Skip to content
Snippets Groups Projects
create_collection_from_zarr_conus404-daily.ipynb 29.7 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6c10e07b-1e60-4926-af1d-fa75dc78e5d4",
   "metadata": {
    "tags": []
   },
   "source": [
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "# CONUS404 Daily Zarr -> Collection Workflow\n",
    "This is a workflow to build a [STAC collection](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md) from the zarr asset for the dataset named above. We use the [datacube extension](https://github.com/stac-extensions/datacube) to define the spatial and temporal dimensions of the zarr store, as well as the variables it contains.\n",
    "\n",
    "To simplify this workflow so that it can scale to many datasets, a few simplifying suggestions and assumptions are made:\n",
    "1. For USGS data, we can use the CC0-1.0 license. For all other data we can use Unlicense. Ref: https://spdx.org/licenses/\n",
    "2. I am assuming all coordinates are from the WGS84 datum if not specified."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "201e0945-de55-45ff-b095-c2af009a4e62",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pystac\n",
    "from pystac.extensions.datacube import CollectionDatacubeExtension, AssetDatacubeExtension, AdditionalDimension, DatacubeExtension\n",
    "import xarray as xr\n",
    "import cf_xarray\n",
    "import os\n",
    "import fsspec\n",
    "import cf_xarray\n",
    "import hvplot.xarray\n",
    "import pandas as pd\n",
    "import json\n",
    "import pyproj\n",
    "import cartopy.crs as ccrs\n",
    "import cfunits\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "import json\n",
    "import sys\n",
    "sys.path.insert(1, '..')\n",
    "import stac_helpers"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "20b00e88-5a13-46b3-9787-d9ac2d4e7bd6",
   "metadata": {},
   "source": [
    "## Open up NHGF STAC Catalog"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "adf6c59d-58cd-48b1-a5fd-3bb205a3ef56",
   "metadata": {},
   "outputs": [],
   "source": [
    "# define folder location where your STAC catalog json file is\n",
    "catalog_path = os.path.join('..', '..', 'catalog')\n",
    "# open catalog\n",
    "catalog = pystac.Catalog.from_file(os.path.join(catalog_path, 'catalog.json'))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "996e60ba-13e4-453a-8534-e62ce747f0fa",
   "metadata": {},
   "source": [
    "## Collection Metadata Input"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "482d204d-b5b6-40e5-ac42-55b459be1097",
   "metadata": {},
   "outputs": [],
   "source": [
    "# name for STAC collection\n",
    "collection_id = 'conus404-daily'\n",
    "# description of STAC collection\n",
    "collection_description = 'CONUS404 40 years of daily values for subset of model output variables derived from hourly values on cloud storage'\n",
    "# license for dataset\n",
    "collection_license = 'CC0-1.0'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "116b5837-8e85-4ae7-964a-803533ded714",
   "metadata": {},
   "source": [
    "## Asset Metadata Input"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd6fa323-132a-4794-8c80-576933f547a0",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# url to zarr store that you want to create a collection for\n",
    "zarr_url = 's3://hytest/conus404/conus404_daily.zarr/'\n",
    "\n",
    "# define keyword arguments needed for opening the dataset with xarray\n",
    "# ref: https://github.com/stac-extensions/xarray-assets\n",
    "xarray_opendataset_kwargs = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n",
    "                          \"xarray:storage_options\": {\"anon\": True, \"client_kwargs\": {\"endpoint_url\":\"https://usgs.osn.mghpcc.org/\"}}}\n",
    "# description for zarr url asset attached to collection (zarr_url)\n",
    "asset_description = \"Open Storage Network Pod S3 API access to collection zarr group\"\n",
    "# roles to tag zarr url asset with\n",
    "asset_roles = [\"data\",\"zarr\",\"s3\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e1441cd4-e94c-4902-af46-8f1af470eb6b",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# url to zarr store that you want to create a collection for\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "zarr_url2 = 's3://nhgf-development/conus404/conus404_daily_202210.zarr/'\n",
    "# define keyword arguments needed for opening the dataset with xarray\n",
    "# ref: https://github.com/stac-extensions/xarray-assets\n",
    "xarray_opendataset_kwargs2 = {\"xarray:open_kwargs\":{\"chunks\":{},\"engine\":\"zarr\",\"consolidated\":True},\n",
    "                          \"xarray:storage_options\":{\"requester_pays\":True}}\n",
