Skip to content
Snippets Groups Projects
Commit 991aea9b authored by Snyder, Amelia Marie's avatar Snyder, Amelia Marie
Browse files

add macav2_historical_monthly

parent 4fa90d75
No related branches found
No related tags found
1 merge request!36add macav2_historical_daily workflow
......@@ -43,6 +43,11 @@
"rel": "child",
"href": "./macav2_historical_daily/collection.json",
"type": "application/json"
},
{
"rel": "child",
"href": "./macav2_historical_monthly/collection.json",
"type": "application/json"
}
]
}
\ No newline at end of file
This diff is collapsed.
%% Cell type:markdown id:6c10e07b-1e60-4926-af1d-fa75dc78e5d4 tags:
# macav2_historical_daily Zarr -> Collection Workflow
This is a workflow to build a [STAC collection](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md) from the zarr asset for the dataset named above. We use the [datacube extension](https://github.com/stac-extensions/datacube) to define the spatial and temporal dimensions of the zarr store, as well as the variables it contains.
To simplify this workflow so that it can scale to many datasets, a few simplifying suggestions and assumptions are made:
1. For USGS data, we can use the CC0-1.0 license. For all other data we can use Unlicense. Ref: https://spdx.org/licenses/
2. I am assuming all coordinates are from the WGS84 datum if not specified.
%% Cell type:code id:201e0945-de55-45ff-b095-c2af009a4e62 tags:
``` python
import pystac
from pystac.extensions.datacube import CollectionDatacubeExtension, AssetDatacubeExtension, AdditionalDimension, DatacubeExtension
import xarray as xr
import cf_xarray
import os
import fsspec
import cf_xarray
import hvplot.xarray
import pandas as pd
import json
import numpy as np
import metpy
import cartopy.crs as ccrs
import cfunits
import json
```
%% Cell type:markdown id:20b00e88-5a13-46b3-9787-d9ac2d4e7bd6 tags:
## Open up NHGF STAC Catalog
%% Cell type:code id:adf6c59d-58cd-48b1-a5fd-3bb205a3ef56 tags:
``` python
# define folder location where your STAC catalog json file is
catalog_path = os.path.join('..', '..', 'catalog')
# open catalog
catalog = pystac.Catalog.from_file(os.path.join(catalog_path, 'catalog.json'))
```
%% Cell type:markdown id:996e60ba-13e4-453a-8534-e62ce747f0fa tags:
## Collection Metadata Input
%% Cell type:code id:482d204d-b5b6-40e5-ac42-55b459be1097 tags:
``` python
# name for STAC collection
collection_id = 'macav2_historical_daily'
# description of STAC collection
collection_description = 'macav2_historical_daily'
# license for dataset
collection_license = 'CC0-1.0'
```
%% Cell type:markdown id:116b5837-8e85-4ae7-964a-803533ded714 tags:
## Asset Metadata Input
%% Cell type:code id:dd6fa323-132a-4794-8c80-576933f547a0 tags:
``` python
# url to zarr store that you want to create a collection for
zarr_url = 's3://mdmf/gdp/macav2_historical_daily.zarr/'
# define keyword arguments needed for opening the dataset with xarray
# ref: https://github.com/stac-extensions/xarray-assets
xarray_opendataset_kwargs = {"xarray:open_kwargs":{"chunks":{},"engine":"zarr","consolidated":True},
"xarray:storage_options": {"anon": True, "client_kwargs": {"endpoint_url":"https://usgs.osn.mghpcc.org/"}}}
# description for zarr url asset attached to collection (zarr_url)
asset_description = "Open Storage Network Pod S3 API access to collection zarr group"
# roles to tag zarr url asset with
asset_roles = ["data","zarr","s3"]
```
%% Cell type:code id:e1441cd4-e94c-4902-af46-8f1af470eb6b tags:
``` python
# url to zarr store that you want to create a collection for
zarr_url2 = 's3://nhgf-development/workspace/DataConversion/macav2_historical_daily.zarr/'
# define keyword arguments needed for opening the dataset with xarray
# ref: https://github.com/stac-extensions/xarray-assets
xarray_opendataset_kwargs2 = {"xarray:open_kwargs":{"chunks":{},"engine":"zarr","consolidated":True},
"xarray:storage_options":{"requester_pays":True}}
# description for zarr url asset attached to collection (zarr_url)
asset_description2 = "S3 access to collection zarr group"
# roles to tag zarr url asset with
asset_roles2 = ["data","zarr","s3"]
```
%% Cell type:markdown id:b213b74f-ad17-4774-93b6-3b62be616b45 tags:
## Data Exploration
%% Cell type:code id:708f2cf5-79ab-49af-8067-de31d0d13ee6 tags:
``` python
# open and view zarr dataset
fs2 = fsspec.filesystem('s3', anon=True, endpoint_url='https://usgs.osn.mghpcc.org/')
ds = xr.open_dataset(fs2.get_mapper(zarr_url), engine='zarr',
backend_kwargs={'consolidated':True}, chunks={})
ds
```
%% Cell type:markdown id:0bc7e9b3-ad62-4b10-a18e-66b7ed2d35dc tags:
## Identify x, y, t dimensions of dataset
May require user input if dimensions cannot be auto-detected.
