Skip to content
Snippets Groups Projects
Commit b461321a authored by Azadpour, Elmera's avatar Azadpour, Elmera
Browse files

additional maps for median income by race

parent 65253a3e
No related branches found
No related tags found
1 merge request!12Add disaggregated census data/maps
...@@ -163,5 +163,14 @@ tar_target(p2_census_acs5sub_household_data, ...@@ -163,5 +163,14 @@ tar_target(p2_census_acs5sub_household_data,
states = p1_census_states, year = 2022, proj = p1_proj, states = p1_census_states, year = 2022, proj = p1_proj,
survey_var = "acs5", percent_rename = FALSE), survey_var = "acs5", percent_rename = FALSE),
pattern = map(p2_census_acs5_household_layers), pattern = map(p2_census_acs5_household_layers),
iteration = "list"),
# Median Household Income in the Past 12 Months (in 2022 Inflation-Adjusted Dollars) for white only, Black or African American Alone, American Indian and Alaska Native Alone, Asian Alone, Native Hawaiian and Other Pacific Islander Alone, Hispanic or Latino
tar_target(p2_census_acs5_income_by_race_layers,
c("B19013A_001", "B19013B_001", "B19013C_001", "B19013D_001", "B19013E_001", "B19013I_001")),
tar_target(p2_census_acs5sub_income_by_race_data,
get_census_data(geography = 'county', variable = p2_census_acs5_income_by_race_layers,
states = p1_census_states, year = 2022, proj = p1_proj,
survey_var = "acs5", percent_rename = FALSE),
pattern = map(p2_census_acs5_income_by_race_layers),
iteration = "list") iteration = "list")
) )
\ No newline at end of file
source('3_visualize/src/plot_utils.R') source('3_visualize/src/plot_utils.R')
# For case studies approach: select one demographic characteristic (hispanic/latino), # For case studies approach: select one demographic characteristic (hispanic/latino),
p3_targets <- list( p3_targets <- list(
# desktop maps ------------------------------------------------------------
tar_target( tar_target(
p3_med_income_png, p3_med_income_png,
plot_census_map( plot_census_map(
...@@ -139,8 +143,129 @@ p3_targets <- list( ...@@ -139,8 +143,129 @@ p3_targets <- list(
), ),
format = "file" format = "file"
), ),
# Mobile maps
tar_target( # median income by race maps
tar_target(
p3_med_income_white_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[1]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_white_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nWhite Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_black_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[2]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_black_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nBlack or African American Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_american_indian_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[3]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_american_indian_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nAmerican Indian and Alaska Native Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_asian_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[4]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_asian_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nAsian Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_hawaiian_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[5]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_hawaiian_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nNative Hawaiian and\n Other Pacific Islander Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_hispanic_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[6]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_hispanic_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nHispanic or Latino Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$pal_positive,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
# mobile maps -------------------------------------------------------------
tar_target(
p3_med_income_mobile_png, p3_med_income_mobile_png,
plot_census_map( plot_census_map(
census_data = p2_perc_census_acs5_layers_sf[[2]], census_data = p2_perc_census_acs5_layers_sf[[2]],
...@@ -178,6 +303,9 @@ p3_targets <- list( ...@@ -178,6 +303,9 @@ p3_targets <- list(
), ),
format = "file" format = "file"
), ),
# mobile maps -------------------------------------------------------------
tar_target( tar_target(
p3_tot_latino_mobile_png, p3_tot_latino_mobile_png,
......
...@@ -50,7 +50,7 @@ plot_census_map <- function(census_data, conus_sf, leg_title, outfile_path, var, ...@@ -50,7 +50,7 @@ plot_census_map <- function(census_data, conus_sf, leg_title, outfile_path, var,
name = leg_title, name = leg_title,
limits = c(0, max(census_data[[var]], na.rm = TRUE)), limits = c(0, max(census_data[[var]], na.rm = TRUE)),
labels = scales::comma, labels = scales::comma,
na.value="white") na.value="#F5F5F5")
} else { } else {
census_map <- census_map + census_map <- census_map +
...@@ -60,7 +60,7 @@ plot_census_map <- function(census_data, conus_sf, leg_title, outfile_path, var, ...@@ -60,7 +60,7 @@ plot_census_map <- function(census_data, conus_sf, leg_title, outfile_path, var,
name = leg_title, name = leg_title,
limits = c(0, 100), limits = c(0, 100),
breaks = c(0, 25, 50, 75, 100), breaks = c(0, 25, 50, 75, 100),
na.value="white" na.value="#F5F5F5"
) )
} }
ggsave(outfile_path, census_map, width = width, height = height, dpi = viz_config_df$dpi, bg = viz_config_df$bg_col, units = "in") ggsave(outfile_path, census_map, width = width, height = height, dpi = viz_config_df$dpi, bg = viz_config_df$bg_col, units = "in")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment