Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
{
"cells": [
{
"cell_type": "markdown",
"id": "6c10e07b-1e60-4926-af1d-fa75dc78e5d4",
"metadata": {
"tags": []
},
"source": [
"# UofIMETDATA Zarr -> Collection Workflow\n",
"This is a workflow to build a [STAC collection](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md) from the zarr asset for the dataset named above. We use the [datacube extension](https://github.com/stac-extensions/datacube) to define the spatial and temporal dimensions of the zarr store, as well as the variables it contains.\n",
"\n",
"To simplify this workflow so that it can scale to many datasets, a few simplifying suggestions and assumptions are made:\n",
"1. For USGS data, we can use the CC0-1.0 license. For all other data we can use Unlicense. Ref: https://spdx.org/licenses/\n",
"2. I am assuming all coordinates are from the WGS84 datum if not specified."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "201e0945-de55-45ff-b095-c2af009a4e62",
"metadata": {},
"outputs": [],
"source": [
"import pystac\n",
"from pystac.extensions.datacube import CollectionDatacubeExtension, AssetDatacubeExtension, AdditionalDimension, DatacubeExtension\n",
"import xarray as xr\n",
"import cf_xarray\n",
"import os\n",
"import fsspec\n",
"import cf_xarray\n",
"import hvplot.xarray\n",
"import pandas as pd\n",
"import json\n",
"import numpy as np\n",
"import pyproj\n",
"from pyproj import Transformer\n",
"import cartopy.crs as ccrs\n",
"import cfunits\n",
"import json\n",
"import sys\n",
"sys.path.insert(1, '..')\n",
"import stac_helpers"
]
},
{
"cell_type": "markdown",
"id": "a71f9d19-8fb3-4f47-b4c4-447bb80d8dd5",
"metadata": {},
"source": [
"## Collection ID"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15ee060d-3127-4024-a1ad-6aa0648667e1",
"metadata": {},
"outputs": [],
"source": [
"# name for STAC collection - should match name of zarr dataset\n",
"collection_id = 'UofIMETDATA'"
]
},
{
"cell_type": "markdown",
"id": "116b5837-8e85-4ae7-964a-803533ded714",
"metadata": {},
"source": [
"## Asset Metadata Input"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd6fa323-132a-4794-8c80-576933f547a0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# url to zarr store that you want to create a collection for\n",
"zarr_url = f's3://mdmf/gdp/{collection_id}.zarr/'\n",
"\n",
"# define keyword arguments needed for opening the dataset with xarray\n",
"# ref: https://github.com/stac-extensions/xarray-assets\n",
"xarray_opendataset_kwargs = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n",
" \"xarray:storage_options\": {\"anon\": True, \"client_kwargs\": {\"endpoint_url\":\"https://usgs.osn.mghpcc.org/\"}}}\n",
"# description for zarr url asset attached to collection (zarr_url)\n",
"asset_description = \"Open Storage Network Pod S3 API access to collection zarr group\"\n",
"# roles to tag zarr url asset with\n",
"asset_roles = [\"data\",\"zarr\",\"s3\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e1441cd4-e94c-4902-af46-8f1af470eb6b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# url to zarr store that you want to create a collection for\n",
"zarr_url2 = f's3://nhgf-development/workspace/DataConversion/{collection_id}.zarr/'\n",
"\n",
"# define keyword arguments needed for opening the dataset with xarray\n",
"# ref: https://github.com/stac-extensions/xarray-assets\n",
"xarray_opendataset_kwargs2 = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n",
" \"xarray:storage_options\":{\"requester_pays\":True}}\n",
"# description for zarr url asset attached to collection (zarr_url)\n",
"asset_description2 = \"S3 access to collection zarr group\"\n",
"# roles to tag zarr url asset with\n",
"asset_roles2 = [\"data\",\"zarr\",\"s3\"]"
]
},
{
"cell_type": "markdown",
"id": "b213b74f-ad17-4774-93b6-3b62be616b45",
"metadata": {
"tags": []
},
"source": [
"## Data Exploration"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "708f2cf5-79ab-49af-8067-de31d0d13ee6",
"metadata": {},
"outputs": [],
"source": [
"# open and view zarr dataset\n",
"fs2 = fsspec.filesystem('s3', anon=True, endpoint_url='https://usgs.osn.mghpcc.org/')\n",
"ds = xr.open_dataset(fs2.get_mapper(zarr_url), engine='zarr', \n",
" backend_kwargs={'consolidated':True}, chunks={})\n",
"ds"
]
},
{
"cell_type": "markdown",
"id": "996e60ba-13e4-453a-8534-e62ce747f0fa",
"metadata": {},
"source": [
"## Collection Metadata Input"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "482d204d-b5b6-40e5-ac42-55b459be1097",
"metadata": {},
"outputs": [],
"source": [
"# description of STAC collection\n",
"collection_description = ds.attrs['title']\n",
"print(f'collection description: {collection_description}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91129d65-a614-4fe4-86b6-105b1f121f55",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# license for dataset\n",
"collection_license = stac_helpers.license_picker(ds.attrs['license'])"
]
},
{
"cell_type": "markdown",
"id": "0bc7e9b3-ad62-4b10-a18e-66b7ed2d35dc",
"metadata": {},
"source": [
"## Identify x, y, t dimensions of dataset\n",
"May require user input if dimensions cannot be auto-detected."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab91268f-7200-4cb1-979a-c7d75531d2c0",
"metadata": {},
"outputs": [],
"source": [
"dims_auto_extract = ['X', 'Y', 'T']\n",
"dim_names_dict = {}\n",
"for d in dims_auto_extract:\n",
" dim_names_dict[d] = stac_helpers.extract_dim(ds, d)\n",
"print(f\"Dimension dictionary: {dim_names_dict}\")"
]
},
{
"cell_type": "markdown",
"id": "810d7480-165d-41c0-bd09-163656a14003",
"metadata": {},
"source": [
"## Get crs info\n",
"If there is no crs info that can be automatically extracted from the dataset with pyproj, you will need to manually identify the crs and create a crs object. This reference list of cartopy projections may be a helpful resource: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "239d3b00-77f9-4178-954b-ba81a2b34512",
"metadata": {},
"outputs": [],
"source": [
"crs_var = 'crs'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b03d52f3-1367-4255-a561-52ee4fc9e92d",
"metadata": {},
"outputs": [],
"source": [
"# use pyproj to automatically extract crs info\n",
"crs = pyproj.CRS.from_cf(ds[crs_var].attrs)\n",
"\n",
"# alternatively, create the appropriate cartopy projection\n",
"# crs = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian, \n",
"# central_latitude=crs_info.latitude_of_projection_origin,\n",
"# standard_parallels=crs_info.standard_parallel)"
]
},
{
"cell_type": "markdown",
"id": "282c689e-07f0-48ee-8e3d-35876e8c5094",
"metadata": {},
"source": [
"### Compare dataset crs var to generated proj4 string to make sure it looks ok"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4cee13ba-487d-483e-a013-b65685137502",
"metadata": {},
"outputs": [],
"source": [
"ds[crs_var]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7bc73db-7717-450e-9679-525f7be0c910",
"metadata": {},
"outputs": [],
"source": [
"crs.to_proj4()"
]
},
{
"cell_type": "markdown",
"id": "a8c3ed37-8564-400b-a7fb-25bd5e43d21c",
"metadata": {},
"source": [
"## Create Collection Extent"
]
},
{
"cell_type": "markdown",
"id": "69f0d837-68a5-4fed-9a14-5d75cfbb0da4",
"metadata": {},
"source": [
"### Spatial Extent\n",
"##### WARNING - make sure data type is **float** NOT **numpy.float64**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d46805e0-8e94-4ebe-aa01-d9a2d7051459",
"metadata": {},
"outputs": [],
"source": [
"# pull out lat/lon bbox for data\n",
"# coordinates must be from WGS 84 datum\n",
"# left, bottom, right, top\n",
"\n",
"# Note: try changing around the commented out lines below to get type float rather than a numpy float\n",
"#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float), ds[dim_names_dict['Y']].data.min().compute().astype(float), ds[dim_names_dict['X']].data.max().compute().astype(float), ds[dim_names_dict['Y']].data.max().compute().astype(float)]\n",
"#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['X']].data.max().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.max().compute().astype(float).tolist()]\n",
"spatial_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]\n",
"print(spatial_bounds)\n",
"print(f'\\nspatial_bounds data type: {type(spatial_bounds[0])}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f16fdb9e-7ed8-40fb-a4f1-9ecabdebc0a1",
"metadata": {},
"outputs": [],
"source": [
"XX, YY = np.meshgrid(ds[dim_names_dict['X']].data, ds[dim_names_dict['Y']].data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "074fc23c-f4d9-4427-80d3-fbf691e6d411",
