Skip to content
Snippets Groups Projects
ImagCDFFactory.py 29.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    """ImagCDFFactory Implementation Using cdflib
    
    This module provides the ImagCDFFactory class for creating and writing
    geomagnetic time series data in the ImagCDF format using the cdflib library.
    The ImagCDF format is based on NASA's Common Data Format (CDF) and is designed
    to store geomagnetic data with high precision.
    
    References:
    
    - ImagCDF Technical Note: https://intermagnet.org/docs/technical/im_tn_8_ImagCDF.pdf
    - ImagCDF Official Documentation: https://tech-man.intermagnet.org/latest/appendices/dataformats.html#imagcdfv1-2-intermagnet-exchange-format
    - CDF: http://cdf.gsfc.nasa.gov/
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    """
    
    from __future__ import absolute_import, print_function
    from io import BytesIO
    import os
    import sys
    from typing import List, Optional, Union
    
    from datetime import datetime, timezone
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    import numpy as np
    from obspy import Stream, Trace, UTCDateTime
    
    from geomagio.TimeseriesFactory import TimeseriesFactory
    
    from geomagio.api.ws.Element import TEMPERATURE_ELEMENTS_ID
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    from .geomag_types import DataInterval, DataType
    from .TimeseriesFactoryException import TimeseriesFactoryException
    from . import TimeseriesUtility
    from . import Util
    
    import cdflib
    import tempfile
    
    
    class IMCDFPublicationLevel:
        """Handles publication levels and mapping between data types and levels.
    
        The ImagCDF format uses publication levels to describe the processing
        level of the data. This class maps data types (e.g., 'variation', 'definitive')
        to their corresponding publication levels as defined in the ImagCDF documentation.
    
        Publication Levels:
            1: Raw data with no processing.
            2: Edited data with preliminary baselines.
            3: Data suitable for initial bulletins or quasi-definitive publication.
            4: Definitive data with no further changes expected.
    
        Reference:
        - ImagCDF Documentation Section 4.2: Attributes that Uniquely Identify the Data
        """
    
        class PublicationLevel:
            LEVEL_1 = "1"
            LEVEL_2 = "2"
            LEVEL_3 = "3"
            LEVEL_4 = "4"
    
        TYPE_TO_LEVEL = {
            "none": PublicationLevel.LEVEL_1,
            "variation": PublicationLevel.LEVEL_1,
            "reported": PublicationLevel.LEVEL_1,
            "provisional": PublicationLevel.LEVEL_2,
            "adjusted": PublicationLevel.LEVEL_2,
            "quasi-definitive": PublicationLevel.LEVEL_3,
            "quasidefinitive": PublicationLevel.LEVEL_3,
            "definitive": PublicationLevel.LEVEL_4,
        }
    
        def __init__(self, data_type: Optional[str] = None):
            """Initialize with a data type to determine the publication level."""
            if data_type:
                self.level = self.TYPE_TO_LEVEL.get(data_type.lower())
            else:
                raise ValueError("data_type must be provided.")
    
            if not self.level:
                raise ValueError(f"Unsupported data_type: {data_type}")
    
        def to_string(self) -> str:
            """Return the publication level as a string."""
            return self.level
    
    
    class ImagCDFFactory(TimeseriesFactory):
        """Factory for creating and writing ImagCDF formatted CDF files.
    
        This class extends the TimeseriesFactory to support writing geomagnetic
        time series data to files in the ImagCDF format using the cdflib library.
        """
    
        def __init__(
            self,
            observatory: Optional[str] = None,
            channels: List[str] = ("H", "D", "Z", "F"),
            type: DataType = "variation",
            interval: DataInterval = "minute",
            urlTemplate="file://{obs}_{dt}_{t}.cdf",
            urlInterval: int = -1,
        ):
            """
            Initialize the ImagCDFFactory with default parameters.
    
