Newer
Older
"""ImagCDFFactory Implementation Using cdflib
This module provides the ImagCDFFactory class for creating and writing
geomagnetic time series data in the ImagCDF format using the cdflib library.
The ImagCDF format is based on NASA's Common Data Format (CDF) and is designed
to store geomagnetic data with high precision.
References:
- ImagCDF Format Documentation: https://intermagnet.org/docs/technical/im_tn_8_ImagCDF.pdf
- CDF Library: http://cdf.gsfc.nasa.gov/
"""
from __future__ import absolute_import, print_function
from io import BytesIO
import os
import sys
from typing import List, Optional, Union
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
from obspy import Stream, Trace, UTCDateTime
from geomagio.TimeseriesFactory import TimeseriesFactory
from .geomag_types import DataInterval, DataType
from .TimeseriesFactoryException import TimeseriesFactoryException
from . import TimeseriesUtility
from . import Util
import cdflib
import tempfile
class IMCDFPublicationLevel:
"""Handles publication levels and mapping between data types and levels.
The ImagCDF format uses publication levels to describe the processing
level of the data. This class maps data types (e.g., 'variation', 'definitive')
to their corresponding publication levels as defined in the ImagCDF documentation.
Publication Levels:
1: Raw data with no processing.
2: Edited data with preliminary baselines.
3: Data suitable for initial bulletins or quasi-definitive publication.
4: Definitive data with no further changes expected.
Reference:
- ImagCDF Documentation Section 4.2: Attributes that Uniquely Identify the Data
"""
class PublicationLevel:
LEVEL_1 = "1"
LEVEL_2 = "2"
LEVEL_3 = "3"
LEVEL_4 = "4"
TYPE_TO_LEVEL = {
"none": PublicationLevel.LEVEL_1,
"variation": PublicationLevel.LEVEL_1,
"reported": PublicationLevel.LEVEL_1,
"provisional": PublicationLevel.LEVEL_2,
"adjusted": PublicationLevel.LEVEL_2,
"quasi-definitive": PublicationLevel.LEVEL_3,
"quasidefinitive": PublicationLevel.LEVEL_3,
"definitive": PublicationLevel.LEVEL_4,
}
def __init__(self, data_type: Optional[str] = None):
"""Initialize with a data type to determine the publication level."""
if data_type:
self.level = self.TYPE_TO_LEVEL.get(data_type.lower())
else:
raise ValueError("data_type must be provided.")
if not self.level:
raise ValueError(f"Unsupported data_type: {data_type}")
def to_string(self) -> str:
"""Return the publication level as a string."""
return self.level
class ImagCDFFactory(TimeseriesFactory):
"""Factory for creating and writing ImagCDF formatted CDF files.
This class extends the TimeseriesFactory to support writing geomagnetic
time series data to files in the ImagCDF format using the cdflib library.
"""
def __init__(
self,
observatory: Optional[str] = None,
channels: List[str] = ("H", "D", "Z", "F"),
type: DataType = "variation",
interval: DataInterval = "minute",
urlTemplate="file://{obs}_{dt}_{t}.cdf",
urlInterval: int = -1,
):
"""
Initialize the ImagCDFFactory with default parameters.
Parameters:
- observatory: IAGA code of the observatory (e.g., 'BOU').
- channels: List of geomagnetic elements (e.g., ['H', 'D', 'Z', 'F']).
- type: Data type indicating the processing level (e.g., 'variation', 'definitive').
- interval: Data interval (e.g., 'minute', 'second').
- urlTemplate: Template for generating file URLs or paths.
- urlInterval: Interval size for splitting data into multiple files.
"""
super().__init__(
observatory=observatory,
channels=channels,
type=type,
interval=interval,
urlTemplate=urlTemplate,
urlInterval=urlInterval,
)
def parse_string(self, data: str, **kwargs):
"""Parse ImagCDF formatted string data into a Stream.
Note: Parsing from strings is not implemented in this factory.
"""
raise NotImplementedError('"parse_string" not implemented')
def write_file(self, fh, timeseries: Stream, channels: List[str]):
# Create a temporary file to write the CDF data
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file_path = tmp_file.name + ".cdf"
try:
# Initialize the CDF writer
cdf_writer = cdflib.cdfwrite.CDF(tmp_file_path)
global_attrs = self._create_global_attributes(timeseries, channels)
cdf_writer.write_globalattrs(global_attrs)
time_vars = self._create_time_stamp_variables(timeseries)
for ts_name, ts_data in time_vars.items():
'Variable': ts_name,
'Data_Type': 33, # CDF_TIME_TT2000
'Num_Elements': 1,
'Rec_Vary': True,
'Var_Type': 'zVariable',
'Dim_Sizes': [],
'Sparse': 'no_sparse',
'Compress': 6,
'Pad': None,
# Define time variable attributes
var_attrs = self._create_time_var_attrs(ts_name)
# Write time variable
cdf_writer.write_var(var_spec, var_attrs, ts_data)
for trace in timeseries:
channel = trace.stats.channel
var_name = f"GeomagneticField{channel}"
data_type = self._get_cdf_data_type(trace)
num_elements = 1
CDF_CHAR = 51
CDF_UCHAR = 52
if data_type in [CDF_CHAR, CDF_UCHAR]: # Handle string types
num_elements = len(trace.data[0]) if len(trace.data) > 0 else 1
'Variable': var_name,
'Data_Type': data_type,
'Num_Elements': num_elements,
'Rec_Vary': True,
'Var_Type': 'zVariable',
'Dim_Sizes': [],
'Sparse': 'no_sparse',
'Compress': 6,
'Pad': None,
var_attrs = self._create_var_attrs(trace)
# Write data variable
cdf_writer.write_var(var_spec, var_attrs, trace.data)
# Close the CDF writer
cdf_writer.close()
# Copy the temporary CDF file to the final file handle
with open(tmp_file_path, "rb") as tmp:
cdf_data = tmp.read()
fh.write(cdf_data)
finally:
# Cleanup the temporary file
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
def put_timeseries(
self,
timeseries: Stream,
starttime: Optional[UTCDateTime] = None,
endtime: Optional[UTCDateTime] = None,
channels: Optional[List[str]] = None,
type: Optional[DataType] = None,
interval: Optional[DataInterval] = None,
):
"""
Store timeseries data in ImagCDF format using cdflib.
This method writes the timeseries data to one or more files, depending
on the specified urlInterval.
Parameters:
- timeseries: ObsPy Stream containing the geomagnetic data.
- starttime: Start time of the data to be written.
- endtime: End time of the data to be written.
- channels: List of channels to include in the output file.
- type: Data type indicating the processing level.
- interval: Data interval of the data.
"""
if len(timeseries) == 0:
# No data to store
return
channels = channels or self.channels
type = type or self.type
interval = interval or self.interval
# Extract metadata from the first trace
stats = timeseries[0].stats
delta = stats.delta # Sample rate
observatory = stats.station
starttime = starttime or stats.starttime
endtime = endtime or stats.endtime
# Split data into intervals if necessary
urlIntervals = Util.get_intervals(
starttime=starttime, endtime=endtime, size=self.urlInterval
)
for urlInterval in urlIntervals:
interval_start = urlInterval["start"]
interval_end = urlInterval["end"]
if interval_start != interval_end:
interval_end = interval_end - delta
url = self._get_url(
observatory=observatory,
date=interval_start,
type=type,
interval=interval,
channels=channels,
)
# Handle 'stdout' output
if url == 'stdout':
# Write directly to stdout
fh = sys.stdout.buffer
url_data = timeseries.slice(
starttime=interval_start,
endtime=interval_end,
)
self.write_file(fh, url_data, channels)
continue # Proceed to next interval if any
# Handle 'file://' output
elif url.startswith('file://'):
# Get the file path from the URL
url_file = Util.get_file_from_url(url, createParentDirectory=False)
url_data = timeseries.slice(
starttime=interval_start,
endtime=interval_end,
)
# Check if the file already exists to merge data
if os.path.isfile(url_file):
try:
# Read existing data to merge with new data
existing_cdf = cdflib.cdfread.CDF(url_file)
existing_stream = self._read_cdf(existing_cdf)
existing_cdf.close()
existing_data = existing_stream
# Merge existing data with new data
for trace in existing_data:
new_trace = url_data.select(
network=trace.stats.network,
station=trace.stats.station,
channel=trace.stats.channel,
)
if new_trace:
trace.data = np.concatenate((trace.data, new_trace[0].data))
url_data = existing_data + url_data
except Exception as e:
# Log the exception if needed
print(f"Warning: Could not read existing CDF file '{url_file}': {e}", file=sys.stderr)
# Proceed with new data
# Pad the data with NaNs to ensure it fits the interval
url_data.trim(
starttime=interval_start,
endtime=interval_end,
nearest_sample=False,
pad=True,
fill_value=np.nan,
)
# Write the data to the CDF file
with open(url_file, "wb") as fh:
self.write_file(fh, url_data, channels)
else:
# Unsupported URL scheme encountered
raise TimeseriesFactoryException("Unsupported URL scheme in urlTemplate")
def _create_global_attributes(self, timeseries: Stream, channels: List[str]) -> dict:
"""
Create a dictionary of global attributes for the ImagCDF file.
These attributes apply to all the data in the file and include metadata
such as observatory information, data publication level, and format
descriptions.
References:
- ImagCDF Documentation Section 4: ImagCDF Global Attributes
"""
stats = timeseries[0].stats if len(timeseries) > 0 else None
# Extract metadata from stats or fallback to defaults
observatory_name = getattr(stats, 'station_name', None) or self.observatory or "Unknown Observatory"
station = getattr(stats, 'station', None) or "Unknown Iaga Code"
institution = getattr(stats, 'agency_name', None) or "Unknown Institution"
latitude = getattr(stats, 'geodetic_latitude', None) or 0.0
longitude = getattr(stats, 'geodetic_longitude', None) or 0.0
elevation = getattr(stats, 'elevation', None) or 99_999.0
vector_orientation = getattr(stats, 'sensor_orientation', None) or ""
data_interval_type = getattr(stats, 'data_interval_type', None) or self.interval
publication_level = IMCDFPublicationLevel(data_type=self.type).to_string()
global_attrs = {
'FormatDescription': {0: 'INTERMAGNET CDF Format'},
'FormatVersion': {0: '1.2'},
'Title': {0: 'Geomagnetic time series data'},
'IagaCode': {0: station},
'ElementsRecorded': {0: ''.join(channels)},
'PublicationLevel': {0: publication_level},
'PublicationDate': {0: [cdflib.cdfepoch.timestamp_to_tt2000(datetime.timestamp(datetime.now(timezone.utc))), "cdf_time_tt2000"]},
'Latitude': {0: np.array([latitude], dtype=np.float64)},
'Longitude': {0: np.array([longitude], dtype=np.float64)},
'Elevation': {0: np.array([elevation], dtype=np.float64)},
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
'Institution': {0: institution},
'VectorSensOrient': {0: vector_orientation}, #remove F - because its a calculation, not an element?
'StandardLevel': {0: 'None'}, # Set to 'None'
# Temporarily Omit 'StandardName', 'StandardVersion', 'PartialStandDesc'
'Source': {0: 'institute'}, # "institute" - if the named institution provided the data, “INTERMAGNET” - if the data file has been created by INTERMAGNET from another data source, “WDC” - if the World Data Centre has created the file from another data source
# 'TermsOfUse': {0: self.getINTERMAGNETTermsOfUse()},
# 'UniqueIdentifier': {0: ''},
# 'ParentIdentifiers': {0: ''},
# 'ReferenceLinks': {0: ''}, #links to /ws, plots, USGS.gov
}
return global_attrs
def _create_time_stamp_variables(self, timeseries: Stream) -> dict:
vector_times = None
scalar_times = None
for trace in timeseries:
channel = trace.stats.channel
times = [
(trace.stats.starttime + trace.stats.delta * i).datetime
for i in range(trace.stats.npts)
]
# Convert timestamps to TT2000 format required by CDF
tt2000_times = cdflib.cdfepoch.timestamp_to_tt2000([time.timestamp() for time in times])
# tt2000_times = cdflib.cdfepoch.compute_tt2000(times) #this does not work
if channel in self._get_vector_elements():
if vector_times is None:
vector_times = tt2000_times
else:
if not np.array_equal(vector_times, tt2000_times):
raise ValueError("Time stamps for vector channels are not the same.")
elif channel in self._get_scalar_elements():
if scalar_times is None:
scalar_times = tt2000_times
else:
if not np.array_equal(scalar_times, tt2000_times):
raise ValueError("Time stamps for scalar channels are not the same.")
else:
# Handle other channels if necessary
pass
time_vars = {}
if vector_times is not None:
time_vars['GeomagneticVectorTimes'] = vector_times
if scalar_times is not None:
time_vars['GeomagneticScalarTimes'] = scalar_times
return time_vars
def _create_var_spec(
self,
var_name: str,
data_type: str,
num_elements: int,
var_type: str,
dim_sizes: List[int],
sparse: bool,
compress: int,
pad: Optional[Union[str, np.ndarray]],
) -> dict:
"""
Create a variable specification dictionary for cdflib.
This is used to define the properties of a variable when writing it to
the CDF file.
Parameters:
- var_name: Name of the variable.
- data_type: CDF data type.
- num_elements: Number of elements per record.
- var_type: Variable type ('zVariable' or 'rVariable').
- dim_sizes: Dimensions of the variable (empty list for 0D).
- sparse: Whether the variable uses sparse records.
- compress: Compression level.
- pad: Pad value for sparse records.
Reference:
- CDF User's Guide: Variable Specification
"""
var_spec = {
'Variable': var_name,
'Data_Type': data_type,
'Num_Elements': num_elements,
'Rec_Vary': True,
'Var_Type': var_type,
'Dim_Sizes': dim_sizes,
'Sparse': 'no_sparse' if not sparse else 'pad_sparse',
'Compress': compress,
'Pad': pad,
}
return var_spec
def _create_var_attrs(self, trace: Trace) -> dict:
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
channel = trace.stats.channel
fieldnam = f"Geomagnetic Field Element {channel}" # “Geomagnetic Field Element ” + the element code or “Temperature ” + the name of the location where the temperature was recorded.
units = '' # Must be one of “nT”, “Degrees of arc” or “Celsius”
if channel == 'D':
units = 'Degrees of arc'
validmin = -360.0
validmax = 360.0 # A full circle representation
elif channel == 'I':
units = 'Degrees of arc'
validmin = -90.0
validmax = 90.0 #The magnetic field vector can point straight down (+90°), horizontal (0°), or straight up (-90°).
elif 'Temperature' in channel:
units = 'Celsius'
fieldnam = f"Temperature {trace.stats.location}"
elif channel == 'F':
units = 'nT'
validmin = 0.0 # negative magnetic field intestity not physically meaningful.
validmax = 79_999.0
elif channel in ['X', 'Y', 'Z', 'H', 'E', 'V', 'G']:
units = 'nT'
validmin = -79_999.0
validmax = 79_999.0
if channel in self._get_vector_elements():
depend_0 = 'GeomagneticVectorTimes'
elif channel in self._get_scalar_elements():
depend_0 = 'GeomagneticScalarTimes'
else:
depend_0 = None # Handle other cases if necessary
var_attrs = {
'FIELDNAM': fieldnam,
'UNITS': units,
'FILLVAL': 99999.0,
'VALIDMIN': validmin,
'VALIDMAX': validmax,
'DEPEND_0': depend_0,
'DISPLAY_TYPE': 'time_series',
'LABLAXIS': channel,
}
return var_attrs
def _create_time_var_attrs(self, ts_name: str) -> dict:
"""
Create a dictionary of time variable attributes.
These attributes provide metadata for time variables.
Note: None of these attributes are required for the time stamp variables GeomagneticVectorTimes and GeomagneticScalarTimes.
Reference:
- ImagCDF Documentation Section 3: ImagCDF Data
"""
# var_attrs = {
# 'UNITS': 'TT2000',
# 'DISPLAY_TYPE': 'time_series',
# 'LABLAXIS': 'Time',
# }
# return var_attrs
return {}
def _get_cdf_data_type(self, trace: Trace) -> int:
"""
Map ObsPy trace data type to CDF data type.
Determines the appropriate CDF data type based on the NumPy data type
of the trace data.
Returns:
- CDF_DOUBLE (45) for floating-point data.
- CDF_INT4 (41) for integer data.
Reference:
- CDF Data Types: http://cdf.gsfc.nasa.gov/html/cdfdatatypes.html
"""
# CDF data type constants
CDF_DOUBLE = 45 # CDF_DOUBLE corresponds to 64-bit float
CDF_INT4 = 41 # CDF_INT4 corresponds to 32-bit int
if trace.data.dtype in [np.float32, np.float64]:
return CDF_DOUBLE
elif trace.data.dtype in [np.int32, np.int64]:
return CDF_INT4
else:
# Default to double precision float
return CDF_DOUBLE
def _read_cdf(self, cdf: cdflib.cdfread.CDF) -> Stream:
"""
Read CDF data into an ObsPy Stream.
This method reads the data variables and their corresponding time
variables from a CDF file and constructs an ObsPy Stream.
Parameters:
- cdf: cdflib CDF object representing the open CDF file.
Returns:
- An ObsPy Stream containing the data from the CDF file.
"""
stream = Stream()
# Read time variables
time_vars = {}
for var in cdf.cdf_info()['zVariables']:
if var.endswith('Time'):
time_data = cdf.varget(var)
# Convert TT2000 to UTCDateTime
utc_times = [UTCDateTime(t) for t in cdflib.cdfepoch.to_datetime(time_data)]
time_vars[var] = utc_times
# Read data variables
for var in cdf.cdf_info()['zVariables']:
if not var.endswith('Time'):
data = cdf.varget(var)
attrs = cdf.varattsget(var)
if 'DEPEND_0' in attrs:
ts_name = attrs['DEPEND_0']
if ts_name in time_vars:
times = time_vars[ts_name]
if len(times) > 1:
delta = times[1] - times[0] # Calculate sample interval
else:
delta = 60 if self.interval == 'minute' else 1
trace = Trace(
data=data,
header={
'station': self.observatory,
'channel': var,
'starttime': times[0],
'delta': delta,
}
)
stream += trace
return stream
@staticmethod
def getINTERMAGNETTermsOfUse() -> str:
"""
Return the INTERMAGNET Terms of Use.
These terms should be included in the 'TermsOfUse' global attribute
as per the ImagCDF specification.
Reference:
- ImagCDF Documentation Section 4.5: Attributes that Relate to Publication of the Data
"""
return (
"CONDITIONS OF USE FOR DATA PROVIDED THROUGH INTERMAGNET:\n"
"The data made available through INTERMAGNET are provided for\n"
"your use and are not for commercial use or sale or distribution\n"
"to third parties without the written permission of the institute\n"
"(http://www.intermagnet.org/Institutes_e.html) operating\n"
"the observatory. Publications making use of the data\n"
"should include an acknowledgment statement of the form given below.\n"
"A citation reference should be sent to the INTERMAGNET Secretary\n"
"(secretary@intermagnet.org) for inclusion in a publications list\n"
"on the INTERMAGNET website.\n"
"\n"
" ACKNOWLEDGEMENT OF DATA FROM OBSERVATORIES\n"
" PARTICIPATING IN INTERMAGNET\n"
"We offer two acknowledgement templates. The first is for cases\n"
"where data from many observatories have been used and it is not\n"
"practical to list them all, or each of their operating institutes.\n"
"The second is for cases where research results have been produced\n"
"using a smaller set of observatories.\n"
"\n"
" Suggested Acknowledgement Text (template 1)\n"
"The results presented in this paper rely on data collected\n"
"at magnetic observatories. We thank the national institutes that\n"
"support them and INTERMAGNET for promoting high standards of\n"
"magnetic observatory practice (www.intermagnet.org).\n"
"\n"
" Suggested Acknowledgement Text (template 2)\n"
"The results presented in this paper rely on the data\n"
"collected at <observatory name>. We thank <institute name>,\n"
"for supporting its operation and INTERMAGNET for promoting high\n"
"standards of magnetic observatory practice (www.intermagnet.org).\n"
)
def _get_url(
self,
observatory: str,
date: UTCDateTime,
type: DataType = "variation",
interval: DataInterval = "minute",
channels: Optional[List[str]] = None,
) -> str:
"""
Generate the file URL specific to ImagCDF conventions.
This method constructs the filename based on the ImagCDF naming
conventions, which include the observatory code, date-time formatted
according to the data interval, and the publication level.
Parameters:
- observatory: IAGA code of the observatory.
- date: Start date for the file.
- type: Data type indicating the processing level.
- interval: Data interval (e.g., 'minute', 'second').
- channels: List of channels (optional).
Returns:
- The formatted file URL or path.
Reference:
- ImagCDF Documentation Section 5: ImagCDF File Names
"""
# Get the publication level for the type
publication_level = IMCDFPublicationLevel(data_type=type).to_string()
# Determine filename date format based on interval
if interval == "year":
date_format = date.strftime("%Y")
elif interval == "month":
date_format = date.strftime("%Y%m")
elif interval == "day":
date_format = date.strftime("%Y%m%d")
elif interval == "hour":
date_format = date.strftime("%Y%m%d_%H")
elif interval == "minute":
date_format = date.strftime("%Y%m%d_%H%M")
elif interval == "second":
date_format = date.strftime("%Y%m%d_%H%M%S")
else:
raise ValueError(f"Unsupported interval: {interval}")
# Default filename following ImagCDF convention
# Filename format: [iaga-code]_[date-time]_[publication-level].cdf
filename = f"{observatory.lower()}_{date_format}_{publication_level}.cdf"
# If the urlTemplate explicitly specifies 'stdout', return 'stdout'
if self.urlTemplate.lower() == "stdout":
return "stdout"
# Prepare parameters for templating
params = {
"date": date.datetime,
"i": self._get_interval_abbreviation(interval),
"interval": self._get_interval_name(interval),
"minute": date.hour * 60 + date.minute,
"month": date.strftime("%b").lower(),
"MONTH": date.strftime("%b").upper(),
"obs": observatory.lower(),
"OBS": observatory.upper(),
"t": publication_level,
"type": self._get_type_name(type),
"julian": date.strftime("%j"),
"year": date.strftime("%Y"),
"ymd": date.strftime("%Y%m%d"),
"dt": date_format, # Add the date-time formatted string
}
# Attempt to use the template provided in urlTemplate
if "{" in self.urlTemplate and "}" in self.urlTemplate:
try:
return self.urlTemplate.format(**params)
except KeyError as e:
raise TimeseriesFactoryException(f"Invalid placeholder in urlTemplate: {e}")
# If the urlTemplate doesn't support placeholders, assume 'file://' scheme
if self.urlTemplate.startswith("file://"):
base_path = self.urlTemplate[7:] # Strip "file://"
if not base_path or base_path == "{obs}_{dt}_{t}.cdf":
base_path = os.getcwd() # Default to current working directory
return os.path.join(base_path, filename)
# Unsupported URL scheme
raise TimeseriesFactoryException(
f"Unsupported URL scheme in urlTemplate: {self.urlTemplate}"
)
# Placeholder methods for interval and type names/abbreviations
def _get_interval_abbreviation(self, interval: DataInterval) -> str:
"""Get the abbreviation for the data interval."""
abbreviations = {
"year": "yr",
"month": "mon",
"day": "day",
"hour": "hr",
"minute": "min",
"second": "sec",
}
return abbreviations.get(interval, "min")
def _get_interval_name(self, interval: DataInterval) -> str:
"""Get the full name for the data interval."""
names = {
"year": "yearly",
"month": "monthly",
"day": "daily",
"hour": "hourly",
"minute": "minute",
"second": "second",
}
return names.get(interval, "minute")
def _get_type_name(self, type: DataType) -> str:
"""Get the full name for the data type."""
type_names = {
"variation": "variation",
"definitive": "definitive",
"quasi-definitive": "quasi-definitive",
"provisional": "provisional",
"adjusted": "adjusted",
"none": "none",
}
return type_names.get(type, "variation")
def _get_vector_elements(self):
return {'X', 'Y', 'Z', 'H', 'D', 'E', 'V', 'I', 'F'}
def _get_scalar_elements(self):
return {'S', 'G'}