Skip to content
Snippets Groups Projects
Commit 9584782a authored by Altekruse, Jason Morgan's avatar Altekruse, Jason Morgan
Browse files

Replace bias adjustment with period-independent factors from implementation V3 docs

parent c5c7c342
No related branches found
No related tags found
1 merge request!424USGS PRVI backbone bias adjustment update
...@@ -59,6 +59,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel { ...@@ -59,6 +59,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel {
* 576bf0c6853ca896aae84e68ad848d39de09a396/openquake/hazardlib/gsim/usgs_prvi * 576bf0c6853ca896aae84e68ad848d39de09a396/openquake/hazardlib/gsim/usgs_prvi
* .py last updated Jun 25, 2024 * .py last updated Jun 25, 2024
*/ */
// COEFFS_DATA_ADJUSTMENT is currently used to get the IMT set for USGS_PRVI_*
// models
static final CoefficientContainer COEFFS_DATA_ADJUSTMENT = static final CoefficientContainer COEFFS_DATA_ADJUSTMENT =
new CoefficientContainer("prvi-25-backbone-adjustments.csv"); new CoefficientContainer("prvi-25-backbone-adjustments.csv");
...@@ -241,7 +243,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel { ...@@ -241,7 +243,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel {
ActiveCrustAdjusted(Imt imt) { ActiveCrustAdjusted(Imt imt) {
super(imt, NAME); super(imt, NAME);
bias = COEFFS_DATA_ADJUSTMENT.get(imt, "active_crust"); // bias = COEFFS_DATA_ADJUSTMENT.get(imt, "active_crust");
bias = -0.3;
} }
@Override @Override
...@@ -316,7 +319,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel { ...@@ -316,7 +319,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel {
InterfaceAdjusted(Imt imt) { InterfaceAdjusted(Imt imt) {
super(imt, NAME); super(imt, NAME);
bias = COEFFS_DATA_ADJUSTMENT.get(imt, "interface"); // bias = COEFFS_DATA_ADJUSTMENT.get(imt, "interface");
bias = -0.4;
} }
@Override @Override
...@@ -390,7 +394,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel { ...@@ -390,7 +394,8 @@ public abstract class UsgsPrviBackbone2025 implements GroundMotionModel {
SlabAdjusted(Imt imt) { SlabAdjusted(Imt imt) {
super(imt, NAME); super(imt, NAME);
bias = COEFFS_DATA_ADJUSTMENT.get(imt, "intraslab"); // bias = COEFFS_DATA_ADJUSTMENT.get(imt, "intraslab");
bias = -0.4;
} }
@Override @Override
......
#Mw,rjB,rRup,rX,dip,width,zTor,zHyp,rake,vs30,z1p0,z2p5,zSed
5.0,0,2,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,3,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,4,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,5,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,6,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,8,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,150,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,200,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,300,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,500,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,2,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,3,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,4,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,5,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,6,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,8,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,150,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,200,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,300,0,90,5,1,1,90,760,NaN,NaN,NaN
6.0,0,500,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,2,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,3,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,4,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,5,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,6,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,8,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,150,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,200,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,300,0,90,5,1,1,90,760,NaN,NaN,NaN
7.0,0,500,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,150,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,200,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,300,0,90,5,1,1,90,760,NaN,NaN,NaN
8.0,0,500,0,90,5,1,1,90,760,NaN,NaN,NaN
5.0,0,100,0,90,5,1,1,90,365,NaN,NaN,NaN
5.0,0,100,0,90,5,1,1,90,1500,NaN,NaN,NaN
6.0,0,100,0,90,5,1,1,90,365,NaN,NaN,NaN
6.0,0,100,0,90,5,1,1,90,1500,NaN,NaN,NaN
7.0,0,100,0,90,5,1,1,90,150,NaN,NaN,NaN
7.0,0,100,0,90,5,1,1,90,365,NaN,NaN,NaN
7.0,0,100,0,90,5,1,1,90,1500,NaN,NaN,NaN
#
#4.0,0,5,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,5,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,5,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,5,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,6,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,6,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,6,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,6,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,8,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,8,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,8,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,8,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,10,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,10,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,10,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,15,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,15,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,15,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,20,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,20,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,20,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,30,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,30,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,30,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,40,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,40,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,40,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,50,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,50,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,50,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,60,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,60,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,60,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,80,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,80,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,80,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.0,0,100,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.0,0,100,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.0,0,100,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.0,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,5,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,5,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,5,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,5,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,6,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,6,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,6,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,6,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,8,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,8,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,8,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,8,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,10,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,10,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,10,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,15,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,15,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,15,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,20,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,20,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,20,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,30,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,30,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,30,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,40,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,40,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,40,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,50,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,50,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,50,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,60,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,60,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,60,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,80,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,80,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,80,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.7,0,100,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.7,0,100,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.7,0,100,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.7,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,5,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,5,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,5,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,5,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,6,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,6,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,6,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,6,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,8,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,8,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,8,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,8,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,10,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,10,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,10,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,15,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,15,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,15,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,20,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,20,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,20,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,30,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,30,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,30,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,40,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,40,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,40,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,50,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,50,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,50,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,60,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,60,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,60,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,80,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,80,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,80,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
#4.8,0,100,0,90,5,1,1,90,150,NaN,NaN,NaN
#4.8,0,100,0,90,5,1,1,90,250,NaN,NaN,NaN
#4.8,0,100,0,90,5,1,1,90,450,NaN,NaN,NaN
#4.8,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,10,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,10,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,10,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,15,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,15,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,15,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,20,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,20,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,20,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,30,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,30,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,30,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,40,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,40,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,40,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,50,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,50,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,50,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,60,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,60,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,60,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,80,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,80,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,80,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,100,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,100,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,100,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,200,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,200,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,200,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,200,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,300,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,300,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,300,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,300,0,90,5,1,1,90,760,NaN,NaN,NaN
#5.0,0,500,0,90,5,1,1,90,150,NaN,NaN,NaN
#5.0,0,500,0,90,5,1,1,90,250,NaN,NaN,NaN
#5.0,0,500,0,90,5,1,1,90,450,NaN,NaN,NaN
#5.0,0,500,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,10,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,10,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,10,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,10,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,15,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,15,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,15,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,15,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,20,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,20,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,20,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,20,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,30,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,30,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,30,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,30,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,40,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,40,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,40,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,40,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,50,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,50,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,50,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,50,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,60,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,60,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,60,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,60,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,80,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,80,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,80,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,80,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,100,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,100,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,100,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,100,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,200,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,200,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,200,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,200,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,300,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,300,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,300,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,300,0,90,5,1,1,90,760,NaN,NaN,NaN
#6.0,0,500,0,90,5,1,1,90,150,NaN,NaN,NaN
#6.0,0,500,0,90,5,1,1,90,250,NaN,NaN,NaN
#6.0,0,500,0,90,5,1,1,90,450,NaN,NaN,NaN
#6.0,0,500,0,90,5,1,1,90,760,NaN,NaN,NaN
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment