Skip to content
Snippets Groups Projects
UofIMETDATA_create_collection_from_zarr.ipynb 29.5 KiB
Newer Older
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6c10e07b-1e60-4926-af1d-fa75dc78e5d4",
   "metadata": {
    "tags": []
   },
   "source": [
    "# UofIMETDATA Zarr -> Collection Workflow\n",
    "This is a workflow to build a [STAC collection](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md) from the zarr asset for the dataset named above. We use the [datacube extension](https://github.com/stac-extensions/datacube) to define the spatial and temporal dimensions of the zarr store, as well as the variables it contains.\n",
    "\n",
    "To simplify this workflow so that it can scale to many datasets, a few simplifying suggestions and assumptions are made:\n",
    "1. For USGS data, we can use the CC0-1.0 license. For all other data we can use Unlicense. Ref: https://spdx.org/licenses/\n",
    "2. I am assuming all coordinates are from the WGS84 datum if not specified."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "201e0945-de55-45ff-b095-c2af009a4e62",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pystac\n",
    "from pystac.extensions.datacube import CollectionDatacubeExtension, AssetDatacubeExtension, AdditionalDimension, DatacubeExtension\n",
    "import xarray as xr\n",
    "import cf_xarray\n",
    "import os\n",
    "import fsspec\n",
    "import cf_xarray\n",
    "import hvplot.xarray\n",
    "import pandas as pd\n",
    "import json\n",
    "import numpy as np\n",
    "import pyproj\n",
    "from pyproj import Transformer\n",
    "import cartopy.crs as ccrs\n",
    "import cfunits\n",
    "import json\n",
    "import sys\n",
    "sys.path.insert(1, '..')\n",
    "import stac_helpers"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a71f9d19-8fb3-4f47-b4c4-447bb80d8dd5",
   "metadata": {},
   "source": [
    "## Collection ID"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "15ee060d-3127-4024-a1ad-6aa0648667e1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# name for STAC collection - should match name of zarr dataset\n",
    "collection_id = 'UofIMETDATA'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "116b5837-8e85-4ae7-964a-803533ded714",
   "metadata": {},
   "source": [
    "## Asset Metadata Input"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd6fa323-132a-4794-8c80-576933f547a0",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# url to zarr store that you want to create a collection for\n",
    "zarr_url = f's3://mdmf/gdp/{collection_id}.zarr/'\n",
    "\n",
    "# define keyword arguments needed for opening the dataset with xarray\n",
    "# ref: https://github.com/stac-extensions/xarray-assets\n",
    "xarray_opendataset_kwargs = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n",
    "                          \"xarray:storage_options\": {\"anon\": True, \"client_kwargs\": {\"endpoint_url\":\"https://usgs.osn.mghpcc.org/\"}}}\n",
    "# description for zarr url asset attached to collection (zarr_url)\n",
    "asset_description = \"Open Storage Network Pod S3 API access to collection zarr group\"\n",
    "# roles to tag zarr url asset with\n",
    "asset_roles = [\"data\",\"zarr\",\"s3\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e1441cd4-e94c-4902-af46-8f1af470eb6b",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# url to zarr store that you want to create a collection for\n",
    "zarr_url2 = f's3://nhgf-development/workspace/DataConversion/{collection_id}.zarr/'\n",
    "\n",
    "# define keyword arguments needed for opening the dataset with xarray\n",
    "# ref: https://github.com/stac-extensions/xarray-assets\n",
    "xarray_opendataset_kwargs2 = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n",
    "                          \"xarray:storage_options\":{\"requester_pays\":True}}\n",
    "# description for zarr url asset attached to collection (zarr_url)\n",
    "asset_description2 = \"S3 access to collection zarr group\"\n",
    "# roles to tag zarr url asset with\n",
    "asset_roles2 = [\"data\",\"zarr\",\"s3\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b213b74f-ad17-4774-93b6-3b62be616b45",
   "metadata": {
    "tags": []
   },
   "source": [
    "## Data Exploration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "708f2cf5-79ab-49af-8067-de31d0d13ee6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# open and view zarr dataset\n",
    "fs2 = fsspec.filesystem('s3', anon=True, endpoint_url='https://usgs.osn.mghpcc.org/')\n",
    "ds = xr.open_dataset(fs2.get_mapper(zarr_url), engine='zarr', \n",
    "                             backend_kwargs={'consolidated':True}, chunks={})\n",
    "ds"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "996e60ba-13e4-453a-8534-e62ce747f0fa",
   "metadata": {},
   "source": [
    "## Collection Metadata Input"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "482d204d-b5b6-40e5-ac42-55b459be1097",
   "metadata": {},
   "outputs": [],
   "source": [
    "# description of STAC collection\n",
    "collection_description = ds.attrs['title']\n",
    "print(f'collection description: {collection_description}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "91129d65-a614-4fe4-86b6-105b1f121f55",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# license for dataset\n",
    "collection_license = stac_helpers.license_picker(ds.attrs['license'])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0bc7e9b3-ad62-4b10-a18e-66b7ed2d35dc",
   "metadata": {},
   "source": [
    "## Identify x, y, t dimensions of dataset\n",
    "May require user input if dimensions cannot be auto-detected."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab91268f-7200-4cb1-979a-c7d75531d2c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "dims_auto_extract = ['X', 'Y', 'T']\n",
    "dim_names_dict = {}\n",
    "for d in dims_auto_extract:\n",
    "    dim_names_dict[d] = stac_helpers.extract_dim(ds, d)\n",
    "print(f\"Dimension dictionary: {dim_names_dict}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "810d7480-165d-41c0-bd09-163656a14003",
   "metadata": {},
   "source": [
    "## Get crs info\n",
    "If there is no crs info that can be automatically extracted from the dataset with pyproj, you will need to manually identify the crs and create a crs object. This reference list of cartopy projections may be a helpful resource: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "239d3b00-77f9-4178-954b-ba81a2b34512",
   "metadata": {},
   "outputs": [],
   "source": [
    "crs_var = 'crs'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b03d52f3-1367-4255-a561-52ee4fc9e92d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# use pyproj to automatically extract crs info\n",
    "crs = pyproj.CRS.from_cf(ds[crs_var].attrs)\n",
    "\n",
    "# alternatively, create the appropriate cartopy projection\n",
    "# crs = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian, \n",
    "#                             central_latitude=crs_info.latitude_of_projection_origin,\n",
    "#                             standard_parallels=crs_info.standard_parallel)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "282c689e-07f0-48ee-8e3d-35876e8c5094",
   "metadata": {},
   "source": [
    "### Compare dataset crs var to generated proj4 string to make sure it looks ok"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4cee13ba-487d-483e-a013-b65685137502",
   "metadata": {},
   "outputs": [],
   "source": [
    "ds[crs_var]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7bc73db-7717-450e-9679-525f7be0c910",
   "metadata": {},
   "outputs": [],
   "source": [
    "crs.to_proj4()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a8c3ed37-8564-400b-a7fb-25bd5e43d21c",
   "metadata": {},
   "source": [
    "## Create Collection Extent"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "69f0d837-68a5-4fed-9a14-5d75cfbb0da4",
   "metadata": {},
   "source": [
    "### Spatial Extent\n",
    "##### WARNING - make sure data type is **float** NOT **numpy.float64**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d46805e0-8e94-4ebe-aa01-d9a2d7051459",
   "metadata": {},
   "outputs": [],
   "source": [
    "# pull out lat/lon bbox for data\n",
    "# coordinates must be from WGS 84 datum\n",
    "# left, bottom, right, top\n",
    "\n",
    "# Note: try changing around the commented out lines below to get type float rather than a numpy float\n",
    "#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float), ds[dim_names_dict['Y']].data.min().compute().astype(float), ds[dim_names_dict['X']].data.max().compute().astype(float), ds[dim_names_dict['Y']].data.max().compute().astype(float)]\n",
    "#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['X']].data.max().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.max().compute().astype(float).tolist()]\n",
    "spatial_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]\n",
    "print(spatial_bounds)\n",
    "print(f'\\nspatial_bounds data type: {type(spatial_bounds[0])}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f16fdb9e-7ed8-40fb-a4f1-9ecabdebc0a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "XX, YY = np.meshgrid(ds[dim_names_dict['X']].data, ds[dim_names_dict['Y']].data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "074fc23c-f4d9-4427-80d3-fbf691e6d411",
   "metadata": {},
   "outputs": [],
   "source": [
    "transformer = Transformer.from_crs(crs, \"EPSG:4326\", always_xy=True)\n",
    "lon, lat = transformer.transform(XX.ravel(), YY.ravel())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5345c975-9fe3-48e1-a663-0275cdf275dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f'lower left coordinates (WGS84): {min(lon)}, {min(lat)}')\n",
    "print(f'upper right coordinates (WGS84): {max(lon)}, {max(lat)}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0a5a222-743d-403a-9411-2406374803cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a spatial extent object \n",
    "spatial_extent = pystac.SpatialExtent(bboxes=[[min(lon).item(), min(lat).item(), max(lon).item(), max(lat).item()]])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a04c8fca-1d33-43ac-9e2b-62d7be2887f7",
   "metadata": {},
   "source": [
    "### Temporal Extent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "41a84995-867c-4152-8c57-85e3758bbb77",
   "metadata": {},
   "outputs": [],
   "source": [
    "# pull out first and last timestamps\n",
    "temporal_extent_lower = pd.Timestamp(ds[dim_names_dict['T']].data.min())\n",
    "temporal_extent_upper = pd.Timestamp(ds[dim_names_dict['T']].data.max())\n",
    "# if you get an error:\n",
    "# Cannot convert input [] of type <class 'cftime._cftime.DatetimeNoLeap'> to Timestamp\n",
    "# use the following instead:\n",
    "#temporal_extent_lower = pd.Timestamp(ds.indexes[dim_names_dict['T']].to_datetimeindex().min())\n",
    "#temporal_extent_upper = pd.Timestamp(ds.indexes[dim_names_dict['T']].to_datetimeindex().max())\n",
    "\n",
    "print(f'min: {temporal_extent_lower} \\nmax: {temporal_extent_upper}')\n",
    "# create a temporal extent object\n",
    "temporal_extent = pystac.TemporalExtent(intervals=[[temporal_extent_lower, temporal_extent_upper]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1b1e37c4-5348-46ad-abc9-e005b5d6c02b",
   "metadata": {},
   "outputs": [],
   "source": [
    "collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "20b00e88-5a13-46b3-9787-d9ac2d4e7bd6",
   "metadata": {},
   "source": [
    "## Open up STAC Catalog and create a collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "adf6c59d-58cd-48b1-a5fd-3bb205a3ef56",
   "metadata": {},
   "outputs": [],
   "source": [
    "# define folder location where your STAC catalog json file is\n",
    "catalog_path = os.path.join('..', '..', 'catalog')\n",
    "# open catalog\n",
    "catalog = pystac.Catalog.from_file(os.path.join(catalog_path, 'catalog.json'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7e96811b-95ae-406a-9728-55fc429d4e1f",
   "metadata": {},
   "outputs": [],
   "source": [
    "if catalog.get_child(collection_id):\n",
    "    collection = catalog.get_child(collection_id)\n",
    "    print(\"existing collection opened\")\n",
    "    collection.extent=collection_extent\n",
    "    collection.description=collection_description\n",
    "    collection.license=collection_license\n",
    "else:\n",
    "    collection = pystac.Collection(id=collection_id,\n",
    "                                   description=collection_description,\n",
    "                                   extent=collection_extent,\n",
    "                                   license=collection_license)\n",
    "    print(\"new collection created\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a21c76e8-cd57-4eb5-a33f-7c668a3b3205",
   "metadata": {},
   "source": [
    "## Add zarr url asset to collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "094832af-d22b-4359-b0f6-cf687acce5cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "asset_id = \"zarr-s3-osn\"\n",
    "asset = pystac.Asset(href=zarr_url,\n",
    "                     description=asset_description,\n",
    "                     media_type=\"application/vnd+zarr\",\n",
    "                     roles=asset_roles,\n",
    "                     extra_fields = xarray_opendataset_kwargs)\n",
    "collection.add_asset(asset_id, asset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0c298d07-f234-4a08-986d-87f4a39e9ae6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "asset_id2 = \"zarr-s3\"\n",
    "asset2 = pystac.Asset(href=zarr_url2,\n",
    "                     description=asset_description2,\n",
    "                     media_type=\"application/vnd+zarr\",\n",
    "                     roles=asset_roles2,\n",
    "                     extra_fields = xarray_opendataset_kwargs2)\n",
    "collection.add_asset(asset_id2, asset2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f67cd5c9-db33-45c2-bc21-480cd67354f4",
   "metadata": {},
   "source": [
    "## Add datacube extension to collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fc00946d-2880-491d-9b3b-3aeeb4414d6c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# instantiate extention on collection\n",
    "dc = DatacubeExtension.ext(collection, add_if_missing=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8bdd77a2-7587-485e-afb7-42af3a822241",
   "metadata": {},
   "source": [
    "### Add cube dimensions (required field for extension)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e7dc357c-91ec-49ae-83e5-400f791f9792",
   "metadata": {},
   "source": [
    "#### user review needed\n",
    "#### compare crs information to the projjson to make sure it looks correct"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ea452f62-5644-49b6-8a4e-7dc4f649fd1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# print out crs information in dataset\n",
    "crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1b1d05ff-8e43-44a7-8343-178b112c4ad6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # the datacube extension can accept reference_system information as a numerical EPSG code, \n",
    "# # WKT2 (ISO 19162) string or PROJJSON object.\n",
    "# # we will use a projjson, as was done by Microsoft Planetary Computer here:\n",
    "# # https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n",
    "# # https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n",
    "# projjson = json.loads(lcc.to_json())\n",
    "\n",
    "# alternatively, I think we could do this:\n",
    "projjson = crs.to_json()\n",
    "print(crs.to_json(pretty=True))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b6b88ee9-60c2-4d91-af74-c1c56b094826",
   "metadata": {},
   "source": [
    "#### user review needed\n",
    "#### look at the spatial and temporal steps, make sure they are all successfully pulled and they look correct"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9e2bbcc5-e45a-4b8c-9d60-601f345e8134",
   "metadata": {},
   "source": [
    "**Time**\n",
    "\n",
    "If you need to manually construct this field, here is a helpful reference: https://en.wikipedia.org/wiki/ISO_8601#Durations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "82f1e9bd-52ee-46f5-9e95-c2359d95fcf3",
   "metadata": {},
   "outputs": [],
   "source": [
    "time_step = pd.Timedelta(stac_helpers.get_step(ds, dim_names_dict['T'], time_dim=True)).isoformat()\n",
    "# if time is yearly or monthly, you will need to manually construct it:\n",
    "#time_step = \"P0Y1M0DT0H0M0S\"\n",
    "print(f'time step: {time_step}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "64be65b2-de20-447a-a9c2-bd8eca3e440e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # optional debugging for time steps:\n",
    "# # check all step sizes (step_list), get number of occurences of each (step_count), and get index locations where each step size occurs in the dataset so you can manually inspect the values, if needed\n",
    "# # please specify the index of the step in step_list with the step_ix field - this will return the indices in the dataset where this step size occurred\n",
    "# time_step = stac_helpers.get_step(ds, dim_names_dict['T'], time_dim=True, debug=True, step_ix=4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bc8dff39-2a2e-44a0-9b30-987107c2d1e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for time steps, cont:\n",
    "# # please choose one of the index locations printed above\n",
    "# # this will print the time steps adjacent to it\n",
    "# ix = 11\n",
    "# ds.isel(time=slice(ix-1,ix+3)).time"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9aa6c8ff-8d9b-40a7-a281-39b502bd5a3d",
   "metadata": {},
   "source": [
    "**X/lon**\n",
    "\n",
    "had to round to 13th decimal due to slight variations in rounding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a8ba7695-ca45-4db2-bd46-c465f4e37eff",
   "metadata": {},
   "outputs": [],
   "source": [
    "#x_step = stac_helpers.get_step(ds, dim_names_dict['X'])\n",
    "# a common issue that causes the spatial step not to be identified comes from rounding errors in the step calculation\n",
    "# use the debugging cells below to identify if this is the issue, if so, use the round_dec argument to round to a higher decimal place:\n",
    "x_step = stac_helpers.get_step(ds, dim_names_dict['X'], round_dec=13)\n",
    "print(f'x step: {x_step}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fac4c9f2-a952-4c7f-aa32-862957372d6f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # optional debugging for spatial steps:\n",
    "# # check all step sizes (step_list), get number of occurences of each (step_count), and get index locations where each step size occurs in the dataset so you can manually inspect the values, if needed\n",
    "# # please specify the index of the step in step_list with the step_ix field - this will return the indices in the dataset where this step size occurred\n",
    "# x_dim=dim_names_dict['X']\n",
    "# x_step = stac_helpers.get_step(ds, x_dim, debug=True, step_ix=0)\n",
    "# print(f'\\nx dim name (for next cell): {x_dim}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8d0b5a2d-dc58-4ad6-b890-859ce6bb08de",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for spatial steps, cont:\n",
    "# # please choose one of the index locations printed above\n",
    "# # this will print the time steps adjacent to it\n",
    "# ix = 5\n",
    "# ds.isel(x=slice(ix-1,ix+3)).x"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "21b5cca4-8bb4-498d-ae6b-6b8545fffe56",
   "metadata": {},
   "source": [
    "**Y/lat**\n",
    "\n",
    "had to round to 13th decimal due to slight variations in rounding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7405583b-ecb9-44b0-8815-048e42e55a42",
   "metadata": {},
   "outputs": [],
   "source": [
    "#y_step = stac_helpers.get_step(ds, dim_names_dict['Y'])\n",
    "# a common issue that causes the spatial step not to be identified comes from rounding errors in the step calculation\n",
    "# use the debugging cells below to identify if this is the issue, if so, use the round_dec argument to round to a higher decimal place:\n",
    "y_step = stac_helpers.get_step(ds, dim_names_dict['Y'], round_dec=13)\n",
    "print(f'y step: {y_step}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ece0fe37-b54c-4721-aa9b-33d2998d191b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # optional debugging for spatial steps:\n",
    "# # check all step sizes (step_list), get number of occurences of each (step_count), and get index locations where each step size occurs in the dataset so you can manually inspect the values, if needed\n",
    "# # please specify the index of the step in step_list with the step_ix field - this will return the indices in the dataset where this step size occurred\n",
    "# y_dim=dim_names_dict['Y']\n",
    "# y_step = stac_helpers.get_step(ds, y_dim, debug=True, step_ix=0)\n",
    "# print(f'\\nx dim name (for next cell): {x_dim}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "abdafb8f-5217-4b82-91b6-eec8183c9128",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for spatial steps, cont:\n",
    "# # please choose one of the index locations printed above\n",
    "# # this will print the time steps adjacent to it\n",
    "# ix = 5\n",
    "# ds.isel(y=slice(ix-1,ix+3)).y"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "00a5e041-081d-428d-ac2e-75d16de205e6",
   "metadata": {},
   "source": [
    "#### user input needed\n",
    "#### you will need to copy all of the dimensions printed below into the dict and fill in the appropriate attributes (type, axis, extent, etc.):\n",
    "\n",
    "Please see [datacube spec](https://github.com/stac-extensions/datacube?tab=readme-ov-file#dimension-object) for details on required fields.\n",
    "\n",
    "If you have a dimension like \"bnds\" or \"nv\" that is used on variables like time_bnds, lon_bnds, lat_bnds to choose either the lower or upper bound, you can use and [additional dimension object](https://github.com/stac-extensions/datacube?tab=readme-ov-file#additional-dimension-object). We recommend making the type \"count\" as Microsoft Planetary Computer did [here](https://github.com/stac-extensions/datacube/blob/9e74fa706c9bdd971e01739cf18dcc53bdd3dd4f/examples/daymet-hi-annual.json#L76).\n",
    "\n",
    "Here is an example:\n",
    "\n",
    "```\n",
    "dims_dict = {\n",
    "            'bnds': pystac.extensions.datacube.Dimension({'type': 'count', 'description': stac_helpers.get_long_name(ds, 'bnds'), 'extent': [ds.bnds.min().item(), ds.bnds.max().item()]})\n",
    "            }\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "acd45d3c-7845-47e6-9b7d-e35627a7ca9a",
   "metadata": {},
   "outputs": [],
   "source": [
    "dims = list(ds.dims)\n",
    "print(dims)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5a443497-67a9-4dce-a8e9-b08d31a88223",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a dictionary of datacube dimensions you would like to assign to this dataset\n",
    "# dimension name should come from the dims printed in above cell\n",
    "\n",
    "# x, y, t dimension info is pulled out automatically using the dim dict we created above\n",
    "# all other dims listed in above cell need to be manually written in\n",
    "\n",
    "# we do not recommend including redundant dimensions (do not include x,y if you have lon,lat)\n",
    "# note that the extent of each dimension should be pulled from the dataset\n",
    "dims_dict = {dim_names_dict['T']: pystac.extensions.datacube.Dimension({'type': 'temporal', 'description': stac_helpers.get_long_name(ds, dim_names_dict['T']), 'extent': [temporal_extent_lower.strftime('%Y-%m-%dT%XZ'), temporal_extent_upper.strftime('%Y-%m-%dT%XZ')], 'step':time_step}),\n",
    "             dim_names_dict['X']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'x', 'description': stac_helpers.get_long_name(ds, dim_names_dict['X']), 'extent': [spatial_bounds[0], spatial_bounds[2]], 'step': x_step, 'reference_system': projjson}),\n",
    "             dim_names_dict['Y']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': stac_helpers.get_long_name(ds, dim_names_dict['Y']), 'extent': [spatial_bounds[1], spatial_bounds[3]], 'step': y_step, 'reference_system': projjson}),\n",
    "            }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8ab85b09-eb38-404c-910c-13349d5e2234",
   "metadata": {},
   "outputs": [],
   "source": [
    "# make sure you added all the right dims\n",
    "assert sorted(list(dims_dict.keys())) == sorted(dims)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f277883-a3fd-425f-966a-ca2140d0ef2f",
   "metadata": {},
   "source": [
    "### Add cube variables (optional field for extension)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9272931-fc0b-4f2a-9546-283033e9cde8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# drop metpy_crs coordinate we have added\n",
    "if 'metpy_crs' in ds.coords:\n",
    "    ds = ds.drop_vars('metpy_crs')\n",
    "\n",
    "# pull list of vars from dataset\n",
    "vars = list(ds.variables)\n",
    "\n",
    "# spec says that the keys of cube:dimensions and cube:variables should be unique together; a key like lat should not be both a dimension and a variable.\n",
    "# we will drop all values in dims from vars\n",
    "vars = [v for v in vars if v not in dims]\n",
    "\n",
    "# Microsoft Planetary Computer includes coordinates and crs as variables here:\n",
    "# https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n",
    "# https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n",
    "# we will keep those in the var list\n",
    "\n",
    "# create dictionary of dataset variables and associated dimensions\n",
    "vars_dict={}\n",
    "for v in vars:\n",
    "    unit = stac_helpers.get_unit(ds, v)\n",
    "    var_type = stac_helpers.get_var_type(ds, v, crs_var)\n",
    "    long_name = stac_helpers.get_long_name(ds, v)\n",
    "    vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "11ad5352-884c-4472-8864-4570a96f66e5",
   "metadata": {},
   "source": [
    "### Finalize extension"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "10141fd4-91d6-491d-878b-02653720891d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# add dimesions and variables to collection extension\n",
    "dc.apply(dimensions=dims_dict, variables=vars_dict)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "615ca168-75fb-4135-9941-0ef5fe4fd1cb",
   "metadata": {},
   "source": [
    "## Add STAC Collection to Catalog and Save"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e2120a55-3d04-4122-a93f-29afcdb8cb1b",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# # helper to find items of wrong type\n",
    "# d = collection.to_dict()\n",
    "# print(*stac_helpers.find_paths(d))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4b75791b-6b2d-40be-b7c6-330a60888fb5",
   "metadata": {},
   "outputs": [],
   "source": [
    "if catalog.get_child(collection_id):\n",
    "    collection.normalize_and_save(root_href=os.path.join(catalog_path, collection_id), catalog_type=pystac.CatalogType.SELF_CONTAINED)\n",
    "else:\n",
    "    catalog.add_child(collection)\n",
    "    catalog.normalize_and_save(root_href=catalog_path, catalog_type=pystac.CatalogType.SELF_CONTAINED)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6f676b5-e892-4bfb-8d73-2828addd838c",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "global-global-pangeo",
   "language": "python",
   "name": "conda-env-global-global-pangeo-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}