Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
geomag-algorithms
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ghsc
National Geomagnetism Program
geomag-algorithms
Commits
9f7574a3
Commit
9f7574a3
authored
9 years ago
by
Eddie McWhirter
Browse files
Options
Downloads
Patches
Plain Diff
Remove commented code and unneccessary comments from SQDistAlgorithm.
parent
701f775b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
geomagio/algorithm/SQDistAlgorithm.py
+17
-64
17 additions, 64 deletions
geomagio/algorithm/SQDistAlgorithm.py
with
17 additions
and
64 deletions
geomagio/algorithm/SQDistAlgorithm.py
+
17
−
64
View file @
9f7574a3
...
...
@@ -136,7 +136,7 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
if
b0
is
None
:
b
=
(
np
.
nanmean
(
yobs
[
m
:
2
*
m
])
-
np
.
nanmean
(
yobs
[
0
:
m
]))
/
m
b
=
0
if
np
.
isnan
(
b
)
else
b
# replace NaN with 0
b
=
0
if
np
.
isnan
(
b
)
else
b
# replace NaN with 0
else
:
b
=
b0
if
not
np
.
isscalar
(
b0
):
...
...
@@ -151,14 +151,13 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
if
s0
is
None
:
s
=
[
yobs
[
i
]
-
l
for
i
in
range
(
m
)]
s
=
[
i
if
~
np
.
isnan
(
i
)
else
0
for
i
in
s
]
# replace NaNs with 0s
s
=
[
i
if
~
np
.
isnan
(
i
)
else
0
for
i
in
s
]
# replace NaNs with 0s
else
:
s
=
list
(
s0
)
if
len
(
s
)
!=
m
:
raise
AlgorithmException
(
"
s0 must have length %d
"
%
m
)
if
sigma0
is
None
:
# NOTE: maybe default should be vector of zeros???
sigma
=
[
np
.
sqrt
(
np
.
nanvar
(
yobs
))]
*
(
hstep
+
1
)
else
:
sigma
=
list
(
sigma0
)
...
...
@@ -186,7 +185,7 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
initial_values
=
[
alpha
]
else
:
boundaries
=
[(
0
,
1
)]
initial_values
=
[
0.3
]
# FIXME: should add alpha0 option
initial_values
=
[
0.3
]
# FIXME: should add alpha0 option
if
beta
!=
None
:
# allows us to fix beta
...
...
@@ -194,7 +193,7 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
initial_values
.
append
(
beta
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.1
)
# FIXME: should add beta0 option
initial_values
.
append
(
0.1
)
# FIXME: should add beta0 option
if
gamma
!=
None
:
# allows us to fix gamma
...
...
@@ -202,7 +201,7 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
initial_values
.
append
(
gamma
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.1
)
# FIXME: should add gamma0 option
initial_values
.
append
(
0.1
)
# FIXME: should add gamma0 option
if
phi
!=
None
:
# allows us to fix phi
...
...
@@ -210,7 +209,7 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
initial_values
.
append
(
phi
)
else
:
boundaries
.
append
((
0
,
1
))
initial_values
.
append
(
0.9
)
# FIXME: should add phi0 option
initial_values
.
append
(
0.9
)
# FIXME: should add phi0 option
initial_values
=
np
.
array
(
initial_values
)
method
=
'
additive
'
...
...
@@ -231,14 +230,9 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
# r equal to mean(s)
r
=
[
np
.
nanmean
(
s
)]
# determine h-step vector of phis for damped trends
# NOTE: Did away with phiVec altogether, and just use phiHminus1 now;
#
#phiVec = np.array([phi**i for i in range(1,hstep)])
# determine sum(c^2) and phi_(j-1) for hstep "prediction interval" outside
# of
#
loop; initialize variables for jstep (beyond hstep) prediction
intervals
# of
loop; initialize variables for jstep (beyond hstep) prediction
# intervals
sumc2_H
=
1
phiHminus1
=
0
for
h
in
range
(
1
,
hstep
):
...
...
@@ -250,7 +244,6 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
jstep
=
hstep
# convert to, and pre-allocate numpy arrays
# FIXME: this should just be done when checking inputs above
yobs
=
np
.
array
(
yobs
)
sigma
=
np
.
concatenate
((
sigma
,
np
.
zeros
(
yobs
.
size
+
fc
)))
yhat
=
np
.
concatenate
((
yhat
,
np
.
zeros
(
yobs
.
size
+
fc
)))
...
...
@@ -259,10 +252,9 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
# smooth/simulate/forecast yobs
for
i
in
range
(
len
(
yobs
)
+
fc
):
# update/append sigma for h steps ahead of i following
# Hyndman-et-al-2005
# NOTE: this will be over-written if valid observations exist at step i
# Update/append sigma for h steps ahead of i following
# Hyndman-et-al-2005. This will be over-written if valid observations
# exist at step i
if
jstep
==
hstep
:
sigma2
=
sigma
[
i
]
*
sigma
[
i
]
sigma
[
i
+
hstep
+
1
]
=
np
.
sqrt
(
sigma2
*
sumc2
)
...
