Newer
Older
# For case studies approach: select one demographic characteristic (hispanic/latino),
p3_targets <- list(
# desktop maps ------------------------------------------------------------
tar_target(
p3_med_income_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[2]],
percent_leg = FALSE,
outfile_path = "3_visualize/out/med_income_census_2022.png",
leg_title = "Median household income, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2

Azadpour, Elmera
committed
p3_perc_household_income_png,

Azadpour, Elmera
committed
percent_leg = TRUE,

Azadpour, Elmera
committed
var = 'percent',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_household_income_2022.png",

Azadpour, Elmera
committed
leg_title = "Percent allocated household income\nin the past 12 months, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2

Azadpour, Elmera
committed
tar_target(
p3_tot_latino_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[4]],
percent_leg = FALSE,

Azadpour, Elmera
committed
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_latino_census_2022.png",
leg_title = "Total Latino, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2

Azadpour, Elmera
committed
tar_target(
p3_perc_latino_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[4]],
percent_leg = TRUE,

Azadpour, Elmera
committed
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_latino_census_2022.png",
leg_title = "Percent Latino, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2

Azadpour, Elmera
committed

Azadpour, Elmera
committed
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_households_2022.png",
leg_title = "Total households, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2

Azadpour, Elmera
committed
),
format = "file"
),
tar_target(

Azadpour, Elmera
committed
plot_census_map(

Azadpour, Elmera
committed
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_female_households_2022.png",
leg_title = "Total female households, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2

Azadpour, Elmera
committed
),
format = "file"
),
tar_target(

Azadpour, Elmera
committed
plot_census_map(

Azadpour, Elmera
committed
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/median_rent_2022.png",
leg_title = "Median gross rent, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
# median income by race maps
tar_target(
p3_med_income_white_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[1]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_white_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nWhite Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_black_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[2]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_black_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nBlack or African American Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_american_indian_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[3]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_american_indian_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nAmerican Indian and Alaska Native Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_asian_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[4]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_asian_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nAsian Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_hawaiian_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[5]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_hawaiian_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nNative Hawaiian and\n Other Pacific Islander Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_med_income_hispanic_png,
plot_census_map(
census_data = p2_census_acs5sub_income_by_race_data[[6]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_hispanic_2022.png",
leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nHispanic or Latino Householder",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# disability maps
tar_target(
p3_perc_disable_png,
plot_census_map(
census_data = p2_census_acs5sub_disability_data[[1]],
percent_leg = TRUE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_disable_census_2022.png",
leg_title = "Percent disable, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
tar_target(
p3_total_disable_png,
plot_census_map(
census_data = p2_census_acs5sub_disability_data[[2]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_disable_census_2022.png",
leg_title = "Total disable, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,
barwidth = 40,
barheight = 2
),
format = "file"
),
# mobile maps -------------------------------------------------------------
tar_target(

Azadpour, Elmera
committed
p3_med_income_mobile_png,
plot_census_map(
census_data = p2_perc_census_acs5_layers_sf[[2]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/med_income_census_2022_mobile.png",
leg_title = "Median household income, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3
),
format = "file"
),
tar_target(
p3_perc_household_income_mobile_png,
plot_census_map(
census_data = p2_census_acs5sub_income_data[[1]],
percent_leg = TRUE,
var = 'percent',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_household_income_2022_mobile.png",
leg_title = "Percent allocated household income\nin the past 12 months, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3
),
format = "file"
),
tar_target(
p3_tot_latino_mobile_png,
plot_census_map(
census_data = p2_perc_census_acs5_layers_sf[[4]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_latino_census_2022_mobile.png",
leg_title = "Total Latino, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3
),
format = "file"
),
tar_target(
p3_perc_latino_mobile_png,
plot_census_map(
census_data = p2_perc_census_acs5_layers_sf[[4]],
percent_leg = TRUE,
var = 'percent',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_latino_census_2022_mobile.png",
leg_title = "Percent Latino, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3
),
format = "file"
),
tar_target(
p3_total_households_mobile_png,
plot_census_map(
census_data = p2_census_acs5sub_household_data[[1]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_households_2022_mobile.png",
leg_title = "Total households, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3
),
format = "file"
),
tar_target(
p3_female_households_mobile_png,
plot_census_map(
census_data = p2_census_acs5sub_household_data[[2]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/tot_female_households_2022_mobile.png",
leg_title = "Total female households, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3
),
format = "file"
),
tar_target(
p3_median_rent_mobile_png,
plot_census_map(
census_data = p2_census_acs5sub_household_data[[3]],
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/median_rent_2022_mobile.png",
leg_title = "Median gross rent, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3

Azadpour, Elmera
committed
),
format = "file"
),
tar_target(
p3_disable_mobile_png,
plot_census_map(
census_data = p2_census_acs5sub_disability_data[[1]],
percent_leg = TRUE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_disable_2022_mobile.png",
leg_title = "Total disable, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,
width = p0_viz_config_df$width_mobile,
height = p0_viz_config_df$height_mobile,
font_size = p0_viz_config_df$font_size_mobile,
barwidth = 40,
barheight = 3
),
format = "file"
)