"metadata": {},
"outputs": [],
"source": [
"transformer = Transformer.from_crs(crs, \"EPSG:4326\", always_xy=True)\n",
"lon, lat = transformer.transform(XX.ravel(), YY.ravel())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5345c975-9fe3-48e1-a663-0275cdf275dc",
"metadata": {},
"outputs": [],
"source": [
"print(f'lower left coordinates (WGS84): {min(lon)}, {min(lat)}')\n",
"print(f'upper right coordinates (WGS84): {max(lon)}, {max(lat)}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0a5a222-743d-403a-9411-2406374803cf",
"metadata": {},
"outputs": [],
"source": [
"# create a spatial extent object \n",
"spatial_extent = pystac.SpatialExtent(bboxes=[[min(lon).item(), min(lat).item(), max(lon).item(), max(lat).item()]])"
]
},
{
"cell_type": "markdown",
"id": "a04c8fca-1d33-43ac-9e2b-62d7be2887f7",
"metadata": {},
"source": [
"### Temporal Extent"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "41a84995-867c-4152-8c57-85e3758bbb77",
"metadata": {},
"outputs": [],
"source": [
"# pull out first and last timestamps\n",
"temporal_extent_lower = pd.Timestamp(ds[dim_names_dict['T']].data.min())\n",
"temporal_extent_upper = pd.Timestamp(ds[dim_names_dict['T']].data.max())\n",
"# if you get an error:\n",
"# Cannot convert input [] of type <class 'cftime._cftime.DatetimeNoLeap'> to Timestamp\n",
"# use the following instead:\n",
"#temporal_extent_lower = pd.Timestamp(ds.indexes[dim_names_dict['T']].to_datetimeindex().min())\n",
"#temporal_extent_upper = pd.Timestamp(ds.indexes[dim_names_dict['T']].to_datetimeindex().max())\n",
"\n",
"print(f'min: {temporal_extent_lower} \\nmax: {temporal_extent_upper}')\n",
"# create a temporal extent object\n",
"temporal_extent = pystac.TemporalExtent(intervals=[[temporal_extent_lower, temporal_extent_upper]])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b1e37c4-5348-46ad-abc9-e005b5d6c02b",
"metadata": {},
"outputs": [],
"source": [
"collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent)"
]
},
{
"cell_type": "markdown",
"id": "20b00e88-5a13-46b3-9787-d9ac2d4e7bd6",
"metadata": {},
"source": [
"## Open up STAC Catalog and create a collection"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "adf6c59d-58cd-48b1-a5fd-3bb205a3ef56",
"metadata": {},
"outputs": [],
"source": [
"# define folder location where your STAC catalog json file is\n",
"catalog_path = os.path.join('..', '..', 'catalog')\n",
"# open catalog\n",
"catalog = pystac.Catalog.from_file(os.path.join(catalog_path, 'catalog.json'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7e96811b-95ae-406a-9728-55fc429d4e1f",
"metadata": {},
"outputs": [],
"source": [
"if catalog.get_child(collection_id):\n",
" collection = catalog.get_child(collection_id)\n",
" print(\"existing collection opened\")\n",
" collection.extent=collection_extent\n",
" collection.description=collection_description\n",
" collection.license=collection_license\n",
"else:\n",
" collection = pystac.Collection(id=collection_id,\n",
" description=collection_description,\n",
" extent=collection_extent,\n",
" license=collection_license)\n",
" print(\"new collection created\")"
]
},
{
"cell_type": "markdown",
"id": "a21c76e8-cd57-4eb5-a33f-7c668a3b3205",
"metadata": {},
"source": [
"## Add zarr url asset to collection"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "094832af-d22b-4359-b0f6-cf687acce5cc",
"metadata": {},
"outputs": [],
"source": [
"asset_id = \"zarr-s3-osn\"\n",
"asset = pystac.Asset(href=zarr_url,\n",
" description=asset_description,\n",
" media_type=\"application/vnd+zarr\",\n",
" roles=asset_roles,\n",
" extra_fields = xarray_opendataset_kwargs)\n",
"collection.add_asset(asset_id, asset)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0c298d07-f234-4a08-986d-87f4a39e9ae6",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"asset_id2 = \"zarr-s3\"\n",
"asset2 = pystac.Asset(href=zarr_url2,\n",
" description=asset_description2,\n",
" media_type=\"application/vnd+zarr\",\n",
" roles=asset_roles2,\n",
" extra_fields = xarray_opendataset_kwargs2)\n",
"collection.add_asset(asset_id2, asset2)"
]
},
{
"cell_type": "markdown",
"id": "f67cd5c9-db33-45c2-bc21-480cd67354f4",
"metadata": {},
"source": [
"## Add datacube extension to collection"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc00946d-2880-491d-9b3b-3aeeb4414d6c",
"metadata": {},
"outputs": [],
"source": [
"# instantiate extention on collection\n",
"dc = DatacubeExtension.ext(collection, add_if_missing=True)"
]
},
{
"cell_type": "markdown",
"id": "8bdd77a2-7587-485e-afb7-42af3a822241",
"metadata": {},
"source": [
"### Add cube dimensions (required field for extension)"
]
},
{
"cell_type": "markdown",
"id": "e7dc357c-91ec-49ae-83e5-400f791f9792",
"metadata": {},
"source": [
"#### user review needed\n",
"#### compare crs information to the projjson to make sure it looks correct"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea452f62-5644-49b6-8a4e-7dc4f649fd1a",
"metadata": {},
"outputs": [],
"source": [
"# print out crs information in dataset\n",
"crs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b1d05ff-8e43-44a7-8343-178b112c4ad6",
"metadata": {},
"outputs": [],
"source": [
"# # the datacube extension can accept reference_system information as a numerical EPSG code, \n",
"# # WKT2 (ISO 19162) string or PROJJSON object.\n",
"# # we will use a projjson, as was done by Microsoft Planetary Computer here:\n",
"# # https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n",
"# # https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n",
"# projjson = json.loads(lcc.to_json())\n",
"\n",
"# alternatively, I think we could do this:\n",
"projjson = crs.to_json()\n",
"print(crs.to_json(pretty=True))"
]
},
{
"cell_type": "markdown",
"id": "b6b88ee9-60c2-4d91-af74-c1c56b094826",
"metadata": {},
"source": [
"#### user review needed\n",
"#### look at the spatial and temporal steps, make sure they are all successfully pulled and they look correct"
]
},
{
"cell_type": "markdown",
"id": "9e2bbcc5-e45a-4b8c-9d60-601f345e8134",
"metadata": {},
"source": [
"**Time**\n",
"\n",
"If you need to manually construct this field, here is a helpful reference: https://en.wikipedia.org/wiki/ISO_8601#Durations"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82f1e9bd-52ee-46f5-9e95-c2359d95fcf3",
"metadata": {},
"outputs": [],
"source": [
"time_step = pd.Timedelta(stac_helpers.get_step(ds, dim_names_dict['T'], time_dim=True)).isoformat()\n",
"# if time is yearly or monthly, you will need to manually construct it:\n",
"#time_step = \"P0Y1M0DT0H0M0S\"\n",
"print(f'time step: {time_step}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64be65b2-de20-447a-a9c2-bd8eca3e440e",
"metadata": {},
"outputs": [],
"source": [
"# # optional debugging for time steps:\n",
"# # check all step sizes (step_list), get number of occurences of each (step_count), and get index locations where each step size occurs in the dataset so you can manually inspect the values, if needed\n",
"# # please specify the index of the step in step_list with the step_ix field - this will return the indices in the dataset where this step size occurred\n",
"# time_step = stac_helpers.get_step(ds, dim_names_dict['T'], time_dim=True, debug=True, step_ix=4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc8dff39-2a2e-44a0-9b30-987107c2d1e2",
"metadata": {},
"outputs": [],
"source": [
"# # debugging for time steps, cont:\n",
"# # please choose one of the index locations printed above\n",
"# # this will print the time steps adjacent to it\n",
"# ix = 11\n",
"# ds.isel(time=slice(ix-1,ix+3)).time"
]
},
{
"cell_type": "markdown",
"id": "9aa6c8ff-8d9b-40a7-a281-39b502bd5a3d",
"metadata": {},
"source": [
"**X/lon**\n",
"\n",
"had to round to 13th decimal due to slight variations in rounding"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8ba7695-ca45-4db2-bd46-c465f4e37eff",
"metadata": {},
"outputs": [],
"source": [
"#x_step = stac_helpers.get_step(ds, dim_names_dict['X'])\n",
"# a common issue that causes the spatial step not to be identified comes from rounding errors in the step calculation\n",
"# use the debugging cells below to identify if this is the issue, if so, use the round_dec argument to round to a higher decimal place:\n",
"x_step = stac_helpers.get_step(ds, dim_names_dict['X'], round_dec=13)\n",
"print(f'x step: {x_step}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fac4c9f2-a952-4c7f-aa32-862957372d6f",
"metadata": {},
"outputs": [],
"source": [
"# # optional debugging for spatial steps:\n",