...
@@ -270,28 +262,14 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
# predict h steps ahead
yhat
[
i
+
hstep
]
=
l
+
phiHminus1
*
b
+
s
[
i
+
hstep
%
m
]
## NOTE: this was a misguided attempt to smooth s that led to
## oscillatory
## behavior; this makes perfect sense in hindsight, but I'm
## leaving
## comments here as a reminder to NOT try this again. -EJR 6/2015
# yhat[i+hstep] = l + (phiVec*b).sum() + np.nanmean(s[i+ssIdx])
# determine discrepancy between observation and prediction at step i
# FIXME: this if-block becomes unneccessary if we remove the fc option,
# and force the user to place NaNs at the end of yobs if/when
# they want forecasts beyond the last available observation
if
i
<
len
(
yobs
):
et
=
yobs
[
i
]
-
yhat
[
i
]
else
:
et
=
np
.
nan
# this if/else block is not strictly necessary, but it makes the logic
# somewhat easier to follow (for me at least -EJR 5/2015)
if
(
np
.
isnan
(
et
)
or
np
.
abs
(
et
)
>
zthresh
*
sigma
[
i
]):
#
# forecast (i.e., update l, b, and s assuming et==0)
#
# no change in seasonal adjustments
r
[
i
+
1
]
=
0
...
...
@@ -303,27 +281,23 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
if
np
.
isnan
(
et
):
# when forecasting, grow sigma=sqrt(var) like a prediction
# interval;
#
sumc2 and jstep will be reset with the next
valid observation
# interval;
sumc2 and jstep will be reset with the next
# valid observation
phiJminus1
=
phiJminus1
+
phi
**
jstep
sumc2
=
sumc2
+
(
alpha
*
(
1
+
phiJminus1
*
beta
)
+
gamma
*
(
1
if
(
jstep
%
m
==
0
)
else
0
))
**
2
jstep
=
jstep
+
1
else
:
# still update sigma using et when et > zthresh
*
sigma
# still update sigma using et when et > zthresh
*
sigma
# (and is not NaN)
# NOTE: Bodenham-et-Adams-2013 may have a more robust method
sigma
[
i
+
1
]
=
alpha
*
np
.
abs
(
et
)
+
(
1
-
alpha
)
*
sigma
[
i
]
else
:
#
# smooth (i.e., update l, b, and s by filtering et)
#
# renormalization could occur inside loop, but we choose to
# integrate
#
r, and adjust a and s outside the loop to improve
performance.
# integrate
r, and adjust a and s outside the loop to improve
# performance.
r
[
i
+
1
]
=
gamma
*
(
1
-
alpha
)
*
et
/
m
# update and append to s using equation-error formulation
...
...
@@ -334,29 +308,14 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
b
=
phi
*
b
+
alpha
*
beta
*
et
# update sigma with et, then reset prediction interval variables
# NOTE: Bodenham-et-Adams-2013 may have a more robust method
sigma
[
i
+
1
]
=
alpha
*
np
.
abs
(
et
)
+
(
1
-
alpha
)
*
sigma
[
i
]
sumc2
=
sumc2_H
phiJminus1
=
phiHminus1
jstep
=
hstep
# endif (np.isnan(et) or np.abs(et) > zthresh * sigma[i])
# endfor i in range(len(yobs) + fc - hstep)
"""
NOTE: Seasonal adjustments s[i+1:i+m] should be normalized so their mean
is zero, at least until the next observation, or else the notion of a
"
seasonal
"
adjustment loses all meaning. In order to ensure that the
predictions yhat[:] remain unchanged, the baseline a is shifted too.
Archibald-et-Koehler-2003 recommend doing all this inside the loop,
but this slows the algorithm significantly. A&K-2003 note, however,
that r can be integrated, and used to adjust s[:] *outside* the loop,
and Gardner-2006 recommends this approach. A&K-2003 provide valid
reasons for their recommendation (online optimization of alpha will
be impacted), but since ours is not currently such an estimator, we
choose the more computationally efficient approach.
"""
r
=
np
.
cumsum
(
r
)
l
=
l
+
r
[
-
1
]
s
=
list
(
np
.
array
(
s
)
-
np
.
hstack
((
r
,
np
.
tile
(
r
[
-
1
],
m
-
1
))))
...
...
@@ -387,10 +346,4 @@ def additive(yobs, m, alpha=None, beta=None, gamma=None, phi=1,
if
__name__
==
'
__main__
'
:
"""
This might be expanded to call HoltWinters.py as a script. More likely,
HoltWinters.py will be incorporated into another module or class, which
will have it
'
s own command-line functionality.
"""
print
'
HELLO
'
pass
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment