(
et
)
+
(
1
-
alpha
)
*
sigma
[
i
]
else
:
#
# smooth (i.e., update l, b, and s by filtering et)
#
# renormalization could occur inside loop, but we choose to
# integrate
# r, and adjust a and s outside the loop to improve performance.
r
[
i
+
1
]
=
gamma
*
(
1
-
alpha
)
*
et
/
m
# update and append to s using equation-error formulation
s
[
i
+
m
]
=
s
[
i
]
+
gamma
*
(
1
-
alpha
)
*
et
# update l and b using equation-error formulation
l
=
l
+
phi
*
b
+
alpha
*
et
b
=
phi
*
b
+
alpha
*
beta
*
et
# update sigma with et, then reset prediction interval variables
# NOTE: Bodenham-et-Adams-2013 may have a more robust method
sigma
[
i
+
1
]
=
alpha
*
np
.
abs
(
et
)
+
(
1
-
alpha
)
*
sigma
[
i
]
else
:
#
# smooth (i.e., update l, b, and s by filtering et)
#
# renormalization could occur inside loop, but we choose to integrate
# r, and adjust a and s outside the loop to improve performance.
r
[
i
+
1
]
=
gamma
*
(
1
-
alpha
)
*
et
/
m
# update and append to s using equation-error formulation
s
[
i
+
m
]
=
s
[
i
]
+
gamma
*
(
1
-
alpha
)
*
et
# update l and b using equation-error formulation
l
=
l
+
phi
*
b
+
alpha
*
et
b
=
phi
*
b
+
alpha
*
beta
*
et
# update sigma with et, then reset prediction interval variables
# NOTE: Bodenham-et-Adams-2013 may have a more robust method
sigma
[
i
+
1
]
=
alpha
*
np
.
abs
(
et
)
+
(
1
-
alpha
)
*
sigma
[
i
]
sumc2
=
sumc2_H
phiJminus1
=
phiHminus1
jstep
=
hstep
# endif (np.isnan(et) or np.abs(et) > zthresh * sigma[i])
# endfor i in range(len(yobs) + fc - hstep)
# NOTE: Seasonal adjustments s[i+1:i+m] should be normalized so their mean is
# zero, at least until the next observation, or else the notion of a
# "seasonal" adjustment loses all meaning. In order to ensure that the
# predictions yhat[:] remain unchanged, the baseline a is shifted too.
# Archibald-et-Koehler-2003 recommend doing all this inside the loop,
# but this slows the algorithm significantly. A&K-2003 note, however,
# that r can be integrated, and used to adjust s[:] *outside* the loop,
# and Gardner-2006 recommends this approach. A&K-2003 provide valid
# reasons for their recommendation (online optimization of alpha will
# be impacted), but since ours is not currently such an estimator, we
# choose the more computationally efficient approach.
r
=
np
.
cumsum
(
r
)
l
=
l
+
r
[
-
1
]
s
=
list
(
np
.
array
(
s
)
-
np
.
hstack
((
r
,
np
.
tile
(
r
[
-
1
],
m
-
1
)))
)
# return different outputs depending on retParams
if
retParams
:
return
(
yhat
[:
len
(
yobs
)
+
fc
],
s
[:
len
(
yobs
)
+
fc
],
sigma
[
1
:
len
(
yobs
)
+
fc
+
1
],
yhat
[
len
(
yobs
)
+
fc
:],
s
[
len
(
yobs
)
+
fc
:],
l
,
b
,
sigma
[
len
(
yobs
)
+
fc
:],
alpha
,
beta
,
gamma
,
rmse
)
else
:
return
(
yhat
[:
len
(
yobs
)
+
fc
],
s
[:
len
(
yobs
)
+
fc
],
sigma
[
1
:
len
(
yobs
)
+
fc
+
1
],
yhat
[
len
(
yobs
)
+
fc
:],
s
[
len
(
yobs
)
+
fc
:],
l
,
b
,
sigma
[
len
(
yobs
)
+
fc
:])
sumc2
=
sumc2_H
phiJminus1
=
phiHminus1
jstep
=
hstep
# endif (np.isnan(et) or np.abs(et) > zthresh * sigma[i])
# endfor i in range(len(yobs) + fc - hstep)
"""
NOTE: Seasonal adjustments s[i+1:i+m] should be normalized so their mean
is zero, at least until the next observation, or else the notion of a
"
seasonal
"
adjustment loses all meaning. In order to ensure that the
predictions yhat[:] remain unchanged, the baseline a is shifted too.
Archibald-et-Koehler-2003 recommend doing all this inside the loop,
but this slows the algorithm significantly. A&K-2003 note, however,
that r can be integrated, and used to adjust s[:] *outside* the loop,
and Gardner-2006 recommends this approach. A&K-2003 provide valid
reasons for their recommendation (online optimization of alpha will
be impacted), but since ours is not currently such an estimator, we
choose the more computationally efficient approach.
"""
r
=
np
.
cumsum
(
r
)
l
=
l
+
r
[
-
1
]
s
=
list
(
np
.
array
(
s
)
-
np
.
hstack
((
r
,
np
.
tile
(
r
[
-
1
],
m
-
1
)))
)
# return different outputs depending on retParams
if
retParams
:
return
(
yhat
[:
len
(
yobs
)
+
fc
],
s
[:
len
(
yobs
)
+
fc
],
sigma
[
1
:
len
(
yobs
)
+
fc
+
1
],
yhat
[
len
(
yobs
)
+
fc
:],
s
[
len
(
yobs
)
+
fc
:],
l
,
b
,
sigma
[
len
(
yobs
)
+
fc
:],
alpha
,
beta
,
gamma
,
rmse
)
else
:
return
(
yhat
[:
len
(
yobs
)
+
fc
],
s
[:
len
(
yobs
)
+
fc
],
sigma
[
1
:
len
(
yobs
)
+
fc
+
1
],
yhat
[
len
(
yobs
)
+
fc
:],
s
[
len
(
yobs
)
+
fc
:],
l
,
b
,
sigma
[
len
(
yobs
)
+
fc
:])
if
__name__
==
'
__main__
'
:
"""
This might be expanded to call HoltWinters.py as a script. More likely,
HoltWinters.py will be incorporated into another module or class, which
will have it
'
s own command-line functionality.
"""
"""
This might be expanded to call HoltWinters.py as a script. More likely,
HoltWinters.py will be incorporated into another module or class, which
will have it
'
s own command-line functionality.
"""
print
'
HELLO
'
print
'
HELLO
'
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment