Skip to content
Snippets Groups Projects
2_process.R 6.96 KiB
Newer Older
Azadpour, Elmera's avatar
Azadpour, Elmera committed
source('2_process/src/data_utils.R')
Azadpour, Elmera's avatar
Azadpour, Elmera committed
  # Confirming raw data matches `p1_unc_stats` from SB
  tar_target(p2_unc_agg_summary,
             p1_unc_agg |>
Cee Nell's avatar
Cee Nell committed
               group_by(dimension, determinant) |>
               summarize(across(c(contains('related'),
                                  contains('unknown'),
                                  contains('significant')),
                                list(total = ~sum(.x, na.rm=TRUE)))) |> 
               mutate(evidence_val = positively_related_total + negatively_related_total +
                        unrelated_total + unknown_direction_total)
Azadpour, Elmera's avatar
Azadpour, Elmera committed
             ),
  # Based on metadata:
  # Amt of evidence: Small = total_studies < 5; Medium = total_studies 5-9; Large,total_studies = > 9
  # Amt of agreement: Low = < 50% of models; Medium = >50% & <74% of models; High = >74% of models; NA if the level of agreement could not be calculated as indicator was measured only once.
  tar_target(p2_top_trend_stats,
             p2_unc_agg_summary |>
Cee Nell's avatar
Cee Nell committed
               dplyr::select(dimension, determinant, #indicator, 
                      positively_related_total, negatively_related_total, unrelated_total, 
                      unknown_direction_total) |>
Cee Nell's avatar
Cee Nell committed
               pivot_longer(!c(dimension,determinant)) |>
               group_by(dimension, determinant) |>
Cee Nell's avatar
Cee Nell committed
               # for each indicator find the maximum % of studies in agreement 
               # across the significance categories. 
               slice_max(value) |>
               rename(sig_name = name, sig_value = value)
             ),
# Join `p2_unc_agg_summary` to top trends to get percentages of agreement and evidence
Cee Nell's avatar
Cee Nell committed
  tar_target(p2_unc_agg_summary_csv,
             p2_unc_agg_summary |>
               left_join(p2_top_trend_stats) |>
Cee Nell's avatar
Cee Nell committed
               # level of agreement is the max percent of studies in agreement
               dplyr::mutate(level_agreement = 100*(sig_value/evidence_val)) |>
               readr::write_csv('2_process/out/indicator_uncertainty.csv')
Cee Nell's avatar
Cee Nell committed
             ),
Cee Nell's avatar
Cee Nell committed
  tar_target(p2_indicators,
             p1_unc_stats |>
               distinct(dimension, determinant, indicator)
Azadpour, Elmera's avatar
Azadpour, Elmera committed
             ),
  # Process census data for variables of interest
  # B01003_001 =  Total Population 
  # B19013_001 = Median Household Income in the Past 12 Months (in 2022 Inflation-Adjusted Dollars)
  # B02001_003 =  Estimate!!Total:!!Black or African American alone
  # B03001_003 = Estimate!!Total:!!Hispanic or Latino:
  # B01001_002 = Estimate!!Total:!!Male:
  # B01001_026 = Estimate!!Total:!!Female:
             list("B01003_001", "B19013_001", "B02001_003",
                  "B03001_003", "B01001_002", "B01001_026")
             ),
  tar_target(p2_census_acs5_data,
             get_census_data(geography = 'county', variable = p2_census_acs5_layers,
                             states = p1_census_states, year = 2022, proj = p1_proj, 
                             survey_var = "acs5",  percent_rename = FALSE),
             pattern = map(p2_census_acs5_layers),
             iteration = "list"
             ),
Azadpour, Elmera's avatar
Azadpour, Elmera committed
  tar_target(p2_tot_pop,
               st_drop_geometry() |>
Azadpour, Elmera's avatar
Azadpour, Elmera committed
               rename(tot_pop = estimate)),
  # Add % of total population col to each census layer
  tar_target(p2_perc_census_acs5_layers_sf,
             process_perc(tot_var = p2_census_acs5_data,
                          tot_pop = p2_tot_pop),
             pattern = map(p2_census_acs5_data),
             iteration = "list"),
# Disaggregated census data
#  The subject tables include the following geographies: nation, all states (including DC and Puerto Rico), all metropolitan areas, all congressional districts, all counties, all places and all tracts. Subject tables provide an overview of the estimates available in a particular topic. The data are presented as both counts and percentages. There are over 66,000 variables in this dataset.
# More info here: https://api.census.gov/data/2019/acs/acs5.html 
# load_variables(2022, "acs5/subject", cache = TRUE)
# Age related variables 
# S0101_C02_022 = Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!Under 18 years
# S0101_C02_023 = Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!18 to 24 years
# S0101_C02_024 = Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!15 to 44 years
# S0101_C02_028 = Estimate!!Percent!!Total population!!SELECTED AGE CATEGORIES!!60 years and over
tar_target(p2_census_acs5sub_age_layers,
             c("S0101_C02_022", "S0101_C02_023", "S0101_C02_024", "S0101_C02_028")),
tar_target(p2_census_acs5sub_age_data,
           get_census_data(geography = 'county', variable = p2_census_acs5sub_age_layers,
                           states = p1_census_states, year = 2022, proj = p1_proj,
                           survey_var = "acs5",  percent_rename = TRUE),
           pattern = map(p2_census_acs5sub_age_layers),
           iteration = "list"),
# income related variables 
# S1901_C01_014 = Estimate!!Households!!PERCENT ALLOCATED!!Household income in the past 12 months
tar_target(p2_census_acs5sub_income_layers,
           c("S1901_C01_014")),
tar_target(p2_census_acs5sub_income_data,
           get_census_data(geography = 'county', variable = p2_census_acs5sub_income_layers,
                           states = p1_census_states, year = 2022, proj = p1_proj, 
                           survey_var = "acs5", percent_rename = TRUE),
           pattern = map(p2_census_acs5sub_income_layers),
           iteration = "list"),
# education related variables 
# S1501_C01_003 = Estimate!!Total!!AGE BY EDUCATIONAL ATTAINMENT!!Population 18 to 24 years!!High school graduate (includes equivalency)
# S1501_C01_009 = Estimate!!Total!!AGE BY EDUCATIONAL ATTAINMENT!!Population 25 years and over!!High school graduate (includes equivalency)
tar_target(p2_census_acs5sub_education_layers,
           c("S1501_C01_003", "S1501_C01_009")),
tar_target(p2_census_acs5sub_education_data,
           get_census_data(geography = 'county', variable = p2_census_acs5sub_education_layers,
                           states = p1_census_states, year = 2022, proj = p1_proj, 
                           survey_var = "acs5", percent_rename = FALSE),
           pattern = map(p2_census_acs5sub_education_layers),
           iteration = "list"),

# household related variables
# S1101_C01_001 = Estimate!!Total!!HOUSEHOLDS!!Total households
# S1101_C04_001 = Estimate!!Female householder, no spouse present, family household!!HOUSEHOLDS!!Total households
# B25064_001 = Estimate!!Median gross rent
tar_target(p2_census_acs5_household_layers,
           c("S1101_C01_001", "S1101_C04_001", "B25064_001")),
tar_target(p2_census_acs5sub_household_data,
           get_census_data(geography = 'county', variable = p2_census_acs5_household_layers,
                           states = p1_census_states, year = 2022, proj = p1_proj, 
                           survey_var = "acs5", percent_rename = FALSE),
           pattern = map(p2_census_acs5_household_layers),