Newer
Older
# For case studies approach: select one demographic characteristic (hispanic/latino),
p3_targets <- list(
tar_target(
p3_med_income_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[2]],
percent_leg = FALSE,
outfile_path = "3_visualize/out/med_income_census_2022.png",
leg_title = "Median household income, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive

Azadpour, Elmera
committed
percent_leg = TRUE,
outfile_path = "3_visualize/out/perc_household_income_2022.png",
leg_title = "Percent allocated household income in the past 12 months, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive
#
# tar_target(
# p3_tot_black_png,
# plot_census_map(
# census_data = p2_perc_census_acs5_layers_sf[[3]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_black_census_2022.png",
# leg_title = "Total Black, 2022",
# viz_config_df = viz_config_df,
# viz_config_pal = viz_config_pal$pal_positive
# ),
# format = "file"
# ),
# tar_target(
# p3_perc_black_png,
# plot_census_map(
# census_data = p2_perc_census_acs5_layers_sf[[3]],
# percent_leg = TRUE,
# var = 'percent',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/perc_black_census_2022.png",
# leg_title = "Percent Black, 2022",
# viz_config_df = viz_config_df,
# viz_config_pal = viz_config_pal$pal_positive
# ),
# format = "file"
# ),
tar_target(
p3_tot_latino_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[4]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_latino_census_2022.png",
leg_title = "Total Latino, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive
),
format = "file"
),
tar_target(
p3_perc_latino_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[4]],
percent_leg = TRUE,
var = 'percent',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_latino_census_2022.png",
leg_title = "Percent Latino, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# tar_target(
# p3_tot_male_png,
# plot_census_map(
# census_data = p2_perc_census_acs5_layers_sf[[5]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_male_census_2022.png",
# leg_title = "Total Male, 2022",
# viz_config_df = viz_config_df
# ),
# format = "file"
# ),
#
# tar_target(
# p3_tot_female_png,
# plot_census_map(
# census_data = p2_perc_census_acs5_layers_sf[[6]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_female_census_2022.png",
# leg_title = "Total Female, 2022",
# viz_config_df = viz_config_df,
# viz_config_pal = viz_config_pal$pal_positive
# ),
# format = "file"
# ),
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# # Disaggregated maps
# # percent age maps
# tar_target(
# p3_perc_under_18_map_png,
# plot_census_map(
# census_data = p2_census_acs5sub_age_data[[1]],
# percent_leg = TRUE,
# var = 'percent',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/perc_pop_under_18_2022.png",
# leg_title = "Percent of Total Poulation Under 18, 2022",
# viz_config_df = viz_config_df
# ),
# format = "file"
# ),
# tar_target(
# p3_perc_18_24_map_png,
# plot_census_map(
# census_data = p2_census_acs5sub_age_data[[2]],
# percent_leg = TRUE,
# var = 'percent',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/perc_pop_under_18-24_2022.png",
# leg_title = "Percent of Total Poulation 18-24 years, 2022",
# viz_config_df = viz_config_df
# ),
# format = "file"
# ),
# tar_target(
# p3_perc_15_44_map_png,
# plot_census_map(
# census_data = p2_census_acs5sub_age_data[[3]],
# percent_leg = TRUE,
# var = 'percent',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/perc_pop_under_15-44_2022.png",
# leg_title = "Percent of Total Poulation 15-44 years, 2022",
# viz_config_df = viz_config_df
# ),
# format = "file"
# ),
# tar_target(
# p3_perc_60_plus_map_png,
# plot_census_map(
# census_data = p2_census_acs5sub_age_data[[4]],
# percent_leg = TRUE,
# var = 'percent',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/perc_pop_under_60_plus_2022.png",
# leg_title = "Percent of Total Poulation 60 years & plus, 2022",
# viz_config_df = viz_config_df
# ),
# format = "file"
# ),
# # education related map
# tar_target(
# p3_tot_18_24_highschool_education_map_png,
# plot_census_map(
# census_data = p2_census_acs5sub_education_data[[1]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_education_18-24_highschool_2022.png",
# leg_title = "Total population 18-24 years\nhigh school graduate (includes equivalency), 2022",
# viz_config_df = viz_config_df
# ),
# format = "file"
# ),
# tar_target(
# p3_tot_25_plus_highschool_education_map_png,
# plot_census_map(
# census_data = p2_census_acs5sub_education_data[[2]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_education_25-plus_highschool_2022.png",
# leg_title = "Total population 25 and older\nhigh school graduate (includes equivalency), 2022",
# viz_config_df = viz_config_df
# ),
# format = "file"
# ),
# Household related maps

Azadpour, Elmera
committed
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_households_2022.png",
leg_title = "Total households, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive

Azadpour, Elmera
committed
),
format = "file"
),
tar_target(

Azadpour, Elmera
committed
plot_census_map(

Azadpour, Elmera
committed
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_female_households_2022.png",
leg_title = "Total female households, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive

Azadpour, Elmera
committed
),
format = "file"
),
tar_target(

Azadpour, Elmera
committed
plot_census_map(

Azadpour, Elmera
committed
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/median_rent_2022.png",
leg_title = "Median gross rent, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_neg

Azadpour, Elmera
committed
),
format = "file"