"# # check all step sizes (step_list), get number of occurences of each (step_count), and get index locations where each step size occurs in the dataset so you can manually inspect the values, if needed\n",
"# # please specify the index of the step in step_list with the step_ix field - this will return the indices in the dataset where this step size occurred\n",
"# x_dim=dim_names_dict['X']\n",
"# x_step = stac_helpers.get_step(ds, x_dim, debug=True, step_ix=0)\n",
"# print(f'\\nx dim name (for next cell): {x_dim}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d0b5a2d-dc58-4ad6-b890-859ce6bb08de",
"metadata": {},
"outputs": [],
"source": [
"# # debugging for spatial steps, cont:\n",
"# # please choose one of the index locations printed above\n",
"# # this will print the time steps adjacent to it\n",
"# ix = 5\n",
"# ds.isel(x=slice(ix-1,ix+3)).x"
]
},
{
"cell_type": "markdown",
"id": "21b5cca4-8bb4-498d-ae6b-6b8545fffe56",
"metadata": {},
"source": [
"**Y/lat**\n",
"\n",
"had to round to 13th decimal due to slight variations in rounding"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7405583b-ecb9-44b0-8815-048e42e55a42",
"metadata": {},
"outputs": [],
"source": [
"#y_step = stac_helpers.get_step(ds, dim_names_dict['Y'])\n",
"# a common issue that causes the spatial step not to be identified comes from rounding errors in the step calculation\n",
"# use the debugging cells below to identify if this is the issue, if so, use the round_dec argument to round to a higher decimal place:\n",
"y_step = stac_helpers.get_step(ds, dim_names_dict['Y'], round_dec=13)\n",
"print(f'y step: {y_step}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ece0fe37-b54c-4721-aa9b-33d2998d191b",
"metadata": {},
"outputs": [],
"source": [
"# # optional debugging for spatial steps:\n",
"# # check all step sizes (step_list), get number of occurences of each (step_count), and get index locations where each step size occurs in the dataset so you can manually inspect the values, if needed\n",
"# # please specify the index of the step in step_list with the step_ix field - this will return the indices in the dataset where this step size occurred\n",
"# y_dim=dim_names_dict['Y']\n",
"# y_step = stac_helpers.get_step(ds, y_dim, debug=True, step_ix=0)\n",
"# print(f'\\nx dim name (for next cell): {x_dim}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abdafb8f-5217-4b82-91b6-eec8183c9128",
"metadata": {},
"outputs": [],
"source": [
"# # debugging for spatial steps, cont:\n",
"# # please choose one of the index locations printed above\n",
"# # this will print the time steps adjacent to it\n",
"# ix = 5\n",
"# ds.isel(y=slice(ix-1,ix+3)).y"
]
},
{
"cell_type": "markdown",
"id": "00a5e041-081d-428d-ac2e-75d16de205e6",
"metadata": {},
"source": [
"#### user input needed\n",
"#### you will need to copy all of the dimensions printed below into the dict and fill in the appropriate attributes (type, axis, extent, etc.):\n",
"\n",
"Please see [datacube spec](https://github.com/stac-extensions/datacube?tab=readme-ov-file#dimension-object) for details on required fields.\n",
"\n",
"If you have a dimension like \"bnds\" or \"nv\" that is used on variables like time_bnds, lon_bnds, lat_bnds to choose either the lower or upper bound, you can use and [additional dimension object](https://github.com/stac-extensions/datacube?tab=readme-ov-file#additional-dimension-object). We recommend making the type \"count\" as Microsoft Planetary Computer did [here](https://github.com/stac-extensions/datacube/blob/9e74fa706c9bdd971e01739cf18dcc53bdd3dd4f/examples/daymet-hi-annual.json#L76).\n",
"\n",
"Here is an example:\n",
"\n",
"```\n",
"dims_dict = {\n",
" 'bnds': pystac.extensions.datacube.Dimension({'type': 'count', 'description': stac_helpers.get_long_name(ds, 'bnds'), 'extent': [ds.bnds.min().item(), ds.bnds.max().item()]})\n",
" }\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "acd45d3c-7845-47e6-9b7d-e35627a7ca9a",
"metadata": {},
"outputs": [],
"source": [
"dims = list(ds.dims)\n",
"print(dims)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a443497-67a9-4dce-a8e9-b08d31a88223",
"metadata": {},
"outputs": [],
"source": [
"# create a dictionary of datacube dimensions you would like to assign to this dataset\n",
"# dimension name should come from the dims printed in above cell\n",
"\n",
"# x, y, t dimension info is pulled out automatically using the dim dict we created above\n",
"# all other dims listed in above cell need to be manually written in\n",
"\n",
"# we do not recommend including redundant dimensions (do not include x,y if you have lon,lat)\n",
"# note that the extent of each dimension should be pulled from the dataset\n",
"dims_dict = {dim_names_dict['T']: pystac.extensions.datacube.Dimension({'type': 'temporal', 'description': stac_helpers.get_long_name(ds, dim_names_dict['T']), 'extent': [temporal_extent_lower.strftime('%Y-%m-%dT%XZ'), temporal_extent_upper.strftime('%Y-%m-%dT%XZ')], 'step':time_step}),\n",
" dim_names_dict['X']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'x', 'description': stac_helpers.get_long_name(ds, dim_names_dict['X']), 'extent': [spatial_bounds[0], spatial_bounds[2]], 'step': x_step, 'reference_system': projjson}),\n",
" dim_names_dict['Y']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': stac_helpers.get_long_name(ds, dim_names_dict['Y']), 'extent': [spatial_bounds[1], spatial_bounds[3]], 'step': y_step, 'reference_system': projjson}),\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ab85b09-eb38-404c-910c-13349d5e2234",
"metadata": {},
"outputs": [],
"source": [
"# make sure you added all the right dims\n",
"assert sorted(list(dims_dict.keys())) == sorted(dims)"
]
},
{
"cell_type": "markdown",
"id": "0f277883-a3fd-425f-966a-ca2140d0ef2f",
"metadata": {},
"source": [
"### Add cube variables (optional field for extension)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9272931-fc0b-4f2a-9546-283033e9cde8",
"metadata": {},
"outputs": [],
"source": [
"# drop metpy_crs coordinate we have added\n",
"if 'metpy_crs' in ds.coords:\n",
" ds = ds.drop_vars('metpy_crs')\n",
"\n",
"# pull list of vars from dataset\n",
"vars = list(ds.variables)\n",
"\n",
"# spec says that the keys of cube:dimensions and cube:variables should be unique together; a key like lat should not be both a dimension and a variable.\n",
"# we will drop all values in dims from vars\n",
"vars = [v for v in vars if v not in dims]\n",
"\n",
"# Microsoft Planetary Computer includes coordinates and crs as variables here:\n",
"# https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n",
"# https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n",
"# we will keep those in the var list\n",
"\n",
"# create dictionary of dataset variables and associated dimensions\n",
"vars_dict={}\n",
"for v in vars:\n",
" unit = stac_helpers.get_unit(ds, v)\n",
" var_type = stac_helpers.get_var_type(ds, v, crs_var)\n",
" long_name = stac_helpers.get_long_name(ds, v)\n",
" vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})"
]
},
{
"cell_type": "markdown",
"id": "11ad5352-884c-4472-8864-4570a96f66e5",
"metadata": {},
"source": [
"### Finalize extension"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "10141fd4-91d6-491d-878b-02653720891d",
"metadata": {},
"outputs": [],
"source": [
"# add dimesions and variables to collection extension\n",
"dc.apply(dimensions=dims_dict, variables=vars_dict)"
]
},
{
"cell_type": "markdown",
"id": "615ca168-75fb-4135-9941-0ef5fe4fd1cb",
"metadata": {},
"source": [
"## Add STAC Collection to Catalog and Save"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2120a55-3d04-4122-a93f-29afcdb8cb1b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# # helper to find items of wrong type\n",
"# d = collection.to_dict()\n",
"# print(*stac_helpers.find_paths(d))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4b75791b-6b2d-40be-b7c6-330a60888fb5",
"metadata": {},
"outputs": [],
"source": [
"if catalog.get_child(collection_id):\n",
" collection.normalize_and_save(root_href=os.path.join(catalog_path, collection_id), catalog_type=pystac.CatalogType.SELF_CONTAINED)\n",
"else:\n",
" catalog.add_child(collection)\n",
" catalog.normalize_and_save(root_href=catalog_path, catalog_type=pystac.CatalogType.SELF_CONTAINED)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6f676b5-e892-4bfb-8d73-2828addd838c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "global-global-pangeo",
"language": "python",
"name": "conda-env-global-global-pangeo-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}