Skip to content
Snippets Groups Projects
Commit 952bb124 authored by Jeremy M Fee's avatar Jeremy M Fee
Browse files

refactor methods into class methods

parent c1aba113
No related branches found
No related tags found
No related merge requests found
......@@ -12,345 +12,382 @@
https://gist.github.com/andrequeiroz/5888967
"""
from Algorithm import Algorithm
from AlgorithmException import AlgorithmException
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
def additive(yobs, m, alpha, beta, gamma, phi=1,
yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
zthresh=6, fc=0, hstep=0):
"""Primary function for Holt-Winters smoothing/forecasting with
damped linear trend and additive seasonal component.
The adaptive standard deviation (sigma), multiplied by zthresh to
determine which observations should be smoothed or ignored, is always
updated using the latest error if a valid observation is available. This
way, if what seemed a spike in real-time was actually a more permanent
baseline shift, the algorithm will adjust to the new baseline once sigma
grows enough to accommodate the errors.
The standard deviation also updates when no obserations are present, but
does so according to Hyndman et al (2005) prediction intervals. The result
is a sigma that grows over gaps, and for forecasts beyond yobs[-1].
Parameters
----------
yobs : array_like
input series to be smoothed/forecast
m : int
number of "seasons"
alpha : float
the level smoothing parameter (0<=alpha<=1).
beta : float
the slope smoothing parameter (0<=beta<=1).
gamma : float
the seasonal adjustment smoothing parameter (0<=gamma<=1).
phi : float
the dampening factor for slope (0<=phi<=1)
(if None, phi will be estimated; default is 1)
yhat0 : array_like
initial yhats for hstep>0 (len(yhat0) == hstep)
(if None, yhat0 will be set to NaNs)
s0 : array_like
initial set of seasonal adjustments
(if None, default is [yobs[i] - a[0] for i in range(m)])
l0 : float
initial level (i.e., l(t-hstep))
(if None, default is mean(yobs[0:m]))
b0 : float
initial slope (i.e., b(t-hstep))
(if None, default is (mean(yobs[m:2*m]) - mean(yobs[0:m]))/m )
sigma0 : float
initial standard-deviation estimate (len(sigma0) == hstep+1)
(if None, default is [sqrt(var(yobs))] * (hstep+1) )
zthresh : int
z-score threshold to determine whether yhat is updated by
smoothing observations, or by simulation alone; if exceeded,
only sigma is updated to reflect latest observation
fc : int
the number of steps beyond the end of yobs (the available
observations) to forecast
hstep : int
the number of steps ahead to predict yhat[i]
which forces an hstep prediction at each time step
Returns
-------
yhat : series of smoothed/forecast values (aligned with yobs(t))
shat : series of seasonal adjustments (aligned with yobs(t))
sigmahat: series of time-varying standard deviations (aligned with yobs(t))
yhat0next : use as yhat0 when function called again with new observations
s0next : use as s0 when function called again with new observations
l0next : use as l0 when function called again with new observations
b0next : use as b0 when function called again with new observations
sigma0next: use as sigma0 when function called again with new observations
alpha : optimized alpha (if input alpha is None)
beta : optimized beta (if input beta is None)
gamma : optimized gamma (if input gamma is None)
phi : optimized phi (if input phi is None)
"""
if alpha is None:
raise AlgorithmException('alpha is required')
if beta is None:
raise AlgorithmException('beta is required')
if gamma is None:
raise AlgorithmException('gamma is required')
if phi is None:
raise AlgorithmException('phi is required')
# set some default values
if l0 is None:
l = np.nanmean(yobs[0:int(m)])
else:
l = l0
if not np.isscalar(l0):
raise AlgorithmException("l0 must be a scalar")
if b0 is None:
b = (np.nanmean(yobs[m:2 * m]) - np.nanmean(yobs[0:m])) / m
b = 0 if np.isnan(b) else b # replace NaN with 0
else:
b = b0
if not np.isscalar(b0):
raise AlgorithmException("b0 must be a scalar")
if yhat0 is None:
yhat = [np.nan for i in range(hstep)]
else:
yhat = list(yhat0)
if len(yhat) != hstep:
raise AlgorithmException("yhat0 must have length %d" % hstep)
if s0 is None:
s = [yobs[i] - l for i in range(m)]
s = [i if ~np.isnan(i) else 0 for i in s] # replace NaNs with 0s
else:
s = list(s0)
if len(s) != m:
raise AlgorithmException("s0 must have length %d " % m)
if sigma0 is None:
sigma = [np.sqrt(np.nanvar(yobs))] * (hstep + 1)
else:
sigma = list(sigma0)
if len(sigma) != (hstep + 1):
raise AlgorithmException(
"sigma0 must have length %d" % (hstep + 1))
#
# Now begin the actual Holt-Winters algorithm
#
# ensure mean of seasonal adjustments is zero by setting first element of
# r equal to mean(s)
r = [np.nanmean(s)]
# determine sum(c^2) and phi_(j-1) for hstep "prediction interval" outside
# of loop; initialize variables for jstep (beyond hstep) prediction
# intervals
sumc2_H = 1
phiHminus1 = 0
for h in range(1, hstep):
phiHminus1 = phiHminus1 + phi ** (h - 1)
sumc2_H = sumc2_H + (alpha * (1 + phiHminus1 * beta) +
gamma * (1 if (h % m == 0) else 0)) ** 2
phiJminus1 = phiHminus1
sumc2 = sumc2_H
jstep = hstep
# convert to, and pre-allocate numpy arrays
yobs = np.array(yobs)
sigma = np.concatenate((sigma, np.zeros(yobs.size + fc)))
yhat = np.concatenate((yhat, np.zeros(yobs.size + fc)))
r = np.concatenate((r, np.zeros(yobs.size + fc)))
s = np.concatenate((s, np.zeros(yobs.size + fc)))
# smooth/simulate/forecast yobs
for i in range(len(yobs) + fc):
# Update/append sigma for h steps ahead of i following
# Hyndman-et-al-2005. This will be over-written if valid observations
# exist at step i
if jstep == hstep:
sigma2 = sigma[i] * sigma[i]
sigma[i + hstep + 1] = np.sqrt(sigma2 * sumc2)
# predict h steps ahead
yhat[i + hstep] = l + phiHminus1 * b + s[i + hstep % m]
# determine discrepancy between observation and prediction at step i
if i < len(yobs):
et = yobs[i] - yhat[i]
else:
et = np.nan
class SqDistAlgorithm(Algorithm):
"""Solar Quiet, Secular Variation, and Disturbance algorithm"""
def __init__(self, alpha=None, beta=None, gamma=None, phi=1,
yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
zthresh=6, fc=0, hstep=0):
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.phi = phi
self.yhat0 = yhat0
self.s0 = s0
self.l0 = l0
self.b0 = b0
self.sigma0 = sigma0
self.zthresh = zthresh
self.fc = fc
self.hstep = hstep
def process(self, yobs, m):
pass
@classmethod
def additive(yobs, m, alpha, beta, gamma, phi=1,
yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
zthresh=6, fc=0, hstep=0):
"""Primary function for Holt-Winters smoothing/forecasting with
damped linear trend and additive seasonal component.
The adaptive standard deviation (sigma), multiplied by zthresh to
determine which observations should be smoothed or ignored, is always
updated using the latest error if a valid observation is available.
This way, if what seemed a spike in real-time was actually a more
permanent baseline shift, the algorithm will adjust to the new baseline
once sigma grows enough to accommodate the errors.
The standard deviation also updates when no obserations are present,
but does so according to Hyndman et al (2005) prediction intervals.
The result is a sigma that grows over gaps, and for forecasts beyond
yobs[-1].
Parameters
----------
yobs : array_like
input series to be smoothed/forecast
m : int
number of "seasons"
alpha : float
the level smoothing parameter (0<=alpha<=1).
beta : float
the slope smoothing parameter (0<=beta<=1).
gamma : float
the seasonal adjustment smoothing parameter (0<=gamma<=1).
phi : float
the dampening factor for slope (0<=phi<=1)
(if None, phi will be estimated; default is 1)
yhat0 : array_like
initial yhats for hstep>0 (len(yhat0) == hstep)
(if None, yhat0 will be set to NaNs)
s0 : array_like
initial set of seasonal adjustments
(if None, default is [yobs[i] - a[0] for i in range(m)])
l0 : float
initial level (i.e., l(t-hstep))
(if None, default is mean(yobs[0:m]))
b0 : float
initial slope (i.e., b(t-hstep))
(if None, default is (mean(yobs[m:2*m]) - mean(yobs[0:m]))/m )
sigma0 : float
initial standard-deviation estimate (len(sigma0) == hstep+1)
(if None, default is [sqrt(var(yobs))] * (hstep+1) )
zthresh : int
z-score threshold to determine whether yhat is updated by
smoothing observations, or by simulation alone; if exceeded,
only sigma is updated to reflect latest observation
fc : int
the number of steps beyond the end of yobs (the available
observations) to forecast
hstep : int
the number of steps ahead to predict yhat[i]
which forces an hstep prediction at each time step
Returns
-------
yhat : array_like
series of smoothed/forecast values (aligned with yobs(t))
shat : array_like
series of seasonal adjustments (aligned with yobs(t))
sigmahat : array_like
series of time-varying standard deviations (aligned with yobs(t))
yhat0next : array_like
use as yhat0 when function called again with new observations
s0next : float
use as s0 when function called again with new observations
l0next : float
use as l0 when function called again with new observations
b0next : float
use as b0 when function called again with new observations
sigma0next : float
use as sigma0 when function called again with new observations
alpha : float
optimized alpha (if input alpha is None)
beta : float
optimized beta (if input beta is None)
gamma : float
optimized gamma (if input gamma is None)
phi : float
optimized phi (if input phi is None)
"""
if (np.isnan(et) or np.abs(et) > zthresh * sigma[i]):
# forecast (i.e., update l, b, and s assuming et==0)
if alpha is None:
raise AlgorithmException('alpha is required')
if beta is None:
raise AlgorithmException('beta is required')
if gamma is None:
raise AlgorithmException('gamma is required')
if phi is None:
raise AlgorithmException('phi is required')
# set some default values
if l0 is None:
l = np.nanmean(yobs[0:int(m)])
else:
l = l0
if not np.isscalar(l0):
raise AlgorithmException("l0 must be a scalar")
# no change in seasonal adjustments
r[i + 1] = 0
s[i + m] = s[i]
if b0 is None:
b = (np.nanmean(yobs[m:2 * m]) - np.nanmean(yobs[0:m])) / m
b = 0 if np.isnan(b) else b # replace NaN with 0
else:
b = b0
if not np.isscalar(b0):
raise AlgorithmException("b0 must be a scalar")
# update l before b
l = l + phi * b
b = phi * b
if yhat0 is None:
yhat = [np.nan for i in range(hstep)]
else:
yhat = list(yhat0)
if len(yhat) != hstep:
raise AlgorithmException("yhat0 must have length %d" % hstep)
if np.isnan(et):
# when forecasting, grow sigma=sqrt(var) like a prediction
# interval; sumc2 and jstep will be reset with the next
# valid observation
phiJminus1 = phiJminus1 + phi ** jstep
sumc2 = sumc2 + (alpha * (1 + phiJminus1 * beta) +
gamma * (1 if (jstep % m == 0) else 0)) ** 2
jstep = jstep + 1
if s0 is None:
s = [yobs[i] - l for i in range(m)]
s = [i if ~np.isnan(i) else 0 for i in s] # replace NaNs with 0s
else:
s = list(s0)
if len(s) != m:
raise AlgorithmException("s0 must have length %d " % m)
if sigma0 is None:
sigma = [np.sqrt(np.nanvar(yobs))] * (hstep + 1)
else:
sigma = list(sigma0)
if len(sigma) != (hstep + 1):
raise AlgorithmException(
"sigma0 must have length %d" % (hstep + 1))
#
# Now begin the actual Holt-Winters algorithm
#
# ensure mean of seasonal adjustments is zero by setting first element
# of r equal to mean(s)
r = [np.nanmean(s)]
# determine sum(c^2) and phi_(j-1) for hstep "prediction interval"
# outside of loop; initialize variables for jstep (beyond hstep)
# prediction intervals
sumc2_H = 1
phiHminus1 = 0
for h in range(1, hstep):
phiHminus1 = phiHminus1 + phi ** (h - 1)
sumc2_H = sumc2_H + (alpha * (1 + phiHminus1 * beta) +
gamma * (1 if (h % m == 0) else 0)) ** 2
phiJminus1 = phiHminus1
sumc2 = sumc2_H
jstep = hstep
# convert to, and pre-allocate numpy arrays
yobs = np.array(yobs)
sigma = np.concatenate((sigma, np.zeros(yobs.size + fc)))
yhat = np.concatenate((yhat, np.zeros(yobs.size + fc)))
r = np.concatenate((r, np.zeros(yobs.size + fc)))
s = np.concatenate((s, np.zeros(yobs.size + fc)))
# smooth/simulate/forecast yobs
for i in range(len(yobs) + fc):
# Update/append sigma for h steps ahead of i following
# Hyndman-et-al-2005. This will be over-written if valid
# observations exist at step i
if jstep == hstep:
sigma2 = sigma[i] * sigma[i]
sigma[i + hstep + 1] = np.sqrt(sigma2 * sumc2)
# predict h steps ahead
yhat[i + hstep] = l + phiHminus1 * b + s[i + hstep % m]
# discrepancy between observation and prediction at step i
if i < len(yobs):
et = yobs[i] - yhat[i]
else:
# still update sigma using et when et > zthresh * sigma
# (and is not NaN)
et = np.nan
if (np.isnan(et) or np.abs(et) > zthresh * sigma[i]):
# forecast (i.e., update l, b, and s assuming et==0)
# no change in seasonal adjustments
r[i + 1] = 0
s[i + m] = s[i]
# update l before b
l = l + phi * b
b = phi * b
if np.isnan(et):
# when forecasting, grow sigma=sqrt(var) like a prediction
# interval; sumc2 and jstep will be reset with the next
# valid observation
phiJminus1 = phiJminus1 + phi ** jstep
sumc2 = sumc2 + (alpha * (1 + phiJminus1 * beta) +
gamma * (1 if (jstep % m == 0) else 0)) ** 2
jstep = jstep + 1
else:
# still update sigma using et when et > zthresh * sigma
# (and is not NaN)
sigma[i + 1] = alpha * np.abs(et) + (1 - alpha) * sigma[i]
else:
# smooth (i.e., update l, b, and s by filtering et)
# renormalization could occur inside loop, but we choose to
# integrate r, and adjust a and s outside the loop to improve
# performance.
r[i + 1] = gamma * (1 - alpha) * et / m
# update and append to s using equation-error formulation
s[i + m] = s[i] + gamma * (1 - alpha) * et
# update l and b using equation-error formulation
l = l + phi * b + alpha * et
b = phi * b + alpha * beta * et
# update sigma with et, then reset prediction interval
sigma[i + 1] = alpha * np.abs(et) + (1 - alpha) * sigma[i]
else:
# smooth (i.e., update l, b, and s by filtering et)
# renormalization could occur inside loop, but we choose to
# integrate r, and adjust a and s outside the loop to improve
# performance.
r[i + 1] = gamma * (1 - alpha) * et / m
# update and append to s using equation-error formulation
s[i + m] = s[i] + gamma * (1 - alpha) * et
# update l and b using equation-error formulation
l = l + phi * b + alpha * et
b = phi * b + alpha * beta * et
# update sigma with et, then reset prediction interval variables
sigma[i + 1] = alpha * np.abs(et) + (1 - alpha) * sigma[i]
sumc2 = sumc2_H
phiJminus1 = phiHminus1
jstep = hstep
# endif (np.isnan(et) or np.abs(et) > zthresh * sigma[i])
# endfor i in range(len(yobs) + fc - hstep)
r = np.cumsum(r)
l = l + r[-1]
s = list(np.array(s) - np.hstack((r, np.tile(r[-1], m - 1))))
return (yhat[:len(yobs) + fc],
s[:len(yobs) + fc],
sigma[1:len(yobs) + fc + 1],
yhat[len(yobs) + fc:],
s[len(yobs) + fc:],
l,
b,
sigma[len(yobs) + fc:],
alpha,
beta,
gamma)
def estimate_parameters(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
zthresh=6, fc=0, hstep=0,
alpha0=0.3, beta0=0.1, gamma0=0.1):
"""Estimate alpha, beta, and gamma parameters based on observed data.