    "# description for zarr url asset attached to collection (zarr_url)\n",
    "asset_description2 = \"S3 access to collection zarr group\"\n",
    "# roles to tag zarr url asset with\n",
    "asset_roles2 = [\"data\",\"zarr\",\"s3\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b213b74f-ad17-4774-93b6-3b62be616b45",
   "source": [
    "## Data Exploration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "708f2cf5-79ab-49af-8067-de31d0d13ee6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# open and view zarr dataset\n",
    "fs2 = fsspec.filesystem('s3', anon=True, endpoint_url='https://usgs.osn.mghpcc.org/')\n",
    "ds = xr.open_dataset(fs2.get_mapper(zarr_url), engine='zarr', \n",
    "                             backend_kwargs={'consolidated':True}, chunks={})\n",
    "ds"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0bc7e9b3-ad62-4b10-a18e-66b7ed2d35dc",
   "metadata": {},
   "source": [
    "## Identify x, y, t dimensions of dataset\n",
    "May require user input if dimensions cannot be auto-detected."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab91268f-7200-4cb1-979a-c7d75531d2c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "dims_auto_extract = ['X', 'Y', 'T']\n",
    "for d in dims_auto_extract:\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "    dim_names_dict[d] = stac_helpers.extract_dim(ds, d)\n",
    "print(f\"Dimension dictionary: {dim_names_dict}\")"
  {
   "cell_type": "markdown",
   "id": "810d7480-165d-41c0-bd09-163656a14003",
   "metadata": {},
   "source": [
    "## Get crs info\n",
    "If there is no crs info that can be automatically extracted from the dataset with pyproj, you will need to manually identify the crs and create a crs object. This reference list of cartopy projections may be a helpful resource: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html"
   "execution_count": null,
   "id": "b03d52f3-1367-4255-a561-52ee4fc9e92d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# use pyproj to automatically extract crs info\n",
    "crs = pyproj.CRS.from_cf(ds.crs.attrs)\n",
    "\n",
    "# alternatively, create the appropriate cartopy projection\n",
    "# crs = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian, \n",
    "#                             central_latitude=crs_info.latitude_of_projection_origin,\n",
    "#                             standard_parallels=crs_info.standard_parallel)"
  {
   "cell_type": "markdown",
   "id": "282c689e-07f0-48ee-8e3d-35876e8c5094",
   "metadata": {},
   "source": [
    "### Compare dataset crs var to generated proj4 string to make sure it looks ok"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4cee13ba-487d-483e-a013-b65685137502",
   "metadata": {},
   "outputs": [],
   "source": [
    "ds.crs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7bc73db-7717-450e-9679-525f7be0c910",
   "metadata": {},
   "outputs": [],
   "source": [
    "crs.to_proj4()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8fbfecfb-9886-4d06-a34c-6471cb0a6053",
   "metadata": {},
   "source": [
    "## Plot a map"
   ]
  },
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
  {
   "cell_type": "code",
   "execution_count": null,
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
   "id": "4eb4d027-4266-4a0b-8f16-bacfbef06242",
   "metadata": {},
   "outputs": [],
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
   "source": [
    "# plot a map of a single variable\n",
    "var_to_plot = 'SNOW'\n",
    "da = ds[var_to_plot].sel(time='2014-03-01 00:00').load()\n",
    "da.hvplot.quadmesh(x='lon', y='lat', rasterize=True,\n",
    "                             geo=True, tiles='OSM', alpha=0.7, cmap='turbo')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5e057a6c-06fb-4406-823b-e81c58e520e4",
   "metadata": {},
   "source": [
    "## Plot a time series at a specific point\n",
    "This can help you verify a variable's values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c7de2681-88c2-4597-857c-8f169c596f8b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# enter lat, lon of point you want to plot time series for\n",
    "lat,lon = 39.978322,-105.2772194\n",
    "time_start = '2013-01-01 00:00'\n",
    "time_end = '2013-12-31 00:00'\n",
    "transformer = Transformer.from_crs(crs, \"EPSG:4326\", always_xy=True)\n",
    "x, y = transformer.transform(lon, lat)\n",
    "da = ds[var_to_plot].sel(x=x, y=y, method='nearest').sel(time=slice(time_start,time_end)).load()\n",
    "da.hvplot(x=dim_names_dict['T'], grid=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a8c3ed37-8564-400b-a7fb-25bd5e43d21c",
   "metadata": {},
   "source": [
    "## Create Collection Extent"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "69f0d837-68a5-4fed-9a14-5d75cfbb0da4",
   "metadata": {},
   "source": [
    "### Spatial Extent\n",
    "##### WARNING - make sure data type is **float** NOT **numpy.float64**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d46805e0-8e94-4ebe-aa01-d9a2d7051459",
   "metadata": {},
   "outputs": [],
   "source": [
    "# pull out lat/lon bbox for data\n",
    "# left, bottom, right, top\n",
    "# Note: try changing around the commented out lines below to get type float rather than a numpy float\n",
    "#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float), ds[dim_names_dict['Y']].data.min().compute().astype(float), ds[dim_names_dict['X']].data.max().compute().astype(float), ds[dim_names_dict['Y']].data.max().compute().astype(float)]\n",
    "#spatial_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['X']].data.max().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.max().compute().astype(float).tolist()]\n",
    "spatial_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]\n",
    "print(spatial_bounds)\n",
    "print(f'\\nspatial_bounds data type: {type(spatial_bounds[0])}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f16fdb9e-7ed8-40fb-a4f1-9ecabdebc0a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "XX, YY = np.meshgrid(ds[dim_names_dict['X']].data, ds[dim_names_dict['Y']].data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "074fc23c-f4d9-4427-80d3-fbf691e6d411",
   "metadata": {},
   "outputs": [],
   "source": [
    "transformer = Transformer.from_crs(crs, \"EPSG:4326\", always_xy=True)\n",
    "lon, lat = transformer.transform(XX.ravel(), YY.ravel())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5345c975-9fe3-48e1-a663-0275cdf275dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f'lower left coordinates (WGS84): {min(lon)}, {min(lat)}')\n",
    "print(f'upper right coordinates (WGS84): {max(lon)}, {max(lat)}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0a5a222-743d-403a-9411-2406374803cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a spatial extent object \n",
    "spatial_extent = pystac.SpatialExtent(bboxes=[[min(lon).item(), min(lat).item(), max(lon).item(), max(lat).item()]])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a04c8fca-1d33-43ac-9e2b-62d7be2887f7",
   "metadata": {},
   "source": [
    "### Temporal Extent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "41a84995-867c-4152-8c57-85e3758bbb77",
   "metadata": {},
   "outputs": [],
   "source": [
    "# pull out first and last timestamps\n",
    "temporal_extent_lower = pd.Timestamp(ds[dim_names_dict['T']].data.min())\n",
    "temporal_extent_upper = pd.Timestamp(ds[dim_names_dict['T']].data.max())\n",
    "# if you get an error:\n",
    "# Cannot convert input [] of type <class 'cftime._cftime.DatetimeNoLeap'> to Timestamp\n",
    "# use the following instead:\n",
    "#temporal_extent_lower = pd.Timestamp(ds.indexes[dim_names_dict['T']].to_datetimeindex().min())\n",
    "#temporal_extent_upper = pd.Timestamp(ds.indexes[dim_names_dict['T']].to_datetimeindex().max())\n",
    "\n",
    "print(f'min: {temporal_extent_lower} \\nmax: {temporal_extent_upper}')\n",
    "# create a temporal extent object\n",
    "temporal_extent = pystac.TemporalExtent(intervals=[[temporal_extent_lower, temporal_extent_upper]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1b1e37c4-5348-46ad-abc9-e005b5d6c02b",
   "metadata": {},
   "outputs": [],
   "source": [
    "collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cfb71202-03df-45b5-ac2f-0dc2ee1ab780",
   "metadata": {},
   "source": [
    "## Create pystac collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7e96811b-95ae-406a-9728-55fc429d4e1f",
   "metadata": {},
   "outputs": [],
    "if catalog.get_child(collection_id):\n",
    "    collection = catalog.get_child(collection_id)\n",
    "    print(\"existing collection opened\")\n",
    "    collection.extent=collection_extent\n",
    "    collection.description=collection_description\n",
    "    collection.license=collection_license\n",
    "else:\n",
    "    collection = pystac.Collection(id=collection_id,\n",
    "                                   description=collection_description,\n",
    "                                   extent=collection_extent,\n",
    "                                   license=collection_license)\n",
    "    print(\"new collection created\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a21c76e8-cd57-4eb5-a33f-7c668a3b3205",
   "metadata": {},
   "source": [
    "## Add zarr url asset to collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "094832af-d22b-4359-b0f6-cf687acce5cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "asset_id = \"zarr-s3-osn\"\n",
    "asset = pystac.Asset(href=zarr_url,\n",
    "                     description=asset_description,\n",
    "                     media_type=\"application/vnd+zarr\",\n",
    "                     roles=asset_roles,\n",
    "                     extra_fields = xarray_opendataset_kwargs)\n",
    "collection.add_asset(asset_id, asset)"
   "execution_count": null,
   "id": "0c298d07-f234-4a08-986d-87f4a39e9ae6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "asset_id2 = \"zarr-s3\"\n",
    "asset2 = pystac.Asset(href=zarr_url2,\n",
    "                     description=asset_description2,\n",
    "                     media_type=\"application/vnd+zarr\",\n",
    "                     roles=asset_roles2,\n",
    "                     extra_fields = xarray_opendataset_kwargs2)\n",
    "collection.add_asset(asset_id2, asset2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f67cd5c9-db33-45c2-bc21-480cd67354f4",
   "metadata": {},
   "source": [
    "## Add datacube extension to collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fc00946d-2880-491d-9b3b-3aeeb4414d6c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# instantiate extention on collection\n",
    "dc = DatacubeExtension.ext(collection, add_if_missing=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8bdd77a2-7587-485e-afb7-42af3a822241",
   "metadata": {},
   "source": [
    "### Add cube dimensions (required field for extension)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "120a4914-3302-44a5-a282-0308ac84f040",
   "metadata": {},
   "outputs": [],
    "# list out dataset dimensions\n",
    "# When writing data to Zarr, Xarray sets this attribute on all variables based on the variable dimensions. When reading a Zarr group, Xarray looks for this attribute on all arrays,\n",
    "# raising an error if it can’t be found.\n",
    "dims = list(ds.dims)\n",
    "print(dims)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "00a18a29-fb9a-4b56-8009-493122997b16",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get x, y bounds for extent of those dimensions (required)\n",
    "xy_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]\n",
  {
   "cell_type": "markdown",
   "id": "e7dc357c-91ec-49ae-83e5-400f791f9792",
   "metadata": {},
   "source": [
    "#### user review needed - compare the dataset crs information to the projjson to make sure it looks correct"
   ]
  },
  {
   "cell_type": "code",
   "id": "ea452f62-5644-49b6-8a4e-7dc4f649fd1a",
   "metadata": {},
    "# print out crs information in dataset\n",
   ]
  },
  {
   "cell_type": "code",
   "id": "1b1d05ff-8e43-44a7-8343-178b112c4ad6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # the datacube extension can accept reference_system information as a numerical EPSG code, \n",
    "# # WKT2 (ISO 19162) string or PROJJSON object.\n",
    "# # we will use a projjson, as was done by Microsoft Planetary Computer here:\n",
    "# # https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n",
    "# # https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n",
    "# projjson = json.loads(lcc.to_json())\n",
    "projjson = crs.to_json()\n",
    "print(crs.to_json(pretty=True))"
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b6b88ee9-60c2-4d91-af74-c1c56b094826",
   "metadata": {},
   "source": [
    "#### user review needed - looks at the steps pulled out and make sure they make sense"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9e2bbcc5-e45a-4b8c-9d60-601f345e8134",
   "metadata": {},
   "source": [
    "**Time**"
   ]
  },
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "82f1e9bd-52ee-46f5-9e95-c2359d95fcf3",
   "metadata": {},
   "outputs": [],
   "source": [
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "time_step = pd.Timedelta(stac_helpers.get_step(ds, dim_names_dict['T'], time_dim=True)).isoformat()\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "print(f'time step: {time_step}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "64be65b2-de20-447a-a9c2-bd8eca3e440e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for time steps: get all step values and locations\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "# time_step = stac_helpers.get_step(ds, dim_names_dict['T'], time_dim=True, debug=True, step_ix=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bc8dff39-2a2e-44a0-9b30-987107c2d1e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for time steps, cont:\n",
    "# # please choose one of the index locations printed above\n",
    "# # this will print the time steps adjacent to it\n",
    "# ix = 3343\n",
    "# ds.isel(time=slice(ix-1,ix+3)).time"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9aa6c8ff-8d9b-40a7-a281-39b502bd5a3d",
   "metadata": {},
   "source": [
    "**X/lon**"
   ]
  },
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a8ba7695-ca45-4db2-bd46-c465f4e37eff",
   "metadata": {},
   "outputs": [],
   "source": [
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "x_step = stac_helpers.get_step(ds, dim_names_dict['X'])\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "print(f'x step: {x_step}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fac4c9f2-a952-4c7f-aa32-862957372d6f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for spatial steps: get all step values and locations\n",
    "# x_dim=dim_names_dict['X']\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "# x_step = stac_helpers.get_step(ds, x_dim, debug=True, step_ix=1)\n",
    "# print(f'\\nx dim name (for next cell): {x_dim}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8d0b5a2d-dc58-4ad6-b890-859ce6bb08de",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for spatial steps, cont:\n",
    "# # please choose one of the index locations printed above\n",
    "# # this will print the time steps adjacent to it\n",
    "# ix = 5\n",
    "# ds.isel(x=slice(ix-1,ix+3)).x"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "21b5cca4-8bb4-498d-ae6b-6b8545fffe56",
   "metadata": {},
   "source": [
    "**Y/lat**"
   ]
  },
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7405583b-ecb9-44b0-8815-048e42e55a42",
   "metadata": {},
   "outputs": [],
   "source": [
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "y_step = stac_helpers.get_step(ds, dim_names_dict['Y'])\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "print(f'y step: {y_step}')"
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ece0fe37-b54c-4721-aa9b-33d2998d191b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for spatial steps: get all step values and locations\n",
    "# y_dim=dim_names_dict['Y']\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "# y_step = stac_helpers.get_step(ds, y_dim, debug=True, step_ix=1)\n",
    "# print(f'\\nx dim name (for next cell): {x_dim}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "abdafb8f-5217-4b82-91b6-eec8183c9128",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # debugging for spatial steps, cont:\n",
    "# # please choose one of the index locations printed above\n",
    "# # this will print the time steps adjacent to it\n",
    "# ix = 5\n",
    "# ds.isel(y=slice(ix-1,ix+3)).y"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "00a5e041-081d-428d-ac2e-75d16de205e6",
   "metadata": {},
   "source": [
    "#### user input needed - you will need to copy all of the dimensions printed below into the dict and fill in the appropriate attributes(type, axis, extent, etc.):\n",
    "\n",
    "Please see [datacube spec](https://github.com/stac-extensions/datacube?tab=readme-ov-file#dimension-object) for details on required fields.\n",
    "\n",
    "If you have a dimension like \"bnds\" that is used on variables like time_bnds, lon_bnds, lat_bnds to choose either the lower or upper bound, you can use and [additional dimension object](https://github.com/stac-extensions/datacube?tab=readme-ov-file#additional-dimension-object). We recommend making the type \"count\" as Microsoft Planetary Computer did [here](https://github.com/stac-extensions/datacube/blob/9e74fa706c9bdd971e01739cf18dcc53bdd3dd4f/examples/daymet-hi-annual.json#L76)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "acd45d3c-7845-47e6-9b7d-e35627a7ca9a",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(dims)"
   ]
  },
  {
   "cell_type": "code",
   "id": "5a443497-67a9-4dce-a8e9-b08d31a88223",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a dictionary of datacube dimensions you would like to assign to this dataset\n",
    "# dimension name should come from the dims printed in above cell\n",
    "\n",
    "# x, y, t dimension info is pulled out automatically using the dim dict we created above\n",
    "# all other dims listed in above cell need to be manually written in\n",
    "\n",
    "# we do not recommend including redundant dimensions (do not include x,y if you have lon,lat)\n",
    "# note that the extent of each dimension should be pulled from the dataset\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "dims_dict = {dim_names_dict['T']: pystac.extensions.datacube.Dimension({'type': 'temporal', 'description': stac_helpers.get_long_name(ds, dim_names_dict['T']), 'extent': [temporal_extent_lower.strftime('%Y-%m-%dT%XZ'), temporal_extent_upper.strftime('%Y-%m-%dT%XZ')], 'step':time_step}),\n",
    "             dim_names_dict['X']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'x', 'description': stac_helpers.get_long_name(ds, dim_names_dict['X']), 'extent': [xy_bounds[0], xy_bounds[2]], 'step': x_step, 'reference_system': projjson}),\n",
    "             dim_names_dict['Y']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': stac_helpers.get_long_name(ds, dim_names_dict['Y']), 'extent': [xy_bounds[1], xy_bounds[3]], 'step': y_step, 'reference_system': projjson}),\n",
    "             'bottom_top_stag': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'z', 'description': stac_helpers.get_long_name(ds, 'bottom_top_stag')}),\n",
    "             'bottom_top': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'z', 'description': stac_helpers.get_long_name(ds, 'bottom_top')}),\n",
    "             'soil_layers_stag': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'z', 'description': stac_helpers.get_long_name(ds, 'soil_layers_stag')}),\n",
    "             'x_stag': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'x', 'description': stac_helpers.get_long_name(ds, 'x_stag')}),\n",
    "             'y_stag': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': stac_helpers.get_long_name(ds, 'y_stag')}),\n",
    "             'snow_layers_stag': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'z', 'description': stac_helpers.get_long_name(ds, 'snow_layers_stag')}),\n",
    "             'snso_layers_stag': pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'z', 'description': stac_helpers.get_long_name(ds, 'snso_layers_stag')}),\n",
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f277883-a3fd-425f-966a-ca2140d0ef2f",
   "metadata": {},
   "source": [
    "### Add cube variables (optional field for extension)"
   ]
  },
  {
   "cell_type": "code",
   "id": "e9272931-fc0b-4f2a-9546-283033e9cde8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# drop metpy_crs coordinate we have added\n",
    "if 'metpy_crs' in ds.coords:\n",
    "    ds = ds.drop_vars('metpy_crs')\n",
    "# pull list of vars from dataset\n",
    "vars = list(ds.variables)\n",
    "\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "# spec says that the keys of cube:dimensions and cube:variables should be unique together; a key like lat should not be both a dimension and a variable.\n",
    "# we will drop all values in dims from vars\n",
    "vars = [v for v in vars if v not in dims]\n",
    "\n",
    "# Microsoft Planetary Computer includes coordinates and crs as variables here:\n",
    "# https://planetarycomputer.microsoft.com/dataset/daymet-annual-na\n",
    "# https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na\n",
    "# we will keep those in the var list\n",
    "\n",
    "# create dictionary of dataset variables and associated dimensions\n",
    "vars_dict={}\n",
    "for v in vars:\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "    unit = stac_helpers.get_unit(ds, v)\n",
    "    var_type = stac_helpers.get_var_type(ds, v)\n",
    "    long_name = stac_helpers.get_long_name(ds, v)\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "    vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "11ad5352-884c-4472-8864-4570a96f66e5",
   "metadata": {},
   "source": [
    "### Finalize extension"
   ]
  },
  {
   "cell_type": "code",
   "id": "10141fd4-91d6-491d-878b-02653720891d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# add dimesions and variables to collection extension\n",
    "dc.apply(dimensions=dims_dict, variables=vars_dict)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "615ca168-75fb-4135-9941-0ef5fe4fd1cb",
   "metadata": {},
   "source": [
    "## Add STAC Collection to Catalog and Save"
   ]
  },
  {
   "cell_type": "code",
   "id": "e2120a55-3d04-4122-a93f-29afcdb8cb1b",
   "metadata": {
    "tags": []
   },
   "source": [
    "# # helper to find items of wrong type\n",
    "# d = collection.to_dict()\n",
Snyder, Amelia Marie's avatar
Snyder, Amelia Marie committed
    "# print(*stac_helpers.find_paths(d))"
   "id": "4b75791b-6b2d-40be-b7c6-330a60888fb5",
   "metadata": {},
   "outputs": [],
   "source": [
    "if catalog.get_child(collection_id):\n",
    "    collection.normalize_and_save(root_href=os.path.join(catalog_path, collection_id), catalog_type=pystac.CatalogType.SELF_CONTAINED)\n",
    "else:\n",
    "    catalog.add_child(collection)\n",
    "    catalog.normalize_and_save(root_href=catalog_path, catalog_type=pystac.CatalogType.SELF_CONTAINED)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6f676b5-e892-4bfb-8d73-2828addd838c",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "language": "python",
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}