Skip to content
Snippets Groups Projects
ImagCDFFactory.py 36.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    """ImagCDFFactory Implementation Using cdflib
    
    This module provides the ImagCDFFactory class for creating and writing
    geomagnetic time series data in the ImagCDF format using the cdflib library.
    The ImagCDF format is based on NASA's Common Data Format (CDF) and is designed
    to store geomagnetic data with high precision.
    
    References:
    
    - ImagCDF Technical Note: https://intermagnet.org/docs/technical/im_tn_8_ImagCDF.pdf
    - ImagCDF Official Documentation: https://tech-man.intermagnet.org/latest/appendices/dataformats.html#imagcdfv1-2-intermagnet-exchange-format
    
    - CDF User Guide: https://spdf.gsfc.nasa.gov/pub/software/cdf/doc/cdf_User_Guide.pdf
    - CDFLib Docs: [https://cdflib.readthedocs.io/en/latest/#, https://cdflib.readthedocs.io/en/stable/modules/index.html] 
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    """
    
    from __future__ import absolute_import, print_function
    from io import BytesIO
    import os
    import sys
    from typing import List, Optional, Union
    
    from datetime import datetime, timezone, tzinfo
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    import numpy as np
    from obspy import Stream, Trace, UTCDateTime
    
    from sqlalchemy import true
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    from geomagio.TimeseriesFactory import TimeseriesFactory
    
    from geomagio.api.ws.Element import TEMPERATURE_ELEMENTS_ID
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    from .geomag_types import DataInterval, DataType
    from .TimeseriesFactoryException import TimeseriesFactoryException
    from . import TimeseriesUtility
    from . import Util
    
    import cdflib
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
    from cdflib.cdfwrite import CDF as CDFWriter
    from cdflib.cdfread import CDF as CDFReader
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    import tempfile
    
    
    class IMCDFPublicationLevel:
        """Handles publication levels and mapping between data types and levels.
    
        The ImagCDF format uses publication levels to describe the processing
        level of the data. This class maps data types (e.g., 'variation', 'definitive')
        to their corresponding publication levels as defined in the ImagCDF documentation.
    
        Publication Levels:
            1: Raw data with no processing.
            2: Edited data with preliminary baselines.
            3: Data suitable for initial bulletins or quasi-definitive publication.
            4: Definitive data with no further changes expected.
    
        Reference:
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
        - ImagCDF Technical Documentation: Attributes that Uniquely Identify the Data
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
        """
    
        class PublicationLevel:
            LEVEL_1 = "1"
            LEVEL_2 = "2"
            LEVEL_3 = "3"
            LEVEL_4 = "4"
    
        TYPE_TO_LEVEL = {
            "none": PublicationLevel.LEVEL_1,
            "variation": PublicationLevel.LEVEL_1,
            "reported": PublicationLevel.LEVEL_1,
            "provisional": PublicationLevel.LEVEL_2,
            "adjusted": PublicationLevel.LEVEL_2,
            "quasi-definitive": PublicationLevel.LEVEL_3,
            "quasidefinitive": PublicationLevel.LEVEL_3,
            "definitive": PublicationLevel.LEVEL_4,
        }
    
        def __init__(self, data_type: Optional[str] = None):
            """Initialize with a data type to determine the publication level."""
            if data_type:
                self.level = self.TYPE_TO_LEVEL.get(data_type.lower())
            else:
                raise ValueError("data_type must be provided.")
    
            if not self.level:
                raise ValueError(f"Unsupported data_type: {data_type}")
    
        def to_string(self) -> str:
            """Return the publication level as a string."""
            return self.level
    
    
    class ImagCDFFactory(TimeseriesFactory):
        """Factory for creating and writing ImagCDF formatted CDF files.
    
        This class extends the TimeseriesFactory to support writing geomagnetic
        time series data to files in the ImagCDF format using the cdflib library.
        """
    
    
        isUniqueTimes = True  # used to determine depend_0 and CDF Time Variable Name
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
        def __init__(
            self,
            observatory: Optional[str] = None,
            channels: List[str] = ("H", "D", "Z", "F"),
            type: DataType = "variation",
            interval: DataInterval = "minute",
            urlTemplate="file://{obs}_{dt}_{t}.cdf",
            urlInterval: int = -1,
        ):
            """
            Initialize the ImagCDFFactory with default parameters.
    
            Parameters:
            - observatory: IAGA code of the observatory (e.g., 'BOU').
            - channels: List of geomagnetic elements (e.g., ['H', 'D', 'Z', 'F']).
            - type: Data type indicating the processing level (e.g., 'variation', 'definitive').
            - interval: Data interval (e.g., 'minute', 'second').
            - urlTemplate: Template for generating file URLs or paths.
            - urlInterval: Interval size for splitting data into multiple files.
            """
            super().__init__(
                observatory=observatory,
                channels=channels,
                type=type,
                interval=interval,
                urlTemplate=urlTemplate,
                urlInterval=urlInterval,
            )
    
        def parse_string(self, data: str, **kwargs):
            """Parse ImagCDF formatted string data into a Stream.
    
            Note: Parsing from strings is not implemented in this factory.
            """
            raise NotImplementedError('"parse_string" not implemented')
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
        def write_file(self, fh, timeseries: Stream, channels: List[str]):
            # Create a temporary file to write the CDF data
    
            with tempfile.NamedTemporaryFile(delete=False, suffix=".cdf") as tmp_file:
    
                tmp_file_path = tmp_file.name
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            try:
                # Initialize the CDF writer
    
                    "Compressed": 9,  # Enable compression (0-9)
                    "Majority": CDFWriter.ROW_MAJOR,  # Data layout - gets set automatically
                    "Encoding": CDFWriter.IBMPC_ENCODING,  #  gets set automatically
                    "Checksum": True,  # Disable checksum for faster writes (optional)
                    "rDim_sizes": [],  # Applicable only if using rVariables - CDF protocol recommends only using zVariables.
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
                cdf_writer = CDFWriter(path=tmp_file_path, cdf_spec=cdf_spec, delete=True)
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
                # Write global attributes
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                global_attrs = self._create_global_attributes(timeseries, channels)
                cdf_writer.write_globalattrs(global_attrs)
    
    
                # Time variables
    
                time_vars = self._create_time_stamp_variables(
                    timeseries
                )  # modifies self.isUniqueTimes
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                for ts_name, ts_data in time_vars.items():
    
                    # Define time variable specification
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    var_spec = {
    
                        "Variable": ts_name,
                        "Data_Type": CDFWriter.CDF_TIME_TT2000,  # CDF_TIME_TT2000
                        "Num_Elements": 1,
                        "Rec_Vary": True,
                        "Var_Type": "zVariable",
                        "Dim_Sizes": [],
                        "Sparse": "no_sparse",
                        "Compress": 9,
                        "Pad": None,
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    }
    
                    # Define time variable attributes
                    var_attrs = self._create_time_var_attrs(ts_name)
    
                    # Write time variable
                    cdf_writer.write_var(var_spec, var_attrs, ts_data)
    
                # Data variables
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                for trace in timeseries:
                    channel = trace.stats.channel
    
                    if channel in TEMPERATURE_ELEMENTS_ID:
    
                        temperature_index += 1  # MUST INCREMENT INDEX BEFORE USING
    
                        var_name = f"Temperature{temperature_index}"
                    else:
                        var_name = f"GeomagneticField{channel}"
    
                    data_type = self._get_cdf_data_type(trace)
                    num_elements = 1
    
                    if data_type in [
                        CDFWriter.CDF_CHAR,
                        CDFWriter.CDF_UCHAR,
                    ]:  # Handle string types
    
                        num_elements = len(trace.data[0]) if len(trace.data) > 0 else 1
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    var_spec = {
    
                        "Variable": var_name,
                        "Data_Type": data_type,
                        "Num_Elements": num_elements,
                        "Rec_Vary": True,
                        "Var_Type": "zVariable",
                        "Dim_Sizes": [],
                        "Sparse": "no_sparse",
                        "Compress": 9,
                        "Pad": None,
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    }
    
                    var_attrs = self._create_var_attrs(
                        trace, temperature_index, self.isUniqueTimes
                    )
    
    
                    # Write data variable
                    cdf_writer.write_var(var_spec, var_attrs, trace.data)
    
                # Close the CDF writer
                cdf_writer.close()
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
                # Copy the temporary CDF file to the final file handle
                with open(tmp_file_path, "rb") as tmp:
                    cdf_data = tmp.read()
                    fh.write(cdf_data)
    
            finally:
                # Cleanup the temporary file
    
                os.remove(tmp_file_path)
    
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
        def put_timeseries(
            self,
            timeseries: Stream,
            starttime: Optional[UTCDateTime] = None,
            endtime: Optional[UTCDateTime] = None,
            channels: Optional[List[str]] = None,
            type: Optional[DataType] = None,
            interval: Optional[DataInterval] = None,
        ):
            """
            Store timeseries data in ImagCDF format using cdflib.
    
            This method writes the timeseries data to one or more files, depending
            on the specified urlInterval.
    
            Parameters:
            - timeseries: ObsPy Stream containing the geomagnetic data.
            - starttime: Start time of the data to be written.
            - endtime: End time of the data to be written.
            - channels: List of channels to include in the output file.
            - type: Data type indicating the processing level.
            - interval: Data interval of the data.
            """
            if len(timeseries) == 0:
                # No data to store
                return
    
            channels = channels or self.channels
            type = type or self.type
            interval = interval or self.interval
    
            # Extract metadata from the first trace
            stats = timeseries[0].stats
            delta = stats.delta  # Sample rate
            observatory = stats.station
            starttime = starttime or stats.starttime
            endtime = endtime or stats.endtime
    
            # Split data into intervals if necessary
            urlIntervals = Util.get_intervals(
                starttime=starttime, endtime=endtime, size=self.urlInterval
            )
            for urlInterval in urlIntervals:
                interval_start = urlInterval["start"]
                interval_end = urlInterval["end"]
                if interval_start != interval_end:
                    interval_end = interval_end - delta
                url = self._get_url(
                    observatory=observatory,
                    date=interval_start,
                    type=type,
                    interval=interval,
                    channels=channels,
                )
    
                # Handle 'stdout' output
    
                if url == "stdout":
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    # Write directly to stdout
                    fh = sys.stdout.buffer
                    url_data = timeseries.slice(
                        starttime=interval_start,
                        endtime=interval_end,
                    )
                    self.write_file(fh, url_data, channels)
                    continue  # Proceed to next interval if any
    
                # Handle 'file://' output
    
                elif url.startswith("file://"):
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    # Get the file path from the URL
                    url_file = Util.get_file_from_url(url, createParentDirectory=False)
                    url_data = timeseries.slice(
                        starttime=interval_start,
                        endtime=interval_end,
                    )
    
                    # Check if the file already exists to merge data
                    if os.path.isfile(url_file):
                        try:
                            # Read existing data to merge with new data
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
                            existing_cdf = CDFReader(url_file)
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                            existing_stream = self._read_cdf(existing_cdf)
    
                            # existing_cdf.close() #no close method?
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                            existing_data = existing_stream
    
                            # Merge existing data with new data
                            for trace in existing_data:
                                new_trace = url_data.select(
                                    network=trace.stats.network,
                                    station=trace.stats.station,
                                    channel=trace.stats.channel,
                                )
                                if new_trace:
    
                                    trace.data = np.concatenate(
                                        (trace.data, new_trace[0].data)
                                    )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                            url_data = existing_data + url_data
                        except Exception as e:
                            # Log the exception if needed
    
                            print(
                                f"Warning: Could not read existing CDF file '{url_file}': {e}",
                                file=sys.stderr,
                            )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                            # Proceed with new data
    
                    # Pad the data with NaNs to ensure it fits the interval
                    url_data.trim(
                        starttime=interval_start,
                        endtime=interval_end,
                        nearest_sample=False,
                        pad=True,
                        fill_value=np.nan,
                    )
    
                    # Write the data to the CDF file
                    with open(url_file, "wb") as fh:
                        self.write_file(fh, url_data, channels)
    
                else:
                    # Unsupported URL scheme encountered
    
                    raise TimeseriesFactoryException(
                        "Unsupported URL scheme in urlTemplate"
                    )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
        def get_timeseries(
            self,
            starttime: UTCDateTime,
            endtime: UTCDateTime,
            add_empty_channels: bool = True,
            observatory: Optional[str] = None,
            channels: Optional[List[str]] = None,
            type: Optional[DataType] = None,
            interval: Optional[DataInterval] = None,
        ) -> Stream:
            observatory = observatory or self.observatory
            channels = channels or self.channels
            type = type or self.type
            interval = interval or self.interval
    
            timeseries = Stream()
            urlIntervals = Util.get_intervals(
                starttime=starttime, endtime=endtime, size=self.urlInterval
            )
    
            for urlInterval in urlIntervals:
                url = self._get_url(
                    observatory=observatory,
                    date=urlInterval["start"],
                    type=type,
                    interval=interval,
                    channels=channels,
                )
    
                if url == "stdout":
    
                    continue  # stdout is not a valid input source
                if not url.startswith("file://"):
    
                    raise TimeseriesFactoryException(
                        "Only file urls are supported for reading ImagCDF"
                    )
    
    
                url_file = Util.get_file_from_url(url, createParentDirectory=False)
                if not os.path.isfile(url_file):
                    # If file doesn't exist, skip
                    continue
    
                try:
                    # Read CDF data and merge
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
                    cdf = CDFReader(url_file)
    
                    file_stream = self._read_cdf(cdf)
                    # Attempt to select only requested channels
                    selected = Stream()
                    for ch in channels:
                        selected += file_stream.select(channel=ch)
                    timeseries += selected
                except Exception as e:
                    print(f"Error reading CDF file '{url_file}': {e}", file=sys.stderr)
    
            # After reading all intervals, merge and trim
            timeseries.merge(fill_value=np.nan)
            timeseries.trim(
                starttime=starttime,
                endtime=endtime,
                nearest_sample=False,
                pad=True,
                fill_value=np.nan,
            )
    
            # If requested, add empty channels not present in data
            if add_empty_channels:
                present_channels = {tr.stats.channel for tr in timeseries}
                missing_channels = set(channels) - present_channels
                for ch in missing_channels:
                    empty_trace = self._get_empty_trace(
                        starttime=starttime,
                        endtime=endtime,
                        observatory=observatory,
                        channel=ch,
                        data_type=type,
                        interval=interval,
                    )
                    timeseries += empty_trace
    
            timeseries.sort()
            return timeseries
    
    
        def _create_global_attributes(
            self, timeseries: Stream, channels: List[str]
        ) -> dict:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            """
            Create a dictionary of global attributes for the ImagCDF file.
    
            These attributes apply to all the data in the file and include metadata
            such as observatory information, data publication level, and format
            descriptions.
    
            References:
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
            - ImagCDF Technical Documentation: ImagCDF Global Attributes
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            """
            stats = timeseries[0].stats if len(timeseries) > 0 else None
    
            # Extract metadata from stats or fallback to defaults
    
            observatory_name = (
                getattr(stats, "station_name", None) or self.observatory or ""
            )
            station = getattr(stats, "station", None) or ""
            institution = getattr(stats, "agency_name", None) or ""
            latitude = getattr(stats, "geodetic_latitude", None) or 0.0
            longitude = getattr(stats, "geodetic_longitude", None) or 0.0
            elevation = getattr(stats, "elevation", None) or 99_999.0
            conditions_of_use = getattr(stats, "conditions_of_use", None) or ""
            vector_orientation = getattr(stats, "sensor_orientation", None) or ""
            data_interval_type = getattr(stats, "data_interval_type", None) or self.interval
            data_type = getattr(stats, "data_type", None) or "variation"
            sensor_sampling_rate = getattr(stats, "sensor_sampling_rate", None) or 0.0
            comments = getattr(stats, "filter_comments", None) or [""]
            declination_base = getattr(stats, "declination_base", None) or 0.0
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            publication_level = IMCDFPublicationLevel(data_type=self.type).to_string()
            global_attrs = {
    
                "FormatDescription": {0: "INTERMAGNET CDF Format"},
                "FormatVersion": {0: "1.2"},
                "Title": {0: "Geomagnetic time series data"},
                "IagaCode": {0: station},
                "ElementsRecorded": {0: "".join(channels)},
                "PublicationLevel": {0: publication_level},
                "PublicationDate": {
                    0: [
                        cdflib.cdfepoch.timestamp_to_tt2000(
                            datetime.timestamp(datetime.now(timezone.utc))
                        ),
                        "cdf_time_tt2000",
                    ]
                },
                "ObservatoryName": {0: observatory_name},
                "Latitude": {0: np.array([latitude], dtype=np.float64)},
                "Longitude": {0: np.array([longitude], dtype=np.float64)},
                "Elevation": {0: np.array([elevation], dtype=np.float64)},
                "Institution": {0: institution},
                "VectorSensOrient": {
                    0: vector_orientation
                },  # remove F - because its a calculation, not an element?
                "StandardLevel": {0: "None"},  # Set to 'None'
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                # Temporarily Omit 'StandardName', 'StandardVersion', 'PartialStandDesc'
    
                "Source": {
                    0: "institute"
                },  # "institute" - if the named institution provided the data, “INTERMAGNET” - if the data file has been created by INTERMAGNET from another data source, “WDC” - if the World Data Centre has created the file from another data source
                "TermsOfUse": {0: conditions_of_use},
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                # 'UniqueIdentifier': {0: ''},
                # 'ParentIdentifiers': {0: ''},
    
                # 'ReferenceLinks': {0: ''}, #links to /ws, plots, USGS.gov
                "SensorSamplingRate": {0: sensor_sampling_rate},  # Optional
                "DataType": {0: data_type},  # Optional
                "Comments": {0: comments},  # Optional
                "DeclinationBase": {0: declination_base},  # Optional
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            }
            return global_attrs
    
        def _create_time_stamp_variables(self, timeseries: Stream) -> dict:
            vector_times = None
            scalar_times = None
    
            temperature_times = {}
            temperature_index = 1
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            for trace in timeseries:
                channel = trace.stats.channel
                times = [
    
                    (trace.stats.starttime + trace.stats.delta * i).datetime.replace(
                        tzinfo=timezone.utc
                    )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    for i in range(trace.stats.npts)
                ]
                # Convert timestamps to TT2000 format required by CDF
    
                tt2000_times = cdflib.cdfepoch.timestamp_to_tt2000(
                    [time.timestamp() for time in times]
                )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
                if channel in self._get_vector_elements():
                    if vector_times is None:
                        vector_times = tt2000_times
                    else:
                        if not np.array_equal(vector_times, tt2000_times):
    
                            raise ValueError(
                                "Time stamps for vector channels are not the same."
                            )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                elif channel in self._get_scalar_elements():
                    if scalar_times is None:
                        scalar_times = tt2000_times
                    else:
                        if not np.array_equal(scalar_times, tt2000_times):
    
                            raise ValueError(
                                "Time stamps for scalar channels are not the same."
                            )
    
                elif channel in TEMPERATURE_ELEMENTS_ID:
                    ts_key = f"Temperature{temperature_index}Times"
                    if ts_key not in temperature_times:
                        temperature_times[ts_key] = tt2000_times
                        temperature_index += 1
                    else:
                        temperature_times[ts_key] = tt2000_times
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            time_vars = {}
            if vector_times is not None:
    
                time_vars["GeomagneticVectorTimes"] = vector_times
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            if scalar_times is not None:
    
                time_vars["GeomagneticScalarTimes"] = scalar_times
    
            if temperature_times:
                time_vars.update(temperature_times)
    
            self.isUniqueTimes = (
                len(time_vars) == 1
            )  # true if only one set of times, else default to false.
    
            for index, times in enumerate(time_vars.values()):
                if index > 0:
                    self.isUniqueTimes = not np.array_equal(last_times, times)
                last_times = times
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
            return time_vars if self.isUniqueTimes else {"DataTimes": last_times}
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
        def _create_var_spec(
            self,
            var_name: str,
            data_type: str,
            num_elements: int,
            var_type: str,
            dim_sizes: List[int],
            sparse: bool,
            compress: int,
            pad: Optional[Union[str, np.ndarray]],
        ) -> dict:
            """
            Create a variable specification dictionary for cdflib.
    
            This is used to define the properties of a variable when writing it to
            the CDF file.
    
            Parameters:
            - var_name: Name of the variable.
            - data_type: CDF data type.
            - num_elements: Number of elements per record.
            - var_type: Variable type ('zVariable' or 'rVariable').
            - dim_sizes: Dimensions of the variable (empty list for 0D).
            - sparse: Whether the variable uses sparse records.
            - compress: Compression level.
            - pad: Pad value for sparse records.
    
            Reference:
            - CDF User's Guide: Variable Specification
            """
            var_spec = {
    
                "Variable": var_name,
                "Data_Type": data_type,
                "Num_Elements": num_elements,
                "Rec_Vary": True,
                "Var_Type": var_type,
                "Dim_Sizes": dim_sizes,
                "Sparse": "no_sparse" if not sparse else "pad_sparse",
                "Compress": compress,
                "Pad": pad,
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            }
            return var_spec
    
    
        def _create_var_attrs(
            self,
            trace: Trace,
            temperature_index: Optional[int] = None,
            isUniqueTimes: Optional[bool] = True,
        ) -> dict:
    
            channel = trace.stats.channel.upper()
    
            fieldnam = f"Geomagnetic Field Element {channel}"  # “Geomagnetic Field Element ” + the element code or “Temperature ” + the name of the location where the temperature was recorded.
            units = ""  # Must be one of “nT”, “Degrees of arc” or “Celsius”
            if channel == "D":
                units = "Degrees of arc"
                validmin = -360.0
                validmax = 360.0  # A full circle representation
            elif channel == "I":
                units = "Degrees of arc"
                validmin = -90.0
                validmax = 90.0  # The magnetic field vector can point straight down (+90°), horizontal (0°), or straight up (-90°).
    
            elif channel in TEMPERATURE_ELEMENTS_ID:
    
                units = "Celsius"
    
                fieldnam = f"Temperature {temperature_index} {trace.stats.location}"
    
                validmin = -273.15  # absolute zero
    
            elif channel in ["F", "S"]:
                units = "nT"
                validmin = (
                    0.0  # negative magnetic field intestity not physically meaningful.
                )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                validmax = 79_999.0
    
            elif channel in ["X", "Y", "Z", "H", "E", "V", "G"]:
                units = "nT"
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                validmin = -79_999.0
                validmax = 79_999.0
    
    
            # Determine DEPEND_0 based on channel type
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            if channel in self._get_vector_elements():
    
                depend_0 = "GeomagneticVectorTimes"
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            elif channel in self._get_scalar_elements():
    
                depend_0 = "GeomagneticScalarTimes"
    
            elif channel in TEMPERATURE_ELEMENTS_ID:
                depend_0 = f"Temperature{temperature_index}Times"
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            var_attrs = {
    
                "FIELDNAM": fieldnam,
                "UNITS": units,
                "FILLVAL": 99999.0,
                "VALIDMIN": validmin,
                "VALIDMAX": validmax,
                "DEPEND_0": depend_0 if isUniqueTimes else "DataTimes",
                "DISPLAY_TYPE": "time_series",
                "LABLAXIS": channel,
                "DATA_INTERVAL_TYPE": trace.stats.data_interval_type,
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            }
            return var_attrs
    
        def _create_time_var_attrs(self, ts_name: str) -> dict:
            """
            Create a dictionary of time variable attributes.
    
            These attributes provide metadata for time variables.
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
            Note: None of these attributes are required for the time stamp variables.
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            Reference:
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
            - ImagCDF Technical Documentation: ImagCDF Data
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            """
            # var_attrs = {
    
            # 'UNITS': 'TT2000',
            # 'DISPLAY_TYPE': 'time_series',
            # 'LABLAXIS': 'Time',
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            # }
            # return var_attrs
            return {}
    
        def _get_cdf_data_type(self, trace: Trace) -> int:
            """
            Map ObsPy trace data type to CDF data type.
    
            Determines the appropriate CDF data type based on the NumPy data type
            of the trace data.
    
            Returns:
            - CDF_DOUBLE (45) for floating-point data.
            - CDF_INT4 (41) for integer data.
    
            Reference:
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
            - See CDF for more data types
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            """
    
            if trace.data.dtype in [np.float32, np.float64]:
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
                return CDFWriter.CDF_DOUBLE
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            elif trace.data.dtype in [np.int32, np.int64]:
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
                return CDFWriter.CDF_INT4
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            else:
                # Default to double precision float
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
                return CDFWriter.CDF_DOUBLE
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
        def _read_cdf(self, cdf: CDFReader) -> Stream:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            """
            Read CDF data into an ObsPy Stream.
    
            This method reads the data variables and their corresponding time
            variables from a CDF file and constructs an ObsPy Stream.
    
            Parameters:
            - cdf: cdflib CDF object representing the open CDF file.
    
            Returns:
            - An ObsPy Stream containing the data from the CDF file.
            """
            stream = Stream()
    
    
            # Extract global attributes
            global_attrs = cdf.globalattsget()
    
            # Map global attributes to Stream-level metadata
    
            observatory = global_attrs.get("IagaCode", [""])[0]
            station_name = global_attrs.get("ObservatoryName", [""])[0]
            institution = global_attrs.get("Institution", [""])[0]
            latitude = global_attrs.get("Latitude", [0.0])[0]
            longitude = global_attrs.get("Longitude", [0.0])[0]
            elevation = global_attrs.get("Elevation", [99_999.0])[
                0
            ]  # default to 99_999 per technical documents.
            sensor_sampling_rate = global_attrs.get("SensorSamplingRate", [0.0])[0]
            sensor_orientation = global_attrs.get("VectorSensOrient", [""])[0]
            data_type = global_attrs.get("DataType", ["variation"])[0]
            publication_level = global_attrs.get("PublicationLevel", ["1"])[0]
            comments = global_attrs.get("Comments", [""])
            terms_of_use = global_attrs.get("TermsOfUse", [""])[0]
            declination_base = global_attrs.get("DeclinationBase", [0.0])[0]
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            time_vars = {}
    
            for var in cdf.cdf_info().zVariables:
    
                if var.lower().endswith("times"):
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    time_data = cdf.varget(var)
    
                    unix_times = cdflib.cdfepoch.unixtime(time_data)
                    utc_times = [UTCDateTime(t) for t in unix_times]
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                    time_vars[var] = utc_times
    
    
            # Read data variables and associate them with time variables
    
            for var in cdf.cdf_info().zVariables:
    
                if var.lower().endswith("times"):
    
                    continue
    
                data = cdf.varget(var)
                attrs = cdf.varattsget(var)
    
                # Determine DEPEND_0 (the time variable name) and validate
    
                ts_name = attrs.get("DEPEND_0")
    
                if not ts_name:
                    # If no DEPEND_0, skip this variable as we cannot map times
                    continue
    
                # If we used a DataTimes fallback or similar, ensure we handle it case-insensitively
                # and also confirm that time_vars keys are checked properly.
                # The ImagCDF can have DataTimes, GeomagneticVectorTimes, etc.
                # So try exact match first, if not found, attempt case-insensitive.
                matched_time_key = None
                for tkey in time_vars.keys():
                    if tkey == ts_name:
                        matched_time_key = tkey
                        break
                    if tkey.lower() == ts_name.lower():
                        matched_time_key = tkey
                        break
    
                if matched_time_key not in time_vars:
                    # If we cannot find the matching time variable, skip this variable
                    continue
    
                times = time_vars[matched_time_key]
    
                # Determine delta (sample interval)
                if len(times) > 1:
                    # delta as a float of seconds
    
                    delta = times[1].timestamp - times[0].timestamp
    
                else:
                    # if only one sample, use default based on interval
                    # convert minute, second, etc. to numeric delta
    
                    if self.interval == "minute":
    
                    elif self.interval == "second":
    
                    elif self.interval == "hour":
    
                        delta = 3600.0
                    else:
                        # fallback, set delta to 60
                        delta = 60.0
    
                # Map the variable name back to a standard channel code
                # Geomagnetic fields are named like GeomagneticFieldH, GeomagneticFieldD, etc.
                # Temperatures are named like Temperature1, Temperature2, ...
                # Extract channel name by removing known prefixes
                if var.startswith("GeomagneticField"):
                    channel = var.replace("GeomagneticField", "")
                elif var.startswith("Temperature"):
                    # Temperature variables may not map directly to a geomagnetic channel
                    # but to temperature sensors. We can just use the label from LABLAXIS if needed
    
                    channel = attrs.get("LABLAXIS", var)
    
                else:
                    # fallback if naming doesn't match expected patterns
                    channel = var
    
    
                time_attrs = cdf.varattsget(var)
                data_interval = time_attrs.get("DATA_INTERVAL_TYPE", [""])
    
                # Create a trace
                trace = Trace(
                    data=data,
                    header={
    
                        "station": observatory,
                        "channel": channel,
                        "starttime": times[0],
                        "delta": delta,
                        "geodetic_latitude": latitude,
                        "geodetic_longitude": longitude,
                        "elevation": elevation,
                        "sensor_orientation": "".join(sensor_orientation),
                        "data_type": data_type,
                        "station_name": station_name,
                        "agency_name": institution,
                        "conditions_of_use": terms_of_use,
                        "sensor_sampling_rate": sensor_sampling_rate,
                        "data_interval_type": data_interval,
                        "declination_base": declination_base,
                        "filter_comments": comments,
                    },
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
        def _get_url(
            self,
            observatory: str,
            date: UTCDateTime,
            type: DataType = "variation",
            interval: DataInterval = "minute",
            channels: Optional[List[str]] = None,
        ) -> str:
            """
            Generate the file URL specific to ImagCDF conventions.
    
            This method constructs the filename based on the ImagCDF naming
            conventions, which include the observatory code, date-time formatted
    
            according to the data interval, and the publication level.
    
    
            [iaga-code]_[date-time]_[publication-level].cdf
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            Parameters:
            - observatory: IAGA code of the observatory.
            - date: Start date for the file.
            - type: Data type indicating the processing level.
            - interval: Data interval (e.g., 'minute', 'second').
    
            - channels: List of channels (optional). Not Implemented
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            Returns:
            - The formatted file URL or path.
    
            Reference:
    
    Shavers, Nicholas H's avatar
    Shavers, Nicholas H committed
            - ImagCDF Technical Documentation: ImagCDF File Names
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            """
            # Get the publication level for the type
            publication_level = IMCDFPublicationLevel(data_type=type).to_string()
    
    
            # Format of Date/Time Portion of Filename based on interval see reference: https://tech-man.intermagnet.org/latest/appendices/dataformats.html#example-data-file:~:text=Format%20of%20Date,%EF%83%81
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            if interval == "year":
                date_format = date.strftime("%Y")
            elif interval == "month":
                date_format = date.strftime("%Y%m")
            elif interval == "day":
                date_format = date.strftime("%Y%m%d")
            elif interval == "hour":
                date_format = date.strftime("%Y%m%d_%H")
            elif interval == "minute":
                date_format = date.strftime("%Y%m%d_%H%M")
            elif interval == "second":
                date_format = date.strftime("%Y%m%d_%H%M%S")
            else:
    
                raise ValueError(
                    f"Unsupported interval: {interval}"
                )  # tenhertz currently not supported
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
    
            # Filename following ImagCDF convention, see reference: https://tech-man.intermagnet.org/latest/appendices/dataformats.html#imagcdf-file-names
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            filename = f"{observatory.lower()}_{date_format}_{publication_level}.cdf"
    
            # If the urlTemplate explicitly specifies 'stdout', return 'stdout'
            if self.urlTemplate.lower() == "stdout":
                return "stdout"
    
            # Prepare parameters for templating
            params = {
                "date": date.datetime,
                "i": self._get_interval_abbreviation(interval),
                "interval": self._get_interval_name(interval),
                "minute": date.hour * 60 + date.minute,
                "month": date.strftime("%b").lower(),
                "MONTH": date.strftime("%b").upper(),
                "obs": observatory.lower(),
                "OBS": observatory.upper(),
                "t": publication_level,
                "type": self._get_type_name(type),
                "julian": date.strftime("%j"),
                "year": date.strftime("%Y"),
                "ymd": date.strftime("%Y%m%d"),
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
            }
    
            # Attempt to use the template provided in urlTemplate
    
            if "{" in self.urlTemplate and "}" in self.urlTemplate:
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
                try:
                    return self.urlTemplate.format(**params)
                except KeyError as e:
    
                    raise TimeseriesFactoryException(
                        f"Invalid placeholder in urlTemplate: {e}"
                    )
    
    Shavers, Nicholas H's avatar
    poc
    Shavers, Nicholas H committed
    
            # If the urlTemplate doesn't support placeholders, assume 'file://' scheme
            if self.urlTemplate.startswith("file://"):
                base_path = self.urlTemplate[7:]  # Strip "file://"
                if not base_path or base_path == "{obs}_{dt}_{t}.cdf":
                    base_path = os.getcwd()  # Default to current working directory
                return os.path.join(base_path, filename)
    
            # Unsupported URL scheme
            raise TimeseriesFactoryException(
                f"Unsupported URL scheme in urlTemplate: {self.urlTemplate}"
            )
    
        def _get_vector_elements(self):
    
            return {"X", "Y", "Z", "H", "D", "E", "V", "I", "F"}
    
        def _get_scalar_elements(self):
            return {"S", "G"}