Newer
Older
Everyone needs access to clean water. People may be more vulnerable to water insecurity due to
:class="['highlight', 'Demographiccharacteristics', { checked: isChecked.Demographiccharacteristics }]"
@click="toggleCategory('Demographiccharacteristics')"
:class="['highlight', 'Health', { checked: isChecked.Health }]"
@click="toggleCategory('Health')"
:class="['highlight', 'Livingconditions', { checked: isChecked.Livingconditions }]"
@click="toggleCategory('Livingconditions')"
:class="['highlight', 'Socioeconomicstatus', { checked: isChecked.Socioeconomicstatus }]"
@click="toggleCategory('Socioeconomicstatus')"
:class="['highlight', 'Riskperception', { checked: isChecked.Riskperception }]"
@click="toggleCategory('Riskperception')"
:class="['highlight', 'Landtenure', { checked: isChecked.Landtenure }]"
@click="toggleCategory('Landtenure')"
:class="['highlight', 'Exposure', { checked: isChecked.Exposure }]"
@click="toggleCategory('Exposure')"
>
exposure to stressors
</span> (like drought or pollution).
</p>
</div>
<div id="tooltip" style="position: absolute; opacity: 0;"></div>
<caption>
A meta-analysis by Drakes et al. (2024) evaluated how water insecurity in the Western U.S. is influenced by social determinants. Interact with the chart and the highlighted text above to see what they found.
</caption>
import * as d3 from 'd3';
// Global variables
const publicPath = import.meta.env.BASE_URL;
const dataSet1 = ref([]);
const dataSet2 = ref([]);
const selectedDataSet = ref('dataSet1');
const data = ref([]);
let simulation;
// Set up SVG
let svg;
const margin = { top: 50, right: 20, bottom: 50, left: 50 };
const isChecked = ref({
Demographiccharacteristics: true,
Health: true,
Livingconditions: true,
Socioeconomicstatus: true,
Riskperception: true,
Landtenure: true,
Exposure: true
});
// Set colors for bubble charts
const dimensionColors = {
Demographiccharacteristics: "#092836",
Landtenure: "#1b695e",
Livingconditions: "#7a5195",
Socioeconomicstatus: "#2a468f",
Health: "#ef5675",
Riskperception: "#ff764a",
Exposure: "#ffa600"
};
// Load data and then make chart
onMounted(async () => {
try {
await loadDatasets();
data.value = selectedDataSet.value === 'dataSet1' ? dataSet1.value : dataSet2.value;
if (data.value.length > 0) {
createBeeswarmChart();
} else {
console.error('Error loading data');
} catch (error) {
console.error('Error during component mounting', error);
});
async function loadDatasets() {
try {
dataSet1.value = await loadData('determinant_uncertainty.csv');
dataSet2.value = await loadData('indicator_uncertainty.csv');
console.log('data in')
} catch (error) {
console.error('Error loading datasets', error);
}
async function loadData(fileName) {
try {
const data = await d3.csv(publicPath + fileName, d => {
d.level_agreement = +(+d.level_agreement).toFixed(2);
d.evidence_val = +d.evidence_val;
d.sig_value = +d.sig_value;
return d;
});
return data;
} catch (error) {
console.error(`Error loading data from ${fileName}`, error);
return [];
function createBeeswarmChart() {
svg = d3
.select('#beeswarm-chart-container')
.append('svg')
.attr('class', 'beeswarmSvg')
.attr('width', width)
.attr('height', height);
const yScale = d3.scaleLinear()
.domain([40, d3.max(data.value, d => d.level_agreement)])
.range([height-margin.bottom, margin.top]);
// Set radius based on evidence value
const radiusScale = d3.scaleLinear()
.domain([d3.min(data.value, d => d.evidence_val), d3.max(data.value, d => d.evidence_val)])
.call(d3.axisLeft(yScale).ticks(5))
.attr("stroke-width", 2)
.attr("font-size", 20);
// Add label to y axis
svg.append('text')
.attr("class", "yLabel")
.attr("text-anchor", "left")
.attr("transform", `translate(${margin.left}, ${margin.top/2})`)
.text("Level of Agreement");
svg.append('text')
.attr("class", "yLabel")
.attr("transform", `translate(${margin.left}, ${height - (margin.bottom/2) + 10})`)
const forceY = d3.forceY(d => yScale(d.level_agreement)).strength(0.7);
const forceX = d3.forceX(margin.left + (width / 2)).strength(0.2);
const forceCollide = d3.forceCollide(d => radiusScale(d.evidence_val) + 2).iterations(20);
const forceManyBody = d3.forceManyBody().strength(1);
const bubbles = svg
.selectAll('.bubble')
.data(data.value)
.enter()
.append('circle')
.attr('class', 'bubble')
.attr('r', d => radiusScale(d.evidence_val))
.style('fill', d => dimensionColors[d.dimension.replace(' ', '')])
.on('mouseover', function (event, d) {
const [x, y] = d3.pointer(event);
const tooltip = d3.select('#tooltip')
.html(`<strong>${d.determinant}</strong><br>appeared in ${d.evidence_val} ${d.evidence_val === 1 ? 'study' : 'studies'}`);
{ name: 'positive', value: d.pos_related_total, stroke: dimensionColors[d.dimension.replace(' ', '')], fill: dimensionColors[d.dimension.replace(' ', '')] },
{ name: 'negative', value: d.neg_related_total, stroke: dimensionColors[d.dimension.replace(' ', '')], fill: 'white' },
{ name: 'unknown', value: d.unk_direction_total, pattern: true, stroke: dimensionColors[d.dimension.replace(' ', '')], fill: 'white' }
const barHeight = 10;
// Create an SVG element for the bar chart
const svgBar = tooltip.append('svg')
.attr('width', barWidth + 10)
.attr('height', barHeight + 10);
.attr('id', 'pattern-stripe')
.attr('patternUnits', 'userSpaceOnUse')
.attr('width', 8) // Adjusted to make pattern larger
.attr('height', 8)
pattern.append('rect')
.attr('width', 8)
.attr('height', 8)
.attr('fill', 'white');
pattern.append('path')
.attr('d', 'M-2,2 l4,-4 M0,8 l8,-8 M6,10 l4,-4') // Adjusted path for thicker stripes
.attr('stroke', dimensionColors[d.dimension.replace(' ', '')])
// Create a scale for the x-axis
const xBar = d3.scaleLinear()
.domain([0, d3.sum(barData, d => d.value)])
.range([0, barWidth]);
// Create groups for each bar segment
const barGroups = g.selectAll('g')
.data(barData)
.enter()
.append('g');
// Add the rectangles
barGroups.append('rect')
.attr('x', (d, i) => i > 0 ? xBar(d3.sum(barData.slice(0, i), d => d.value)) : 0)
.attr('y', 0)
.attr('width', d => xBar(d.value))
.attr('height', barHeight)
.style('fill', d => d.pattern ? 'url(#pattern-stripe)' : d.fill)
.style('stroke', d => d.stroke ? d.stroke : 'none');
// Position the tooltip
tooltip
.style('opacity', 1)
.attr('stroke', dimensionColors[d.dimension.replace(' ', '')])
.style('left', (x + 10) + 'px')
.style('top', (y - 28) + 'px');
// Highlight the circle
d3.select(this)
.attr('stroke', d => dimensionColors[d.dimension.replace(' ', '')])
.attr('stroke-width', 15);
})
.on('mouseout', function () {
d3.select('#tooltip').style('opacity', 0);
d3.select(this)
.attr('stroke', null)
.attr('stroke-width', null);
// Run simulation
simulation = d3.forceSimulation()
.force('x', forceX)
.force('y', forceY)
.force('collide', forceCollide)
.force('charge', forceManyBody)
.nodes(data.value)
.on('tick', ticked)
.attr("cx", d => Math.max(margin.left +radiusScale(d.evidence_val), Math.min(width - margin.right - radiusScale(d.evidence_val), d.x)))
.attr("cy", d => Math.max(radiusScale(d.evidence_val), Math.min(height - radiusScale(d.evidence_val), d.y)))
//.each(d => { d.y = Math.max(radiusScale(d.evidence_val), Math.min(height - radiusScale(d.evidence_val), yScale(d.level_agreement))); });
}
function toggleCategory(category) {
//console.log(`Toggle category called for: ${category}`);
isChecked.value[category] = !isChecked.value[category];
console.log(`Category toggled: ${category}, new value: ${isChecked.value[category]}`);
updateChart();
}
function updateChart() {
console.log('Update chart called');
const yScale = d3.scaleLinear()
.domain([40, d3.max(data.value, d => d.level_agreement)])
.range([height-margin.bottom, margin.top]);
// Set radius based on evidence value
const radiusScale = d3.scaleLinear()
.domain([d3.min(data.value, d => d.evidence_val), d3.max(data.value, d => d.evidence_val)])
.range([10, 70]);
// Filter data based on active categories
const activeCategories = Object.keys(isChecked.value).filter(category => isChecked.value[category]);
const dataPoints = data.value.filter(d => activeCategories.includes(d.dimension.replace(' ', '')));
console.log('Active categories:', activeCategories);
console.log('Filtered data points:', dataPoints);
// Update existing bubbles and add new bubbles
const bubbles = svg.selectAll(".bubble")
.data(dataPoints, d => d.id);
// Remove old bubbles
bubbles.exit().remove();
// Add new bubbles
bubbles.enter()
.append('circle')
.attr('class', 'bubble')
.attr('r', d => d3.select('.bubble').size() ? d3.select('.bubble').attr('r') : radiusScale(d.evidence_val))
.style('fill', d => dimensionColors[d.dimension.replace(' ', '')])
.attr('cy', d => d.y)
.merge(bubbles) // Merge to apply forces to new and existing bubbles
.attr('r', d => radiusScale(d.evidence_val))
.style('fill', d => dimensionColors[d.dimension.replace(' ', '')]);
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
}
</script>
<style scoped lang="scss">
$switchWidth: 12rem;
$Demographiccharacteristics: #092836;
$Landtenure: #1b695e;
$Livingconditions: #7a5195;
$Socioeconomicstatus: #2a468f;
$Health: #ef5675;
$Riskperception: #ff764a;
$Exposure: #ffa600;
#beeswarm-chart-container {
text-align: center;
position: relative;
}
#beeswarm-chart-container svg {
max-width: 100%;
max-height: 100%;
height: auto; /* Maintain aspect ratio */
display: inline-block;
}
.bubble {
stroke: black;
stroke-width: 2px;
fill-opacity: 0.8;
}
.chart-text {
user-select: none;
}
.yLabel {
font-weight: bold;
}
.highlight {
color: white;
padding: 0.25px 5px;
border-radius: 10px;
white-space: nowrap;
font-weight: bold;
cursor: pointer; /* Add cursor pointer for better UX */
transition: all 0.1s; /* Smooth transition for background color and border */
}
.highlight:not(.checked) {
background-color: white;
border: 2px solid;
}
.highlight.Demographiccharacteristics {
background-color: $Demographiccharacteristics;
}
.highlight.Demographiccharacteristics:not(.checked) {
color: $Demographiccharacteristics;
border-color: $Demographiccharacteristics;
}
.highlight.Landtenure {
background-color: $Landtenure;
}
.highlight.Landtenure:not(.checked) {
color: $Landtenure;
border-color: $Landtenure;
}
.highlight.Livingconditions {
background-color: $Livingconditions;
}
.highlight.Livingconditions:not(.checked) {
color: $Livingconditions;
border-color: $Livingconditions;
}
.highlight.Socioeconomicstatus {
background-color: $Socioeconomicstatus;
}
.highlight.Socioeconomicstatus:not(.checked) {
color: $Socioeconomicstatus;
border-color: $Socioeconomicstatus;
}
.highlight.Health {
background-color: $Health;
}
.highlight.Health:not(.checked) {
color: $Health;
border-color: $Health;
}
.highlight.Riskperception {
background-color: $Riskperception;
}
.highlight.Riskperception:not(.checked) {
color: $Riskperception;
border-color: $Riskperception;
}
.highlight.Exposure {
background-color: $Exposure;
}
.highlight.Exposure:not(.checked) {
color: $Exposure;
border-color: $Exposure;
}
#tooltip {
position: absolute;
opacity: 0;
pointer-events: none; /* Prevent tooltip from blocking mouse events */
}