%% Cell type:code id:ab91268f-7200-4cb1-979a-c7d75531d2c0 tags:
``` python
# dims_auto_extract = ['X', 'Y', 'T']
# def extract_dim(ds, d):
# try:
# dim_list = ds.cf.axes[d]
# assert len(dim_list)==1, f'There are too many {d} dimensions in this dataset.'
# dim = dim_list[0]
# except KeyError:
# print(f"Could not auto-extract {d} dimension name.")
# print("Look at the xarray output above showing the dataset dimensions.")
# dim = str(input(f"What is the name of the {d} dimension of this dataset?"))
# assert dim in ds.dims, "That is not a valid dimension name for this dataset"
# print(f"name of {d} dimension: {dim}\n")
# return dim
# dim_names_dict = {}
# for d in dims_auto_extract:
# dim_names_dict[d] = extract_dim(ds, d)
dim_names_dict = {'X': 'lon', 'Y': 'lat', 'T': 'time'}
print(f"Dimension dictionary: {dim_names_dict}")
```
%% Cell type:markdown id:810d7480-165d-41c0-bd09-163656a14003 tags:
## Get crs info
%% Cell type:code id:b03d52f3-1367-4255-a561-52ee4fc9e92d tags:
``` python
ds = ds.metpy.parse_cf()
crs = ds[list(ds.keys())[0]].metpy.cartopy_crs
```
%% Cell type:markdown id:8fbfecfb-9886-4d06-a34c-6471cb0a6053 tags:
## Plot a map
%% Cell type:code id:4eb4d027-4266-4a0b-8f16-bacfbef06242 tags:
``` python
# # plot a map of a single variable
# var_to_plot = 'SNOW'
# da = ds[var_to_plot].sel(time='2014-03-01 00:00').load()
# da.hvplot.quadmesh(x='lon', y='lat', rasterize=True,
# geo=True, tiles='OSM', alpha=0.7, cmap='turbo')
```
%% Cell type:markdown id:5e057a6c-06fb-4406-823b-e81c58e520e4 tags:
## Plot a time series at a specific point
This can help you verify a variable's values
%% Cell type:code id:c7de2681-88c2-4597-857c-8f169c596f8b tags:
``` python
# # enter lat, lon of point you want to plot time series for
# lat,lon = 39.978322,-105.2772194
# time_start = '2013-01-01 00:00'
# time_end = '2013-12-31 00:00'
# x, y = crs.transform_point(lon, lat, src_crs=ccrs.PlateCarree()) # PlateCaree = Lat,Lon
# da = ds[var_to_plot].sel(x=x, y=y, method='nearest').sel(time=slice(time_start,time_end)).load()
# da.hvplot(x=dim_names_dict['T'], grid=True)
```
%% Cell type:markdown id:a8c3ed37-8564-400b-a7fb-25bd5e43d21c tags:
## Create Collection Extent
%% Cell type:markdown id:69f0d837-68a5-4fed-9a14-5d75cfbb0da4 tags:
### Spatial Extent
##### WARNING - make sure data type is **float** NOT **numpy.float64**
%% Cell type:code id:d46805e0-8e94-4ebe-aa01-d9a2d7051459 tags:
``` python
# pull out lat/lon bbox for data
# coordinates must be from WGS 84 datum
# left, bottom, right, top
# Note: try changing around the commented out lines below to get type float ratherthan a numpy float
#coord_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float), ds[dim_names_dict['Y']].data.min().compute().astype(float), ds[dim_names_dict['X']].data.max().compute().astype(float), ds[dim_names_dict['Y']].data.max().compute().astype(float)]
#coord_bounds = [ds[dim_names_dict['X']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.min().compute().astype(float).tolist(), ds[dim_names_dict['X']].data.max().compute().astype(float).tolist(), ds[dim_names_dict['Y']].data.max().compute().astype(float).tolist()]
coord_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]
print(coord_bounds)
print(f'\ncoord_bounds data type: {type(coord_bounds[0])}')
# create a spatial extent object
spatial_extent = pystac.SpatialExtent(bboxes=[coord_bounds])
```
%% Cell type:markdown id:a04c8fca-1d33-43ac-9e2b-62d7be2887f7 tags:
### Temporal Extent
%% Cell type:code id:41a84995-867c-4152-8c57-85e3758bbb77 tags:
``` python
# pull out first and last timestamps
temporal_extent_lower = pd.Timestamp(ds[dim_names_dict['T']].data.min())
temporal_extent_upper = pd.Timestamp(ds[dim_names_dict['T']].data.max())
print(f'min: {temporal_extent_lower} \nmax: {temporal_extent_upper}')
# create a temporal extent object
temporal_extent = pystac.TemporalExtent(intervals=[[temporal_extent_lower, temporal_extent_upper]])
```
%% Cell type:code id:1b1e37c4-5348-46ad-abc9-e005b5d6c02b tags:
``` python
collection_extent = pystac.Extent(spatial=spatial_extent, temporal=temporal_extent)
```
%% Cell type:markdown id:cfb71202-03df-45b5-ac2f-0dc2ee1ab780 tags:
## Create pystac collection
%% Cell type:code id:7e96811b-95ae-406a-9728-55fc429d4e1f tags:
``` python
if catalog.get_child(collection_id):
collection = catalog.get_child(collection_id)
print("existing collection opened")
collection.extent=collection_extent
collection.description=collection_description
collection.license=collection_license
else:
collection = pystac.Collection(id=collection_id,
description=collection_description,
extent=collection_extent,
license=collection_license)
print("new collection created")
```
%% Cell type:markdown id:a21c76e8-cd57-4eb5-a33f-7c668a3b3205 tags:
## Add zarr url asset to collection
%% Cell type:code id:094832af-d22b-4359-b0f6-cf687acce5cc tags:
``` python
asset_id = "zarr-s3-osn"
asset = pystac.Asset(href=zarr_url,
description=asset_description,
media_type="application/vnd+zarr",
roles=asset_roles,
extra_fields = xarray_opendataset_kwargs)
collection.add_asset(asset_id, asset)
```
%% Cell type:code id:0c298d07-f234-4a08-986d-87f4a39e9ae6 tags:
``` python
asset_id2 = "zarr-s3"
asset2 = pystac.Asset(href=zarr_url2,
description=asset_description2,
media_type="application/vnd+zarr",
roles=asset_roles2,
extra_fields = xarray_opendataset_kwargs2)
collection.add_asset(asset_id2, asset2)
```
%% Cell type:markdown id:f67cd5c9-db33-45c2-bc21-480cd67354f4 tags:
## Add datacube extension to collection
%% Cell type:code id:fc00946d-2880-491d-9b3b-3aeeb4414d6c tags:
``` python
# instantiate extention on collection
dc = DatacubeExtension.ext(collection, add_if_missing=True)
```
%% Cell type:markdown id:8bdd77a2-7587-485e-afb7-42af3a822241 tags:
### Add cube dimensions (required field for extension)
%% Cell type:code id:120a4914-3302-44a5-a282-0308ac84f040 tags:
``` python
# list out dataset dimensions
# When writing data to Zarr, Xarray sets this attribute on all variables based on the variable dimensions. When reading a Zarr group, Xarray looks for this attribute on all arrays,
# raising an error if it can’t be found.
dims = list(ds.dims)
print(dims)
```
%% Cell type:code id:00a18a29-fb9a-4b56-8009-493122997b16 tags:
``` python
# get x, y bounds for extent of those dimensions (required)
xy_bounds = [ds[dim_names_dict['X']].data.min().astype(float).item(), ds[dim_names_dict['Y']].data.min().astype(float).item(), ds[dim_names_dict['X']].data.max().astype(float).item(), ds[dim_names_dict['Y']].data.max().astype(float).item()]
print(xy_bounds)
```
%% Cell type:code id:0f49d6d7-9e30-4144-909b-fa1238e6c77a tags:
``` python
def get_step(ds, dim_name, time_dim=False, debug=False, step_ix=0, round_dec=None):
dim_vals = ds[dim_name].values
diffs = [d2 - d1 for d1, d2 in zip(dim_vals, dim_vals[1:])]
# option to round number of decimals
# sometimes there are different steps calculated due to small rounding errors coming out of the diff
# calculation, rounding these can correct for that
if round_dec:
unique_steps = np.unique(np.array(diffs).round(decimals=round_dec), return_counts=True)
else:
unique_steps = np.unique(diffs, return_counts=True)
step_list = unique_steps[0]
# optional - for invesitgating uneven steps
if debug:
print(f'step_list: {step_list}')
print(f'step_count: {unique_steps[1]}')
indices = [i for i, x in enumerate(diffs) if x == step_list[step_ix]]
print(f'index locations of step index {step_ix} in step_list: {indices}')
# set step - if all steps are the same length
# datacube spec specifies to use null for irregularly spaced steps
if len(step_list)==1:
if time_dim:
# make sure time deltas are in np timedelta format
step_list = [np.array([step], dtype="timedelta64[ns]")[0] for step in step_list]
step = step_list[0].astype(float).item()
else:
step = None
return(step)
```
%% Cell type:code id:a20d12bf-a511-4c5e-84d0-77e2ec551518 tags:
``` python
def get_long_name(ds, v):
# try to get long_name attribute from variable
try:
long_name = ds[v].attrs['long_name']
# otherwise, leave empty
except:
long_name = None
return long_name
```
%% Cell type:markdown id:e7dc357c-91ec-49ae-83e5-400f791f9792 tags:
#### user input needed - you will need to look at the crs information and create a cartopy crs object after identifying the projection type:
reference list of cartopy projections: https://scitools.org.uk/cartopy/docs/latest/reference/projections.html
%% Cell type:code id:ea452f62-5644-49b6-8a4e-7dc4f649fd1a tags:
``` python
# print out crs information in dataset
print(crs)
```
%% Cell type:code id:1b1d05ff-8e43-44a7-8343-178b112c4ad6 tags:
``` python
# # create the appropriate cartopy projection
# lcc = ccrs.LambertConformal(central_longitude=crs_info.longitude_of_central_meridian,
# central_latitude=crs_info.latitude_of_projection_origin,
# standard_parallels=crs_info.standard_parallel)
# # the datacube extension can accept reference_system information as a numerical EPSG code,
# # WKT2 (ISO 19162) string or PROJJSON object.
# # we will use a projjson, as was done by Microsoft Planetary Computer here:
# # https://planetarycomputer.microsoft.com/dataset/daymet-annual-na
# # https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na
# projjson = json.loads(lcc.to_json())
# alternatively, I think we could do this:
projjson = crs.to_json()
print(projjson)
```
%% Cell type:markdown id:b6b88ee9-60c2-4d91-af74-c1c56b094826 tags:
#### user review needed - looks at the steps pulled out and make sure they make sense
%% Cell type:markdown id:9e2bbcc5-e45a-4b8c-9d60-601f345e8134 tags:
**Time**
%% Cell type:code id:82f1e9bd-52ee-46f5-9e95-c2359d95fcf3 tags:
``` python
time_step = pd.Timedelta(get_step(ds, dim_names_dict['T'], time_dim=True)).isoformat()
print(type(time_step))
print(f'time step: {time_step}')
```
%% Cell type:code id:64be65b2-de20-447a-a9c2-bd8eca3e440e tags:
``` python
# # debugging for time steps: get all step values and locations
# time_step = get_step(ds, dim_names_dict['T'], time_dim=True, debug=True, step_ix=1)
```
%% Cell type:code id:bc8dff39-2a2e-44a0-9b30-987107c2d1e2 tags:
``` python
# # debugging for time steps, cont:
# # please choose one of the index locations printed above
# # this will print the time steps adjacent to it
# ix = 3343
# ds.isel(time=slice(ix-1,ix+3)).time
```
%% Cell type:markdown id:9aa6c8ff-8d9b-40a7-a281-39b502bd5a3d tags:
**X/lon**
There are 3 different x step lengths in this dataset that are very close together:
`[0.04165649 0.04167175 0.04168701]`
They do seem to be real differences in the data, but from what I can tell, the resolution of this dataset is 1/24-degree, so I am going to round these so that the x step can be included.
%% Cell type:code id:a8ba7695-ca45-4db2-bd46-c465f4e37eff tags:
``` python
x_step = get_step(ds, dim_names_dict['X'], round_dec=4)
print(f'x step: {x_step}')
```
%% Cell type:code id:fac4c9f2-a952-4c7f-aa32-862957372d6f tags:
``` python
# # debugging for spatial steps: get all step values and locations
# x_dim=dim_names_dict['X']
# x_step = get_step(ds, x_dim, debug=True, step_ix=1)
# print(f'\nx dim name (for next cell): {x_dim}')
```
%% Cell type:code id:8d0b5a2d-dc58-4ad6-b890-859ce6bb08de tags:
``` python
# # debugging for spatial steps, cont:
# # please choose one of the index locations printed above
# # this will print the time steps adjacent to it
# ix = 5
# ds.isel(lon=slice(ix-1,ix+3)).lon
```
%% Cell type:markdown id:21b5cca4-8bb4-498d-ae6b-6b8545fffe56 tags:
**Y/lat**
There are 3 different y step lengths in this dataset that are very close together:
`[0.04166412 0.04166603 0.04166794]`
They do seem to be real differences in the data, but from what I can tell, the resolution of this dataset is 1/24-degree, so I am going to round these so that the y step can be included.
%% Cell type:code id:7405583b-ecb9-44b0-8815-048e42e55a42 tags:
``` python
y_step = get_step(ds, dim_names_dict['Y'], round_dec=4)
print(f'y step: {y_step}')
```
%% Cell type:code id:ece0fe37-b54c-4721-aa9b-33d2998d191b tags:
``` python
# # debugging for spatial steps: get all step values and locations
# y_dim=dim_names_dict['Y']
# y_step = get_step(ds, y_dim, debug=True, step_ix=1)
# print(f'\nx dim name (for next cell): {x_dim}')
```
%% Cell type:code id:abdafb8f-5217-4b82-91b6-eec8183c9128 tags:
``` python
# # debugging for spatial steps, cont:
# # please choose one of the index locations printed above
# # this will print the time steps adjacent to it
# ix = 5
# ds.isel(y=slice(ix-1,ix+3)).y
```
%% Cell type:markdown id:00a5e041-081d-428d-ac2e-75d16de205e6 tags:
#### user input needed - you will need to copy all of the dimensions printed below into the dict and fill in the appropriate attributes(type, axis, extent, etc.):
Please see [datacube spec](https://github.com/stac-extensions/datacube?tab=readme-ov-file#dimension-object) for details on required fields.
If you have a dimension like "bnds" that is used on variables like time_bnds, lon_bnds, lat_bnds to choose either the lower or upper bound, you can use and [additional dimension object](https://github.com/stac-extensions/datacube?tab=readme-ov-file#additional-dimension-object). We recommend making the type "count" as Microsoft Planetary Computer did [here](https://github.com/stac-extensions/datacube/blob/9e74fa706c9bdd971e01739cf18dcc53bdd3dd4f/examples/daymet-hi-annual.json#L76).
%% Cell type:code id:acd45d3c-7845-47e6-9b7d-e35627a7ca9a tags:
``` python
print(dims)
```
%% Cell type:code id:5a443497-67a9-4dce-a8e9-b08d31a88223 tags:
``` python
# create a dictionary of datacube dimensions you would like to assign to this dataset
# dimension name should come from the dims printed in above cell
# x, y, t dimension info is pulled out automatically using the dim dict we created above
# all other dims listed in above cell need to be manually written in
# we do not recommend including redundant dimensions (do not include x,y if you have lon,lat)
# note that the extent of each dimension should be pulled from the dataset
dims_dict = {dim_names_dict['T']: pystac.extensions.datacube.Dimension({'type': 'temporal', 'description': get_long_name(ds, dim_names_dict['T']), 'extent': [temporal_extent_lower.strftime('%Y-%m-%dT%XZ'), temporal_extent_upper.strftime('%Y-%m-%dT%XZ')], 'step':time_step}),
dim_names_dict['X']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'x', 'description': get_long_name(ds, dim_names_dict['X']), 'extent': [xy_bounds[0], xy_bounds[2]], 'step': x_step, 'reference_system': projjson}),
dim_names_dict['Y']: pystac.extensions.datacube.Dimension({'type': 'spatial', 'axis': 'y', 'description': get_long_name(ds, dim_names_dict['Y']), 'extent': [xy_bounds[1], xy_bounds[3]], 'step': y_step, 'reference_system': projjson}),
}
```
%% Cell type:markdown id:0f277883-a3fd-425f-966a-ca2140d0ef2f tags:
### Add cube variables (optional field for extension)
%% Cell type:code id:92510876-7853-4d24-8563-c69f9012aeb6 tags:
``` python
# define functions to pull out datacube attributes and validate format
def get_unit(ds, v):
# check if unit is defined for variable
try:
unit = ds[v].attrs['units']
except:
unit = None
# check if unit comes from https://docs.unidata.ucar.edu/udunits/current/#Database
# datacube extension specifies: The unit of measurement for the data, preferably compliant to UDUNITS-2 units (singular).
# gdptools expects this format as well
try:
cfunits.Units(unit).isvalid
except:
print("Unit is not valid as a UD unit.")
unit = str(input("Please enter a valid unit for {v} from here: https://docs.unidata.ucar.edu/udunits/current/#Database"))
assert cfunits.Units(unit).isvalid
return unit
def get_var_type(ds, v):
if v in ds.coords:
# type = auxiliary for a variable that contains coordinate data, but isn't a dimension in cube:dimensions.
# For example, the values of the datacube might be provided in the projected coordinate reference system,
# but the datacube could have a variable lon with dimensions (y, x), giving the longitude at each point.
var_type = 'auxiliary'
# type = data for a variable indicating some measured value, for example "precipitation", "temperature", etc.
else:
var_type = 'data'
return var_type
```
%% Cell type:code id:e9272931-fc0b-4f2a-9546-283033e9cde8 tags:
``` python
# drop metpy_crs coordinate we have added
if 'metpy_crs' in ds.coords:
ds = ds.drop_vars('metpy_crs')
# pull list of vars from dataset
vars = list(ds.variables)
# spec says that the keys of cube:dimensions and cube:variables should be unique together; a key like lat should not be both a dimension and a variable.
# we will drop all values in dims from vars
vars = [v for v in vars if v not in dims]
# Microsoft Planetary Computer includes coordinates and crs as variables here:
# https://planetarycomputer.microsoft.com/dataset/daymet-annual-na
# https://planetarycomputer.microsoft.com/api/stac/v1/collections/daymet-annual-na
# we will keep those in the var list
# create dictionary of dataset variables and associated dimensions
vars_dict={}
for v in vars:
unit = get_unit(ds, v)
var_type = get_var_type(ds, v)
long_name = get_long_name(ds, v)
vars_dict[v] = pystac.extensions.datacube.Variable({'dimensions':list(ds[v].dims), 'type': var_type, 'description': long_name, 'unit': unit})
```
%% Cell type:markdown id:11ad5352-884c-4472-8864-4570a96f66e5 tags:
### Finalize extension
%% Cell type:code id:10141fd4-91d6-491d-878b-02653720891d tags:
``` python
# add dimesions and variables to collection extension
dc.apply(dimensions=dims_dict, variables=vars_dict)
```
%% Cell type:markdown id:615ca168-75fb-4135-9941-0ef5fe4fd1cb tags:
## Add STAC Collection to Catalog and Save
%% Cell type:code id:e2120a55-3d04-4122-a93f-29afcdb8cb1b tags:
``` python
# # helper to find items of wrong type
# d = collection.to_dict()
# def find_paths(nested_dict, prepath=()):
# for k, v in nested_dict.items():
# try:
# path = prepath + (k,)
# if type(v) is np.float64: # found value
# yield path
# elif hasattr(v, 'items'): # v is a dict
# yield from find_paths(v, path)
# except:
# print(prepath)
# print(*find_paths(d))
```
%% Cell type:code id:4b75791b-6b2d-40be-b7c6-330a60888fb5 tags:
``` python
if catalog.get_child(collection_id):
collection.normalize_and_save(root_href=os.path.join(catalog_path, collection_id), catalog_type=pystac.CatalogType.SELF_CONTAINED)
else:
catalog.add_child(collection)
catalog.normalize_and_save(root_href=catalog_path, catalog_type=pystac.CatalogType.SELF_CONTAINED)
```
%% Cell type:code id:d6f676b5-e892-4bfb-8d73-2828addd838c tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment