Newer
Older
Vaarre-Lamoureux, Kaysa S
committed
threat_map <- function(in_dat, threat_category, threat_pal, proj){
filtered_df <- st_as_sf(in_dat) |>
dplyr::filter(ThreatCategory == threat_category) |>
# remove visual bug with robinson projection
Vaarre-Lamoureux, Kaysa S
committed
proj_df <- st_transform(filtered_df, crs = st_crs(proj))
if(threat_category == "Habitat"){
pal <- threat_pal$Habitat_pal
} else if(threat_category == "Pollution"){
pal <- threat_pal$Pollution_pal
} else if(threat_category == "Exploitation"){
pal <- threat_pal$Exploitation_pal
} else if(threat_category == "Invasive species"){
pal <- threat_pal$Invasive_pal
} else if(threat_category == "Climate and weather"){
pal <- threat_pal$Climate_pal
}
threat_map <- ggplot()+
geom_sf(data = proj_df, aes(geometry = Shape, fill = MeanWeightedThreatMetric, color = MeanWeightedThreatMetric))+
scale_fill_gradientn(
colors = colorRampPalette(c(rev(unlist(pal))))(100),
limits = c(0, max(proj_df$MeanWeightedThreatMetric, na.rm = T)),
breaks = c(0 + max(proj_df$MeanWeightedThreatMetric, na.rm = T)/10,
#max(habitat_data$MeanWeightedThreatMetric)/2,
max(proj_df$MeanWeightedThreatMetric, na.rm = T) - max(proj_df$MeanWeightedThreatMetric, na.rm = T)/10),
labels = c("Lower", "Higher")
)+
scale_color_gradientn(
colors = colorRampPalette(c(rev(unlist(pal))))(100),
)+
guides(color = "none")+
guides(fill = guide_colorbar(title = "Mean Threat",
title.position = "top",
direction = "horizontal",
barwidth = 7,
barheight = 1))+
theme_void()+
theme(
Vaarre-Lamoureux, Kaysa S
committed
legend.ticks = element_blank(),
legend.title = element_text(face = "bold"),
legend.text = element_text(size = 11)
Vaarre-Lamoureux, Kaysa S
committed
subThreat_map <- function(in_dat, threat_category, threat_pal, subcat_habitat, subcat_pollution, subcat_climate, proj){
filtered_df <- st_as_sf(in_dat) |>
Vaarre-Lamoureux, Kaysa S
committed
dplyr::filter(ThreatCategory == threat_category) |>
# remove visual bug with robinson projection
st_wrap_dateline()
Vaarre-Lamoureux, Kaysa S
committed
proj_df <- st_transform(filtered_df, crs = st_crs(proj))
Vaarre-Lamoureux, Kaysa S
committed
if(threat_category %in% subcat_habitat){
pal <- threat_pal$Habitat_pal
Vaarre-Lamoureux, Kaysa S
committed
} else if(threat_category %in% subcat_pollution){
pal <- threat_pal$Pollution_pal
} else if(threat_category == "Overfishing"){
pal <- threat_pal$Exploitation_pal
} else if(threat_category == "Invasive non-native species"){
pal <- threat_pal$Invasive_pal
Vaarre-Lamoureux, Kaysa S
committed
} else if(threat_category %in% subcat_climate){
pal <- threat_pal$Climate_pal
}
threat_map <- ggplot()+
geom_sf(data = proj_df, aes(geometry = Shape, fill = MeanWeightedThreatMetric, color = MeanWeightedThreatMetric))+
scale_fill_gradientn(
colors = colorRampPalette(c(rev(unlist(pal))))(100),
limits = c(0, max(proj_df$MeanWeightedThreatMetric, na.rm = T)),
na.value = "gray80",
breaks = c(0 + max(proj_df$MeanWeightedThreatMetric, na.rm = T)/10,
#max(habitat_data$MeanWeightedThreatMetric)/2,
max(proj_df$MeanWeightedThreatMetric, na.rm = T) - max(proj_df$MeanWeightedThreatMetric, na.rm = T)/10),
labels = c("Lower", "Higher")
)+
scale_color_gradientn(
colors = colorRampPalette(c(rev(unlist(pal))))(100),
na.value= "gray80"
)+
guides(color = "none")+
guides(fill = guide_colorbar(title = "Mean Threat",
title.position = "top",
direction = "horizontal",
barwidth = 7,
barheight = 1))+
theme_void()+
theme(
#legend.position = c(0.1, 0.21),
Vaarre-Lamoureux, Kaysa S
committed
legend.ticks = element_blank(),
legend.title = element_text(face = "bold"),
legend.text = element_text(size = 11)
)
return(threat_map)
Vaarre-Lamoureux, Kaysa S
committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
}
# in_dat = p2_mean_weighted_threats, legend_png = p3_legend_png, threat_category = threat_cat
## note about out_file - need to find a way to save the cowplot version of the legend without crowding the images folder
## maybe by saving the initial legend png in the findex out folder and then saving
## the cowplot version to the earth-in-flux parent directory "src/assets/images/" folder
cowplot_legend <- function(in_dat, legend_png, threat_category, out_file){
threat_df <- in_dat |>
filter(ThreatCategory == threat_category)
min_val <- min(threat_df$MeanWeightedThreatMetric, na.rm = T)
max_val <- max(threat_df$MeanWeightedThreatMetric, na.rm = T)
# Define colors
background_color = NA
font_color = "#ffffff"
# The background canvas for your viz (DO NOT EDIT)
canvas <- grid::rectGrob(
x = 0, y = 0,
width = 9, height = 9,
gp = grid::gpar(fill = background_color, alpha = 1, col = background_color)
)
# margin for plotting (DO NOT EDIT)
margin = 0.04
# Load in USGS logo (also a black logo available)
legend <- magick::image_read(legend_png)
final_legend <- ggdraw(ylim = c(0,1), # 0-1 scale makes it easy to place viz items on canvas
xlim = c(0,1)) +
# a background (DO NOT EDIT)
draw_grob(canvas,
x = 0, y = 1,
height = 9, width = 16,
hjust = 0, vjust = 1) +
draw_image(legend,
x = 0.08,
y = 0.08,
width = 0.77,
hjust = 0, vjust = 0,
halign = 0, valign = 0)+
# min max values
draw_label(as.character(min_val),
x = 0.02,
y = 0.54,
hjust = 0,
vjust = 1,
lineheight = 0.75,
color = "gray50",
size = 9) +
draw_label(as.character(max_val),
x = 1,
y = 0.54,
hjust = 1,
vjust = 1,
lineheight = 0.75,
color = "gray50",
size = 9)
#429x176
ggsave(out_file, final_legend, height = 176, width = 429, units = "px", dpi = 300, bg = "transparent")