            Parameters:
            - observatory: IAGA code of the observatory (e.g., 'BOU').
            - channels: List of geomagnetic elements (e.g., ['H', 'D', 'Z', 'F']).
            - type: Data type indicating the processing level (e.g., 'variation', 'definitive').
            - interval: Data interval (e.g., 'minute', 'second').
            - urlTemplate: Template for generating file URLs or paths.
            - urlInterval: Interval size for splitting data into multiple files.
            """
            super().__init__(
                observatory=observatory,
                channels=channels,
                type=type,
                interval=interval,
                urlTemplate=urlTemplate,
                urlInterval=urlInterval,
            )
    
        def parse_string(self, data: str, **kwargs):
            """Parse ImagCDF formatted string data into a Stream.
    
            Note: Parsing from strings is not implemented in this factory.
            """
            raise NotImplementedError('"parse_string" not implemented')
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
        def write_file(self, fh, timeseries: Stream, channels: List[str]):
            # Create a temporary file to write the CDF data
            with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
                tmp_file_path = tmp_file.name + ".cdf"
    
            try:
                # Initialize the CDF writer
    
                cdf_writer = cdflib.cdfwrite.CDF(tmp_file_path)
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
                # Write global attributes
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                global_attrs = self._create_global_attributes(timeseries, channels)
                cdf_writer.write_globalattrs(global_attrs)
    
    
                # Time variables
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                time_vars = self._create_time_stamp_variables(timeseries)
                for ts_name, ts_data in time_vars.items():
    
                    # Define time variable specification
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    var_spec = {
    
                        'Variable': ts_name,
                        'Data_Type': 33,  # CDF_TIME_TT2000
                        'Num_Elements': 1,
                        'Rec_Vary': True,
                        'Var_Type': 'zVariable',
                        'Dim_Sizes': [],
                        'Sparse': 'no_sparse',
                        'Compress': 6,
                        'Pad': None,
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    }
    
                    # Define time variable attributes
                    var_attrs = self._create_time_var_attrs(ts_name)
    
                    # Write time variable
                    cdf_writer.write_var(var_spec, var_attrs, ts_data)
    
                # Data variables
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                for trace in timeseries:
                    channel = trace.stats.channel
    
                    if channel in TEMPERATURE_ELEMENTS_ID:
                        temperature_index += 1 #MUST INCREMENT INDEX BEFORE USING
                        var_name = f"Temperature{temperature_index}"
                    else:
                        var_name = f"GeomagneticField{channel}"
    
                    data_type = self._get_cdf_data_type(trace)
                    num_elements = 1
                    CDF_CHAR = 51
                    CDF_UCHAR = 52
                    if data_type in [CDF_CHAR, CDF_UCHAR]:  # Handle string types
                        num_elements = len(trace.data[0]) if len(trace.data) > 0 else 1
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    var_spec = {
    
                        'Variable': var_name,
                        'Data_Type': data_type,
                        'Num_Elements': num_elements,
                        'Rec_Vary': True,
                        'Var_Type': 'zVariable',
                        'Dim_Sizes': [],
                        'Sparse': 'no_sparse',
                        'Compress': 6,
                        'Pad': None,
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    }
    
                    var_attrs = self._create_var_attrs(trace, temperature_index)
    
    
                    # Write data variable
                    cdf_writer.write_var(var_spec, var_attrs, trace.data)
    
                # Close the CDF writer
                cdf_writer.close()
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
                # Copy the temporary CDF file to the final file handle
                with open(tmp_file_path, "rb") as tmp:
                    cdf_data = tmp.read()
                    fh.write(cdf_data)
    
            finally:
                # Cleanup the temporary file
    
                os.remove(tmp_file_path)
    
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
        def put_timeseries(
            self,
            timeseries: Stream,
            starttime: Optional[UTCDateTime] = None,
            endtime: Optional[UTCDateTime] = None,
            channels: Optional[List[str]] = None,
            type: Optional[DataType] = None,
            interval: Optional[DataInterval] = None,
        ):
            """
            Store timeseries data in ImagCDF format using cdflib.
    
            This method writes the timeseries data to one or more files, depending
            on the specified urlInterval.
    
            Parameters:
            - timeseries: ObsPy Stream containing the geomagnetic data.
            - starttime: Start time of the data to be written.
            - endtime: End time of the data to be written.
            - channels: List of channels to include in the output file.
            - type: Data type indicating the processing level.
            - interval: Data interval of the data.
            """
            if len(timeseries) == 0:
                # No data to store
                return
    
            channels = channels or self.channels
            type = type or self.type
            interval = interval or self.interval
    
            # Extract metadata from the first trace
            stats = timeseries[0].stats
            delta = stats.delta  # Sample rate
            observatory = stats.station
            starttime = starttime or stats.starttime
            endtime = endtime or stats.endtime
    
            # Split data into intervals if necessary
            urlIntervals = Util.get_intervals(
                starttime=starttime, endtime=endtime, size=self.urlInterval
            )
            for urlInterval in urlIntervals:
                interval_start = urlInterval["start"]
                interval_end = urlInterval["end"]
                if interval_start != interval_end:
                    interval_end = interval_end - delta
                url = self._get_url(
                    observatory=observatory,
                    date=interval_start,
                    type=type,
                    interval=interval,
                    channels=channels,
                )
    
                # Handle 'stdout' output
                if url == 'stdout':
                    # Write directly to stdout
                    fh = sys.stdout.buffer
                    url_data = timeseries.slice(
                        starttime=interval_start,
                        endtime=interval_end,
                    )
                    self.write_file(fh, url_data, channels)
                    continue  # Proceed to next interval if any
    
                # Handle 'file://' output
                elif url.startswith('file://'):
                    # Get the file path from the URL
                    url_file = Util.get_file_from_url(url, createParentDirectory=False)
                    url_data = timeseries.slice(
                        starttime=interval_start,
                        endtime=interval_end,
                    )
    
                    # Check if the file already exists to merge data
                    if os.path.isfile(url_file):
                        try:
                            # Read existing data to merge with new data
                            existing_cdf = cdflib.cdfread.CDF(url_file)
                            existing_stream = self._read_cdf(existing_cdf)
                            existing_cdf.close()
                            existing_data = existing_stream
    
                            # Merge existing data with new data
                            for trace in existing_data:
                                new_trace = url_data.select(
                                    network=trace.stats.network,
                                    station=trace.stats.station,
                                    channel=trace.stats.channel,
                                )
                                if new_trace:
                                    trace.data = np.concatenate((trace.data, new_trace[0].data))
                            url_data = existing_data + url_data
                        except Exception as e:
                            # Log the exception if needed
                            print(f"Warning: Could not read existing CDF file '{url_file}': {e}", file=sys.stderr)
                            # Proceed with new data
    
                    # Pad the data with NaNs to ensure it fits the interval
                    url_data.trim(
                        starttime=interval_start,
                        endtime=interval_end,
                        nearest_sample=False,
                        pad=True,
                        fill_value=np.nan,
                    )
    
                    # Write the data to the CDF file
                    with open(url_file, "wb") as fh:
                        self.write_file(fh, url_data, channels)
    
                else:
                    # Unsupported URL scheme encountered
                    raise TimeseriesFactoryException("Unsupported URL scheme in urlTemplate")
    
        def _create_global_attributes(self, timeseries: Stream, channels: List[str]) -> dict:
            """
            Create a dictionary of global attributes for the ImagCDF file.
    
            These attributes apply to all the data in the file and include metadata
            such as observatory information, data publication level, and format
            descriptions.
    
            References:
            - ImagCDF Documentation Section 4: ImagCDF Global Attributes
            """
            stats = timeseries[0].stats if len(timeseries) > 0 else None
    
            # Extract metadata from stats or fallback to defaults
            observatory_name = getattr(stats, 'station_name', None) or self.observatory or "Unknown Observatory"
            station = getattr(stats, 'station', None) or "Unknown Iaga Code"
            institution = getattr(stats, 'agency_name', None) or "Unknown Institution"
            latitude = getattr(stats, 'geodetic_latitude', None) or 0.0
            longitude = getattr(stats, 'geodetic_longitude', None) or 0.0
            elevation = getattr(stats, 'elevation', None) or 99_999.0
            vector_orientation = getattr(stats, 'sensor_orientation', None) or ""
            data_interval_type = getattr(stats, 'data_interval_type', None) or self.interval
            publication_level = IMCDFPublicationLevel(data_type=self.type).to_string()
            global_attrs = {
                'FormatDescription': {0: 'INTERMAGNET CDF Format'},
                'FormatVersion': {0: '1.2'},
                'Title': {0: 'Geomagnetic time series data'},
                'IagaCode': {0: station},
                'ElementsRecorded': {0: ''.join(channels)},
                'PublicationLevel': {0: publication_level},
    
                'PublicationDate': {0: [cdflib.cdfepoch.timestamp_to_tt2000(datetime.timestamp(datetime.now(timezone.utc))), "cdf_time_tt2000"]},
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                'ObservatoryName': {0: observatory_name},
    
                'Latitude': {0: np.array([latitude], dtype=np.float64)},
                'Longitude': {0: np.array([longitude], dtype=np.float64)},
                'Elevation': {0: np.array([elevation], dtype=np.float64)},
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                'Institution': {0: institution},
                'VectorSensOrient': {0: vector_orientation}, #remove F - because its a calculation, not an element?
                'StandardLevel': {0: 'None'},  # Set to 'None'
                # Temporarily Omit 'StandardName', 'StandardVersion', 'PartialStandDesc'
                'Source': {0: 'institute'}, # "institute" - if the named institution provided the data, “INTERMAGNET” - if the data file has been created by INTERMAGNET from another data source, “WDC” - if the World Data Centre has created the file from another data source
                # 'TermsOfUse': {0: self.getINTERMAGNETTermsOfUse()},
                # 'UniqueIdentifier': {0: ''},
                # 'ParentIdentifiers': {0: ''},
                # 'ReferenceLinks': {0: ''}, #links to /ws, plots, USGS.gov 
            }
            return global_attrs
    
        def _create_time_stamp_variables(self, timeseries: Stream) -> dict:
            vector_times = None
            scalar_times = None
    
            temperature_times = {}
            temperature_index = 1
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            for trace in timeseries:
                channel = trace.stats.channel
                times = [
                    (trace.stats.starttime + trace.stats.delta * i).datetime
                    for i in range(trace.stats.npts)
                ]
                # Convert timestamps to TT2000 format required by CDF
                tt2000_times = cdflib.cdfepoch.timestamp_to_tt2000([time.timestamp() for time in times])
    
                if channel in self._get_vector_elements():
                    if vector_times is None:
                        vector_times = tt2000_times
                    else:
                        if not np.array_equal(vector_times, tt2000_times):
                            raise ValueError("Time stamps for vector channels are not the same.")
                elif channel in self._get_scalar_elements():
                    if scalar_times is None:
                        scalar_times = tt2000_times
                    else:
                        if not np.array_equal(scalar_times, tt2000_times):
                            raise ValueError("Time stamps for scalar channels are not the same.")
    
                elif channel in TEMPERATURE_ELEMENTS_ID:
                    ts_key = f"Temperature{temperature_index}Times"
                    if ts_key not in temperature_times:
                        temperature_times[ts_key] = tt2000_times
                        temperature_index += 1
                    else:
                        temperature_times[ts_key] = tt2000_times
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            time_vars = {}
            if vector_times is not None:
                time_vars['GeomagneticVectorTimes'] = vector_times
            if scalar_times is not None:
                time_vars['GeomagneticScalarTimes'] = scalar_times
    
            if temperature_times:
                time_vars.update(temperature_times)
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            return time_vars
    
    
        def _create_var_spec(
            self,
            var_name: str,
            data_type: str,
            num_elements: int,
            var_type: str,
            dim_sizes: List[int],
            sparse: bool,
            compress: int,
            pad: Optional[Union[str, np.ndarray]],
        ) -> dict:
            """
            Create a variable specification dictionary for cdflib.
    
            This is used to define the properties of a variable when writing it to
            the CDF file.
    
            Parameters:
            - var_name: Name of the variable.
            - data_type: CDF data type.
            - num_elements: Number of elements per record.
            - var_type: Variable type ('zVariable' or 'rVariable').
            - dim_sizes: Dimensions of the variable (empty list for 0D).
            - sparse: Whether the variable uses sparse records.
            - compress: Compression level.
            - pad: Pad value for sparse records.
    
            Reference:
            - CDF User's Guide: Variable Specification
            """
            var_spec = {
                'Variable': var_name,
                'Data_Type': data_type,
                'Num_Elements': num_elements,
                'Rec_Vary': True,
                'Var_Type': var_type,
                'Dim_Sizes': dim_sizes,
                'Sparse': 'no_sparse' if not sparse else 'pad_sparse',
                'Compress': compress,
                'Pad': pad,
            }
            return var_spec
    
    
        def _create_var_attrs(self, trace: Trace, temperature_index: Optional[int] = None) -> dict:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            channel = trace.stats.channel
            fieldnam = f"Geomagnetic Field Element {channel}" # “Geomagnetic Field Element ” + the element code or “Temperature ” + the name of the location where the temperature was recorded.
            units = '' # Must be one of “nT”, “Degrees of arc” or “Celsius”
            if channel == 'D':
                units = 'Degrees of arc'
                validmin = -360.0 
                validmax = 360.0 # A full circle representation
            elif channel == 'I':
                units = 'Degrees of arc'
                validmin = -90.0 
                validmax = 90.0 #The magnetic field vector can point straight down (+90°), horizontal (0°), or straight up (-90°).
    
            elif channel in TEMPERATURE_ELEMENTS_ID:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                units = 'Celsius'
    
                fieldnam = f"Temperature {temperature_index} {trace.stats.location}"
                validmin = -273.15
                validmax = 79_999
            elif channel in ['F','S']:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                units = 'nT'
                validmin = 0.0 # negative magnetic field intestity not physically meaningful.
                validmax = 79_999.0
            elif channel in ['X', 'Y', 'Z', 'H', 'E', 'V', 'G']:
                units = 'nT'
                validmin = -79_999.0
                validmax = 79_999.0
    
    
            # Determine DEPEND_0 based on channel type
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            if channel in self._get_vector_elements():
                depend_0 = 'GeomagneticVectorTimes'
            elif channel in self._get_scalar_elements():
                depend_0 = 'GeomagneticScalarTimes'
    
            elif channel in TEMPERATURE_ELEMENTS_ID:
                depend_0 = f"Temperature{temperature_index}Times"
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
        
            var_attrs = {
                'FIELDNAM': fieldnam,
                'UNITS': units,
                'FILLVAL': 99999.0,
                'VALIDMIN': validmin,
                'VALIDMAX': validmax,
                'DEPEND_0': depend_0,
                'DISPLAY_TYPE': 'time_series',
                'LABLAXIS': channel,
            }
            return var_attrs
    
        def _create_time_var_attrs(self, ts_name: str) -> dict:
            """
            Create a dictionary of time variable attributes.
    
            These attributes provide metadata for time variables.
            Note: None of these attributes are required for the time stamp variables GeomagneticVectorTimes and GeomagneticScalarTimes.
            Reference:
            - ImagCDF Documentation Section 3: ImagCDF Data
            """
            # var_attrs = {
                # 'UNITS': 'TT2000',
                # 'DISPLAY_TYPE': 'time_series',
                # 'LABLAXIS': 'Time',
            # }
            # return var_attrs
            return {}
    
        def _get_cdf_data_type(self, trace: Trace) -> int:
            """
            Map ObsPy trace data type to CDF data type.
    
            Determines the appropriate CDF data type based on the NumPy data type
            of the trace data.
    
            Returns:
            - CDF_DOUBLE (45) for floating-point data.
            - CDF_INT4 (41) for integer data.
    
            Reference:
            - CDF Data Types: http://cdf.gsfc.nasa.gov/html/cdfdatatypes.html
            """
            # CDF data type constants
            CDF_DOUBLE = 45  # CDF_DOUBLE corresponds to 64-bit float
            CDF_INT4 = 41    # CDF_INT4 corresponds to 32-bit int
    
            if trace.data.dtype in [np.float32, np.float64]:
                return CDF_DOUBLE
            elif trace.data.dtype in [np.int32, np.int64]:
                return CDF_INT4
            else:
                # Default to double precision float
                return CDF_DOUBLE
    
        def _read_cdf(self, cdf: cdflib.cdfread.CDF) -> Stream:
            """
            Read CDF data into an ObsPy Stream.
    
            This method reads the data variables and their corresponding time
            variables from a CDF file and constructs an ObsPy Stream.
    
            Parameters:
            - cdf: cdflib CDF object representing the open CDF file.
    
            Returns:
            - An ObsPy Stream containing the data from the CDF file.
            """
            stream = Stream()
            # Read time variables
            time_vars = {}
    
            for var in cdf.cdf_info().zVariables:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                if var.endswith('Time'):
                    time_data = cdf.varget(var)
                    # Convert TT2000 to UTCDateTime
                    utc_times = [UTCDateTime(t) for t in cdflib.cdfepoch.to_datetime(time_data)]
                    time_vars[var] = utc_times
    
            # Read data variables
    
            for var in cdf.cdf_info().zVariables:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                if not var.endswith('Time'):
                    data = cdf.varget(var)
                    attrs = cdf.varattsget(var)
                    if 'DEPEND_0' in attrs:
                        ts_name = attrs['DEPEND_0']
                        if ts_name in time_vars:
                            times = time_vars[ts_name]
                            if len(times) > 1:
                                delta = times[1] - times[0]  # Calculate sample interval
                            else:
                                delta = 60 if self.interval == 'minute' else 1
                            trace = Trace(
                                data=data,
                                header={
                                    'station': self.observatory,
                                    'channel': var,
                                    'starttime': times[0],
                                    'delta': delta,
                                }
                            )
                            stream += trace
            return stream
    
        @staticmethod
        def getINTERMAGNETTermsOfUse() -> str:
            """
            Return the INTERMAGNET Terms of Use.
    
            These terms should be included in the 'TermsOfUse' global attribute
            as per the ImagCDF specification.
    
            Reference:
            - ImagCDF Documentation Section 4.5: Attributes that Relate to Publication of the Data
            """
            return (
                "CONDITIONS OF USE FOR DATA PROVIDED THROUGH INTERMAGNET:\n"
                "The data made available through INTERMAGNET are provided for\n"
                "your use and are not for commercial use or sale or distribution\n"
                "to third parties without the written permission of the institute\n"
                "(http://www.intermagnet.org/Institutes_e.html) operating\n"
                "the observatory. Publications making use of the data\n"
                "should include an acknowledgment statement of the form given below.\n"
                "A citation reference should be sent to the INTERMAGNET Secretary\n"
                "(secretary@intermagnet.org) for inclusion in a publications list\n"
                "on the INTERMAGNET website.\n"
                "\n"
                "     ACKNOWLEDGEMENT OF DATA FROM OBSERVATORIES\n"
                "     PARTICIPATING IN INTERMAGNET\n"
                "We offer two acknowledgement templates. The first is for cases\n"
                "where data from many observatories have been used and it is not\n"
                "practical to list them all, or each of their operating institutes.\n"
                "The second is for cases where research results have been produced\n"
                "using a smaller set of observatories.\n"
                "\n"
                "     Suggested Acknowledgement Text (template 1)\n"
                "The results presented in this paper rely on data collected\n"
                "at magnetic observatories. We thank the national institutes that\n"
                "support them and INTERMAGNET for promoting high standards of\n"
                "magnetic observatory practice (www.intermagnet.org).\n"
                "\n"
                "     Suggested Acknowledgement Text (template 2)\n"
                "The results presented in this paper rely on the data\n"
                "collected at <observatory name>. We thank <institute name>,\n"
                "for supporting its operation and INTERMAGNET for promoting high\n"
                "standards of magnetic observatory practice (www.intermagnet.org).\n"
            )
    
        def _get_url(
            self,
            observatory: str,
            date: UTCDateTime,
            type: DataType = "variation",
            interval: DataInterval = "minute",
            channels: Optional[List[str]] = None,
        ) -> str:
            """
            Generate the file URL specific to ImagCDF conventions.
    
            This method constructs the filename based on the ImagCDF naming
            conventions, which include the observatory code, date-time formatted
    
            according to the data interval, and the publication level.  
            
            [iaga-code]_[date-time]_[publication-level].cdf
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            Parameters:
            - observatory: IAGA code of the observatory.
            - date: Start date for the file.
            - type: Data type indicating the processing level.
            - interval: Data interval (e.g., 'minute', 'second').
    
            - channels: List of channels (optional). Not Implemented
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            Returns:
            - The formatted file URL or path.
    
            Reference:
            - ImagCDF Documentation Section 5: ImagCDF File Names
            """
            # Get the publication level for the type
            publication_level = IMCDFPublicationLevel(data_type=type).to_string()
    
    
            # Format of Date/Time Portion of Filename based on interval see reference: https://tech-man.intermagnet.org/latest/appendices/dataformats.html#example-data-file:~:text=Format%20of%20Date,%EF%83%81
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            if interval == "year":
                date_format = date.strftime("%Y")
            elif interval == "month":
                date_format = date.strftime("%Y%m")
            elif interval == "day":
                date_format = date.strftime("%Y%m%d")
            elif interval == "hour":
                date_format = date.strftime("%Y%m%d_%H")
            elif interval == "minute":
                date_format = date.strftime("%Y%m%d_%H%M")
            elif interval == "second":
                date_format = date.strftime("%Y%m%d_%H%M%S")
            else:
    
                raise ValueError(f"Unsupported interval: {interval}") #tenhertz currently not supported
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
            # Filename following ImagCDF convention, see reference: https://tech-man.intermagnet.org/latest/appendices/dataformats.html#imagcdf-file-names
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            filename = f"{observatory.lower()}_{date_format}_{publication_level}.cdf"
    
            # If the urlTemplate explicitly specifies 'stdout', return 'stdout'
            if self.urlTemplate.lower() == "stdout":
                return "stdout"
    
            # Prepare parameters for templating
            params = {
                "date": date.datetime,
                "i": self._get_interval_abbreviation(interval),
                "interval": self._get_interval_name(interval),
                "minute": date.hour * 60 + date.minute,
                "month": date.strftime("%b").lower(),
                "MONTH": date.strftime("%b").upper(),
                "obs": observatory.lower(),
                "OBS": observatory.upper(),
                "t": publication_level,
                "type": self._get_type_name(type),
                "julian": date.strftime("%j"),
                "year": date.strftime("%Y"),
                "ymd": date.strftime("%Y%m%d"),
                "dt": date_format,  # Add the date-time formatted string
            }
    
            # Attempt to use the template provided in urlTemplate
    
            if "{" in self.urlTemplate and "}" in self.urlTemplate: 
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                try:
                    return self.urlTemplate.format(**params)
                except KeyError as e:
                    raise TimeseriesFactoryException(f"Invalid placeholder in urlTemplate: {e}")
    
            # If the urlTemplate doesn't support placeholders, assume 'file://' scheme
            if self.urlTemplate.startswith("file://"):
                base_path = self.urlTemplate[7:]  # Strip "file://"
                if not base_path or base_path == "{obs}_{dt}_{t}.cdf":
                    base_path = os.getcwd()  # Default to current working directory
                return os.path.join(base_path, filename)
    
            # Unsupported URL scheme
            raise TimeseriesFactoryException(
                f"Unsupported URL scheme in urlTemplate: {self.urlTemplate}"
            )
    
        def _get_vector_elements(self):
            return {'X', 'Y', 'Z', 'H', 'D', 'E', 'V', 'I', 'F'}
        
        def _get_scalar_elements(self):
            return {'S', 'G'}