Skip to content
Snippets Groups Projects
TimeseriesUtility_test.py 17.9 KiB
Newer Older
from __future__ import absolute_import

from numpy.testing import assert_equal
from .StreamConverter_test import __create_trace
from geomagio import TimeseriesUtility
from obspy.core import Stream, Stats, Trace, UTCDateTime
assert_almost_equal = numpy.testing.assert_almost_equal
assert_array_equal = numpy.testing.assert_array_equal
def test_create_empty_trace():
    """TimeseriesUtility_test.test_create_empty_trace()"""
    trace1 = _create_trace([1, 1, 1, 1, 1], "H", UTCDateTime("2018-01-01"))
    trace2 = _create_trace([2, 2], "E", UTCDateTime("2018-01-01"))
    observatory = "Test"
    interval = "minute"
    network = "NT"
    location = "R0"
    trace3 = TimeseriesUtility.create_empty_trace(
        starttime=trace1.stats.starttime,
        endtime=trace1.stats.endtime,
        observatory=observatory,
        channel="F",
        type="variation",
        interval=interval,
        network=network,
        station=trace1.stats.station,
        location=location,
    )
    timeseries = Stream(traces=[trace1, trace2])
    # For continuity set stats to be same for all traces
    for trace in timeseries:
        trace.stats.observatory = observatory
        trace.stats.type = "variation"
        trace.stats.interval = interval
        trace.stats.network = network
        trace.stats.station = trace1.stats.station
        trace.stats.location = location
    timeseries += trace3
    assert_equal(len(trace3.data), trace3.stats.npts)
    assert_equal(timeseries[0].stats.starttime, timeseries[2].stats.starttime)
    TimeseriesUtility.pad_timeseries(
        timeseries=timeseries,
        starttime=trace1.stats.starttime,
        endtime=trace1.stats.endtime,
    )
    assert_equal(len(trace3.data), trace3.stats.npts)
    assert_equal(timeseries[0].stats.starttime, timeseries[2].stats.starttime)
    # Change starttime by more than 1 delta
    starttime = trace1.stats.starttime
    endtime = trace1.stats.endtime
    TimeseriesUtility.pad_timeseries(timeseries, starttime - 90, endtime + 90)
    assert_equal(len(trace3.data), trace3.stats.npts)
    assert_equal(timeseries[0].stats.starttime, timeseries[2].stats.starttime)
    """TimeseriesUtility_test.test_get_stream_gaps()

    confirms that gaps are found in a stream
    """
    stream = Stream(
        [
            __create_trace("H", [numpy.nan, 1, 1, numpy.nan, numpy.nan]),
            __create_trace("Z", [0, 0, 0, 1, 1, 1]),
        ]
    )
    for trace in stream:
        # set time of first sample
        trace.stats.starttime = UTCDateTime("2015-01-01T00:00:00Z")
        # set sample rate to 1 second
        trace.stats.delta = 1
    # find gaps
    gaps = TimeseriesUtility.get_stream_gaps(stream)
    assert_equal(len(gaps["H"]), 2)
    gap = gaps["H"][0]
    assert_equal(gap[0], UTCDateTime("2015-01-01T00:00:00Z"))
    assert_equal(gap[1], UTCDateTime("2015-01-01T00:00:00Z"))
    gap = gaps["H"][1]
    assert_equal(gap[0], UTCDateTime("2015-01-01T00:00:03Z"))
    assert_equal(gap[1], UTCDateTime("2015-01-01T00:00:04Z"))
    assert_equal(len(gaps["Z"]), 0)
Jeremy M Fee's avatar
Jeremy M Fee committed

def test_get_stream_gaps_channels():
    """TimeseriesUtility_test.test_get_stream_gaps_channels()

    test that gaps are only checked in specified channels.
    """
    stream = Stream(
        [
            __create_trace("H", [numpy.nan, 1, 1, numpy.nan, numpy.nan]),
            __create_trace("Z", [0, 0, 0, 1, 1, 1]),
        ]
    )
    for trace in stream:
        # set time of first sample
        trace.stats.starttime = UTCDateTime("2015-01-01T00:00:00Z")
        # set sample rate to 1 second
        trace.stats.delta = 1
    # find gaps
    gaps = TimeseriesUtility.get_stream_gaps(stream, ["Z"])
    assert_equal("H" in gaps, False)
    assert_equal(len(gaps["Z"]), 0)
Jeremy M Fee's avatar
Jeremy M Fee committed

    """TimeseriesUtility_test.test_get_trace_gaps()
    trace = __create_trace("H", [1, 1, numpy.nan, numpy.nan, 0, 1])
    trace.stats.starttime = UTCDateTime("2015-01-01T00:00:00Z")
    # set sample rate to 1 minute
    trace.stats.delta = 60
    # find gap
    gaps = TimeseriesUtility.get_trace_gaps(trace)
    assert_equal(len(gaps), 1)
    assert_equal(gap[0], UTCDateTime("2015-01-01T00:02:00Z"))
    assert_equal(gap[1], UTCDateTime("2015-01-01T00:03:00Z"))
    """TimeseriesUtility_test.test_get_merged_gaps()
    merged = TimeseriesUtility.get_merged_gaps(
        {
            "H": [
                # gap for 2 seconds, that starts after next gap
                [
                    UTCDateTime("2015-01-01T00:00:01Z"),
                    UTCDateTime("2015-01-01T00:00:03Z"),
                    UTCDateTime("2015-01-01T00:00:04Z"),
                ]
            # gap for 1 second, that occurs before previous gap
            "Z": [
                [
                    UTCDateTime("2015-01-01T00:00:00Z"),
                    UTCDateTime("2015-01-01T00:00:00Z"),
                    UTCDateTime("2015-01-01T00:00:01Z"),
                ],
                [
                    UTCDateTime("2015-01-01T00:00:05Z"),
                    UTCDateTime("2015-01-01T00:00:07Z"),
                    UTCDateTime("2015-01-01T00:00:08Z"),
                ],
    assert_equal(len(merged), 2)
    # first gap combines H and Z gaps
    gap = merged[0]
    assert_equal(gap[0], UTCDateTime("2015-01-01T00:00:00Z"))
    assert_equal(gap[1], UTCDateTime("2015-01-01T00:00:03Z"))
    # second gap is second Z gap
    gap = merged[1]
    assert_equal(gap[0], UTCDateTime("2015-01-01T00:00:05Z"))
    assert_equal(gap[1], UTCDateTime("2015-01-01T00:00:07Z"))
def test_get_trace_values():
    """TimeseriesUtility_test.test_get_trace_values()"""
    stream = Stream(
        [
            __create_trace("H", [numpy.nan, 1, 1, numpy.nan, numpy.nan]),
            __create_trace("Z", [0, 0, 0, 1, 1, 1]),
        ]
    )
    for trace in stream:
        # set time of first sample
        trace.stats.starttime = UTCDateTime("2015-01-01T00:00:00Z")
        # set sample rate to 1 second
        trace.stats.delta = 1
        trace.stats.npts = len(trace.data)
    print(stream)
    print(stream.select(channel="H")[0].times("utcdatetime"))
    # value that doesn't exist
    assert_equal(
        TimeseriesUtility.get_trace_value(
            traces=stream.select(channel="H"), time=UTCDateTime("2015-01-01T00:00:00Z")
        ),
        None,
    )
    # value that exists
    assert_equal(
        TimeseriesUtility.get_trace_value(
            traces=stream.select(channel="Z"), time=UTCDateTime("2015-01-01T00:00:00Z")
        ),
        0,
    )
    # default for value that doesn't exist
    assert_equal(
        TimeseriesUtility.get_trace_value(
            traces=stream.select(channel="H"),
            time=UTCDateTime("2015-01-01T00:00:03Z"),
            default=4,
        ),
        4,
    )


    """TimeseriesUtility_test.test_has_all_channels():"""
    stream = Stream(
        [
            __create_trace("H", [nan, 1, 1, nan, nan]),
            __create_trace("Z", [0, 0, 0, 1, 1]),
            __create_trace("E", [nan, nan, nan, nan, nan]),
        ]
    )
    for trace in stream:
        # set time of first sample
        trace.stats.starttime = UTCDateTime("2015-01-01T00:00:00Z")
        # set sample rate to 1 second
        trace.stats.delta = 1
        trace.stats.npts = len(trace.data)
    # check for channels
    starttime = stream[0].stats.starttime
    endtime = stream[0].stats.endtime
    assert_equal(
        TimeseriesUtility.has_all_channels(stream, ["H", "Z"], starttime, endtime), True
    )
    assert_equal(
        TimeseriesUtility.has_all_channels(stream, ["H", "Z", "E"], starttime, endtime),
        False,
    )
    assert_equal(
        TimeseriesUtility.has_all_channels(stream, ["E"], starttime, endtime), False
    )
    """TimeseriesUtility_test.test_has_any_channels():"""
    stream = Stream(
        [
            __create_trace("H", [nan, 1, 1, nan, nan]),
            __create_trace("Z", [0, 0, 0, 1, 1, 1]),
            __create_trace("E", [nan, nan, nan, nan, nan]),
        ]
    )
    for trace in stream:
        # set time of first sample
        trace.stats.starttime = UTCDateTime("2015-01-01T00:00:00Z")
        # set sample rate to 1 second
        trace.stats.delta = 1
        trace.stats.npts = len(trace.data)
    # check for channels
    starttime = stream[0].stats.starttime
    endtime = stream[0].stats.endtime
    assert_equal(
        TimeseriesUtility.has_any_channels(stream, ["H", "Z"], starttime, endtime), True
    )
    assert_equal(
        TimeseriesUtility.has_any_channels(stream, ["H", "Z", "E"], starttime, endtime),
        True,
    )
    assert_equal(
        TimeseriesUtility.has_any_channels(stream, ["E"], starttime, endtime), False
    )
def test_merge_streams():
    """TimeseriesUtility_test.test_merge_streams()

    confirm merge streams treats empty channels correctly
    """
    trace1 = __create_trace("H", [1, 1, 1, 1])
    trace2 = __create_trace("E", [2, numpy.nan, numpy.nan, 2])
    trace3 = __create_trace("F", [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
    trace4 = __create_trace("H", [2, 2, 2, 2])
    trace5 = __create_trace("E", [3, numpy.nan, numpy.nan, 3])
    trace6 = __create_trace("F", [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
    npts1 = len(trace1.data)
    npts2 = len(trace4.data)
    timeseries1 = Stream(traces=[trace1, trace2, trace3])
    timeseries2 = Stream(traces=[trace4, trace5, trace6])
        trace.stats.starttime = UTCDateTime("2018-01-01T00:00:00Z")
        trace.stats.npts = npts1
    for trace in timeseries2:
        trace.stats.starttime = UTCDateTime("2018-01-01T00:02:00Z")
    merged_streams1 = TimeseriesUtility.merge_streams(timeseries1)
    # Make sure the empty 'F' was not removed from stream
    assert_equal(1, len(merged_streams1.select(channel="F")))
    # Merge multiple streams with overlapping timestamps
    timeseries = timeseries1 + timeseries2
    merged_streams = TimeseriesUtility.merge_streams(timeseries)
    assert_equal(len(merged_streams), len(timeseries1))
    assert_equal(len(merged_streams[0]), 6)
    assert_equal(len(merged_streams[2]), 6)
    assert_almost_equal(merged_streams.select(channel="H")[0].data, [1, 1, 2, 2, 2, 2])
        merged_streams.select(channel="E")[0].data, [2, numpy.nan, 3, 2, numpy.nan, 3]
    )
    assert_almost_equal(merged_streams.select(channel="F")[0].data, [numpy.nan] * 6)
    trace7 = __create_trace("H", [1, 1, 1, 1])
    trace8 = __create_trace("E", [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
    trace9 = __create_trace("F", [numpy.nan, numpy.nan, numpy.nan, numpy.nan])
    timeseries3 = Stream(traces=[trace7, trace8, trace9])
    npts3 = len(trace7.data)
    for trace in timeseries3:
        trace.stats.starttime = UTCDateTime("2018-01-01T00:00:00Z")
        trace.stats.npts = npts3
    merged_streams3 = TimeseriesUtility.merge_streams(timeseries3)
    assert_equal(len(timeseries3), len(merged_streams3))
    assert_almost_equal(timeseries3.select(channel="H")[0].data, [1, 1, 1, 1])
    assert_equal(numpy.isnan(timeseries3.select(channel="E")[0].data).all(), True)
    assert_equal(numpy.isnan(timeseries3.select(channel="F")[0].data).all(), True)

    trace10 = __create_trace("H", [1, 1, numpy.nan, numpy.nan, 1, 1])
    trace11 = __create_trace("H", [2, 2, 2, 2])
    trace10.stats.starttime = UTCDateTime("2018-01-01T00:00:00Z")
    trace11.stats.starttime = UTCDateTime("2018-01-01T00:01:00Z")
    timeseries4 = Stream(traces=[trace10, trace11])
    merged4 = TimeseriesUtility.merge_streams(timeseries4)
    assert_equal(len(merged4[0].data), 6)
    assert_almost_equal(merged4.select(channel="H")[0].data, [1, 2, 2, 2, 1, 1])
    """TimeseriesUtility_test.test_pad_timeseries()"""
    trace1 = _create_trace([1, 1, 1, 1, 1], "H", UTCDateTime("2018-01-01"))
    trace2 = _create_trace([2, 2], "E", UTCDateTime("2018-01-01"))
    timeseries = Stream(traces=[trace1, trace2])
    TimeseriesUtility.pad_timeseries(
        timeseries=timeseries,
        starttime=trace1.stats.starttime,
        endtime=trace1.stats.endtime,
    )
    assert_equal(len(trace1.data), len(trace2.data))
    assert_equal(trace1.stats.starttime, trace2.stats.starttime)
    assert_equal(trace1.stats.endtime, trace2.stats.endtime)
    # change starttime by less than 1 delta
    starttime = trace1.stats.starttime
    endtime = trace1.stats.endtime
    TimeseriesUtility.pad_timeseries(timeseries, starttime - 30, endtime + 30)
    assert_equal(trace1.stats.starttime, starttime)
    # Change starttime by more than 1 delta
    TimeseriesUtility.pad_timeseries(timeseries, starttime - 90, endtime + 90)
    assert_equal(trace1.stats.starttime, starttime - 60)
    assert_equal(numpy.isnan(trace1.data[0]), numpy.isnan(numpy.NaN))
    """TimeseriesUtility_test.test_pad_and_trim_trace()"""
    trace = _create_trace([0, 1, 2, 3, 4], "X", UTCDateTime("2018-01-01"))
    assert_equal(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
    assert_equal(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
    # starttime between first and second sample
    # expect first sample to be removed, start at next sample, end at same
    TimeseriesUtility.pad_and_trim_trace(
        trace,
        starttime=UTCDateTime("2018-01-01T00:00:30Z"),
        endtime=trace.stats.endtime,
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2018-01-01T00:01:00Z"))
    assert_equal(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
    assert_array_equal(trace.data, [1, 2, 3, 4])
    # endtime between last and second to last samples
    TimeseriesUtility.pad_and_trim_trace(
        trace,
        starttime=UTCDateTime("2018-01-01T00:00:30Z"),
        endtime=UTCDateTime("2018-01-01T00:03:50Z"),
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2018-01-01T00:01:00Z"))
    assert_equal(trace.stats.endtime, UTCDateTime("2018-01-01T00:03:00Z"))
    assert_array_equal(trace.data, [1, 2, 3])
    # pad outward
    TimeseriesUtility.pad_and_trim_trace(
        trace,
        starttime=UTCDateTime("2018-01-01T00:00:00Z"),
        endtime=UTCDateTime("2018-01-01T00:05:00Z"),
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
    assert_equal(trace.stats.endtime, UTCDateTime("2018-01-01T00:05:00Z"))
    assert_array_equal(trace.data, [numpy.nan, 1, 2, 3, numpy.nan, numpy.nan])
    # remove exactly one sample
    TimeseriesUtility.pad_and_trim_trace(
        trace,
        starttime=UTCDateTime("2018-01-01T00:00:00Z"),
        endtime=UTCDateTime("2018-01-01T00:04:00Z"),
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
    assert_equal(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
    assert_array_equal(trace.data, [numpy.nan, 1, 2, 3, numpy.nan])
    # pad start and trim end
    TimeseriesUtility.pad_and_trim_trace(
        trace,
        starttime=UTCDateTime("2017-12-31T23:58:59Z"),
        endtime=UTCDateTime("2018-01-01T00:03:00Z"),
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2017-12-31T23:59:00Z"))
    assert_equal(trace.stats.endtime, UTCDateTime("2018-01-01T00:03:00Z"))
    assert_array_equal(trace.data, [numpy.nan, numpy.nan, 1, 2, 3])
    # pad end and trim start
    TimeseriesUtility.pad_and_trim_trace(
        trace,
        starttime=UTCDateTime("2018-01-01T00:00:00Z"),
        endtime=UTCDateTime("2018-01-01T00:04:00Z"),
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2018-01-01T00:00:00Z"))
    assert_equal(trace.stats.endtime, UTCDateTime("2018-01-01T00:04:00Z"))
    assert_array_equal(trace.data, [numpy.nan, 1, 2, 3, numpy.nan])


def test_pad_and_trim_trace_fixfloat():
    """TimeseriesUtility_test.test_pad_and_trim_trace_fixfloat()
    This tests whether pad_and_trim_trace() handles a known
    floating point precision trouble-maker encountered with
    UTCDateTimes correctly.
    """
    trace = _create_trace(
        numpy.linspace(1, 56, 56), "X", UTCDateTime("2020-05-28T15:53:50.7"), delta=0.1
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2020-05-28T15:53:50.7"))
    assert_equal(trace.stats.endtime, UTCDateTime("2020-05-28T15:53:56.2"))
    # This should create a 70 sample trace of 10 Hz data, inclusive of the
    # known startime and endtime. Early versions of pad_and_trim_trace() did
    # not handle this scenario correctly, returning 68 samples, and missing
    # both the 1st and last of the expected samples.
    TimeseriesUtility.pad_and_trim_trace(
        trace,
        starttime=UTCDateTime("2020-05-28T15:53:50.0"),
        endtime=UTCDateTime("2020-05-28T15:53:56.9"),
    )
    assert_equal(trace.stats.starttime, UTCDateTime("2020-05-28T15:53:50.0"))
    assert_equal(trace.stats.endtime, UTCDateTime("2020-05-28T15:53:56.9"))
    assert_array_equal(
        trace.data,
        numpy.concatenate(
            ([numpy.nan] * 7, numpy.linspace(1, 56, 56), [numpy.nan] * 7)
        ),
    )


def test_round_usecs():
    """TimeseriesUtility_test.test_round_usecs()
    This tests whether microsecond values are rounded or
    not depending on residual microsecond values
    """
    # test case with no residual microseconds
    time = TimeseriesUtility.round_usecs(UTCDateTime("2020-10-07T00:00:00Z"))
    assert_equal(time, UTCDateTime("2020-10-07T00:00:00Z"))
    # test case with residual microseconds
    time = TimeseriesUtility.round_usecs(UTCDateTime("2020-10-07T00:00:00.995600Z"))
    assert_equal(time, UTCDateTime("2020-10-07T00:00:00.996000Z"))


def _create_trace(data, channel, starttime, delta=60.0):
    stats = Stats()
    stats.channel = channel
    stats.delta = delta
    stats.starttime = starttime
    stats.npts = len(data)
    data = numpy.array(data, dtype=numpy.float64)
    return Trace(data, stats)