Parameters
----------
yobs : array_like
input series to be smoothed/forecast
m : int
number of "seasons"
alpha : float
the level smoothing parameter (0<=alpha<=1).
beta : float
the slope smoothing parameter (0<=beta<=1).
gamma : float
the seasonal adjustment smoothing parameter (0<=gamma<=1).
phi : float
the dampening factor for slope (0<=phi<=1)
(if None, phi will be estimated; default is 1)
yhat0 : array_like
initial yhats for hstep>0 (len(yhat0) == hstep)
(if None, yhat0 will be set to NaNs)
s0 : array_like
initial set of seasonal adjustments
(if None, default is [yobs[i] - a[0] for i in range(m)])
l0 : float
initial level (i.e., l(t-hstep))
(if None, default is mean(yobs[0:m]))
b0 : float
initial slope (i.e., b(t-hstep))
(if None, default is (mean(yobs[m:2*m]) - mean(yobs[0:m]))/m )
sigma0 : float
initial standard-deviation estimate (len(sigma0) == hstep+1)
(if None, default is [sqrt(var(yobs))] * (hstep+1) )
zthresh : int
z-score threshold to determine whether yhat is updated by
smoothing observations, or by simulation alone; if exceeded,
only sigma is updated to reflect latest observation
fc : int
the number of steps beyond the end of yobs (the available
observations) to forecast
hstep : int
the number of steps ahead to predict yhat[i]
which forces an hstep prediction at each time step
alpha0 : float
initial value for alpha.
used only when alpha is None.
beta0 : float
initial value for beta.
used only when beta is None.
gamma0 : float
initial value for gamma.
used only when gamma is None.
Returns
-------
alpha : float
optimized parameter alpha (if alpha was None).
beta : float
optimized parameter beta (if beta was None).
gamma : float
optimized gamma, if gamma was None.
rmse : float
root-mean-squared-error for data using optimized parameters.
"""
# if alpha/beta/gamma is specified, restrict bounds to "fix" parameter.
boundaries = [
(alpha, alpha) if alpha is not None else (0, 1),
(beta, beta) if beta is not None else (0, 1),
(gamma, gamma) if gamma is not None else (0, 1)
]
initial_values = np.array([
alpha if alpha is not None else alpha0,
beta if beta is not None else beta0,
gamma if gamma is not None else gamma0
])
def func(params, *args):
"""Function that computes root-mean-squared-error based on current
alpha, beta, and gamma parameters; as provided by fmin_l_bfgs_b.
sumc2 = sumc2_H
phiJminus1 = phiHminus1
jstep = hstep
# endif (np.isnan(et) or np.abs(et) > zthresh * sigma[i])
# endfor i in range(len(yobs) + fc - hstep)
r = np.cumsum(r)
l = l + r[-1]
s = list(np.array(s) - np.hstack((r, np.tile(r[-1], m - 1))))
return (yhat[:len(yobs) + fc],
s[:len(yobs) + fc],
sigma[1:len(yobs) + fc + 1],
yhat[len(yobs) + fc:],
s[len(yobs) + fc:],
l,
b,
sigma[len(yobs) + fc:],
alpha,
beta,
gamma)
@classmethod
def estimate_parameters(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
yhat0=None, s0=None, l0=None, b0=None, sigma0=None,
zthresh=6, fc=0, hstep=0,
alpha0=0.3, beta0=0.1, gamma0=0.1):
"""Estimate alpha, beta, and gamma parameters based on observed data.
Parameters
----------
params: list-like
list containing alpha, beta, and gamma parameters to test
yobs : array_like
input series to be smoothed/forecast
m : int
number of "seasons"
alpha : float
the level smoothing parameter (0<=alpha<=1).
beta : float
the slope smoothing parameter (0<=beta<=1).
gamma : float
the seasonal adjustment smoothing parameter (0<=gamma<=1).
phi : float
the dampening factor for slope (0<=phi<=1)
(if None, phi will be estimated; default is 1)
yhat0 : array_like
initial yhats for hstep>0 (len(yhat0) == hstep)
(if None, yhat0 will be set to NaNs)
s0 : array_like
initial set of seasonal adjustments
(if None, default is [yobs[i] - a[0] for i in range(m)])
l0 : float
initial level (i.e., l(t-hstep))
(if None, default is mean(yobs[0:m]))
b0 : float
initial slope (i.e., b(t-hstep))
(if None, default is (mean(yobs[m:2*m]) - mean(yobs[0:m]))/m )
sigma0 : float
initial standard-deviation estimate (len(sigma0) == hstep+1)
(if None, default is [sqrt(var(yobs))] * (hstep+1) )
zthresh : int
z-score threshold to determine whether yhat is updated by
smoothing observations, or by simulation alone; if exceeded,
only sigma is updated to reflect latest observation
fc : int
the number of steps beyond the end of yobs (the available
observations) to forecast
hstep : int
the number of steps ahead to predict yhat[i]
which forces an hstep prediction at each time step
alpha0 : float
initial value for alpha.
used only when alpha is None.
beta0 : float
initial value for beta.
used only when beta is None.
gamma0 : float
initial value for gamma.
used only when gamma is None.
Returns
-------
alpha : float
optimized parameter alpha (if alpha was None).
beta : float
optimized parameter beta (if beta was None).
gamma : float
optimized gamma, if gamma was None.
rmse : float
root-mean-squared-error for data using optimized parameters.
"""
# extract parameters to fit
alpha, beta, gamma = params
# call Holt-Winters with additive seasonality
yhat, _, _, _, _, _, _, _, _, _, _ = additive(yobs, m,
alpha=alpha, beta=beta, gamma=gamma, l0=l0, b0=b0, s0=s0,
zthresh=zthresh, hstep=hstep)
# compute root-mean-squared-error of predictions
error = np.sqrt(np.nanmean(np.square(np.subtract(yobs, yhat))))
return error
parameters = fmin_l_bfgs_b(func, x0=initial_values, args=(),
bounds=boundaries, approx_grad=True)
alpha, beta, gamma = parameters[0]
rmse = parameters[1]
return (alpha, beta, gamma, rmse)
# if alpha/beta/gamma is specified, restrict bounds to "fix" parameter.
boundaries = [
(alpha, alpha) if alpha is not None else (0, 1),
(beta, beta) if beta is not None else (0, 1),
(gamma, gamma) if gamma is not None else (0, 1)
]
initial_values = np.array([
alpha if alpha is not None else alpha0,
beta if beta is not None else beta0,
gamma if gamma is not None else gamma0
])
def func(params, *args):
"""Function that computes root-mean-squared-error based on current
alpha, beta, and gamma parameters; as provided by fmin_l_bfgs_b.
Parameters
----------
params: list-like
list containing alpha, beta, and gamma parameters to test
"""
# extract parameters to fit
alpha, beta, gamma = params
# call Holt-Winters with additive seasonality
yhat, _, _, _, _, _, _, _, _, _, _ = SqDistAlgorithm.additive(
yobs, m,
alpha=alpha, beta=beta, gamma=gamma, l0=l0, b0=b0, s0=s0,
zthresh=zthresh, hstep=hstep)
# compute root-mean-squared-error of predictions
error = np.sqrt(np.nanmean(np.square(np.subtract(yobs, yhat))))
return error
parameters = fmin_l_bfgs_b(func, x0=initial_values, args=(),
bounds=boundaries, approx_grad=True)
alpha, beta, gamma = parameters[0]
rmse = parameters[1]
return (alpha, beta, gamma, rmse)
......@@ -7,6 +7,7 @@ from Algorithm import Algorithm
from AlgorithmException import AlgorithmException
# algorithms
from DeltaFAlgorithm import DeltaFAlgorithm
from SqDistAlgorithm import SqDistAlgorithm
from XYZAlgorithm import XYZAlgorithm
......@@ -14,6 +15,7 @@ from XYZAlgorithm import XYZAlgorithm
algorithms = {
'identity': Algorithm,
'deltaf': DeltaFAlgorithm,
'sqdist': SqDistAlgorithm,
'xyz': XYZAlgorithm
}
......@@ -24,5 +26,6 @@ __all__ = [
'AlgorithmException',
# algorithms
'DeltaFAlgorithm',
'SqDistAlgorithm',
'XYZAlgorithm'
]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment