Skip to content
Snippets Groups Projects
Controller.py 45.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • """Controller class for geomag algorithms"""
    
    from io import StringIO
    
    import sys
    from typing import List, Optional, Tuple, Union
    
    
    from obspy.core import Stream, UTCDateTime
    
    from .algorithm import Algorithm, algorithms, AlgorithmException
    
    from .DerivedTimeseriesFactory import DerivedTimeseriesFactory
    
    Yash Shah's avatar
    Yash Shah committed
    from .PlotTimeseriesFactory import PlotTimeseriesFactory
    from .StreamTimeseriesFactory import StreamTimeseriesFactory
    
    from . import TimeseriesUtility, Util
    
    # factory packages
    
    Yash Shah's avatar
    Yash Shah committed
    from . import binlog
    from . import edge
    from . import iaga2002
    
    Yash Shah's avatar
    Yash Shah committed
    from . import pcdcp
    from . import imfv122
    from . import imfv283
    from . import temperature
    from . import vbf
    
    class Controller(object):
        """Controller for geomag algorithms.
    
        Parameters
        ----------
    
    Hal Simpson's avatar
    Hal Simpson committed
        inputFactory: TimeseriesFactory
    
            the factory that will read in timeseries data
    
    Hal Simpson's avatar
    Hal Simpson committed
        outputFactory: TimeseriesFactory
    
            the factory that will output the timeseries data
    
        algorithm: Algorithm
            the algorithm(s) that will procees the timeseries data
    
        Notes
        -----
    
    Hal Simpson's avatar
    Hal Simpson committed
        Has 2 basic modes.
    
        Run simply sends all the data in a stream to edge. If a startime/endtime is
            provided, it will send the data from the stream that is within that
            time span.
        Update will update any data that has changed between the source, and
    
    Hal Simpson's avatar
    Hal Simpson committed
            the target during a given timeframe. It will also attempt to
            recursively backup so it can update all missing data.
    
        def __init__(
            self,
            inputFactory,
            outputFactory,
    
            algorithm: Optional[Algorithm] = None,
    
            inputInterval: Optional[str] = None,
            outputInterval: Optional[str] = None,
        ):
    
    Hal Simpson's avatar
    Hal Simpson committed
            self._algorithm = algorithm
    
            self._inputFactory = inputFactory
            self._inputInterval = inputInterval
    
    Hal Simpson's avatar
    Hal Simpson committed
            self._outputFactory = outputFactory
    
            self._outputInterval = outputInterval
    
        def _get_input_timeseries(
    
            self,
            observatory,
            channels,
            starttime,
            endtime,
            algorithm=None,
            interval=None,
    
            """Get timeseries from the input factory for requested options.
    
            Parameters
            ----------
            observatory : array_like
                observatories to request.
            channels : array_like
                channels to request.
            starttime : obspy.core.UTCDateTime
                time of first sample to request.
            endtime : obspy.core.UTCDateTime
                time of last sample to request.
            renames : array_like
                list of channels to rename
                each list item should be array_like:
                    the first element is the channel to rename,
                    the last element is the new channel name
    
            Returns
            -------
            timeseries : obspy.core.Stream
            """
    
            algorithm = algorithm or self._algorithm
    
            for obs in observatory:
    
                # get input interval for observatory
                # do this per observatory in case an
                # algorithm needs different amounts of data
    
                input_start, input_end = algorithm.get_input_interval(
    
                    start=starttime, end=endtime, observatory=obs, channels=channels
                )
    
                if input_start is None or input_end is None:
                    continue
    
                timeseries += self._inputFactory.get_timeseries(
    
                    observatory=obs,
                    starttime=input_start,
                    endtime=input_end,
                    channels=channels,
    
                    interval=interval or self._inputInterval,
    
            return timeseries
    
        def _rename_channels(self, timeseries, renames):
            """Rename trace channel names.
    
            Parameters
            ----------
            timeseries : obspy.core.Stream
                stream with channels to rename
            renames : array_like
                list of channels to rename
                each list item should be array_like:
                    the first element is the channel to rename,
                    the last element is the new channel name
    
            Returns
            -------
            timeseries : obspy.core.Stream
            """
            for r in renames:
                from_name, to_name = r[0], r[-1]
                for t in timeseries.select(channel=from_name):
                    t.stats.channel = to_name
            return timeseries
    
    
        def _get_output_timeseries(
            self,
            observatory,
            channels,
            starttime,
            endtime,
            interval=None,
        ):
    
            """Get timeseries from the output factory for requested options.
    
            Parameters
            ----------
            observatory : array_like
                observatories to request.
            channels : array_like
                channels to request.
            starttime : obspy.core.UTCDateTime
                time of first sample to request.
            endtime : obspy.core.UTCDateTime
                time of last sample to request.
    
            Returns
            -------
            timeseries : obspy.core.Stream
            """
            timeseries = Stream()
    
            for obs in observatory:
    
                timeseries += self._outputFactory.get_timeseries(
    
                    observatory=obs,
                    starttime=starttime,
                    endtime=endtime,
                    channels=channels,
    
                    interval=interval or self._outputInterval,
    
        def _run(self, options, input_timeseries=None):
    
            Parameters
            ----------
    
    Hal Simpson's avatar
    Hal Simpson committed
            options: dictionary
                The dictionary of all the command line arguments. Could in theory
                contain other options passed in by the controller.
    
            input_timeseries : obspy.core.Stream
                Used by run_as_update to save a double input read, since it has
                already read the input to confirm data can be produced.
    
            self.run(
                observatory=options.observatory,
                starttime=options.starttime,
                endtime=options.endtime,
                input_channels=options.inchannels,
                input_timeseries=input_timeseries,
                output_channels=options.outchannels,
    
                input_interval=options.input_interval or options.interval,
                output_interval=options.output_interval or options.interval,
    
                no_trim=options.no_trim,
                rename_input_channel=options.rename_input_channel,
                rename_output_channel=options.rename_output_channel,
                realtime=options.realtime,
            )
    
        def _run_as_update(self, options, update_count=0):
            """Updates data.
            Parameters
            ----------
            options: dictionary
                The dictionary of all the command line arguments. Could in theory
                contain other options passed in by the controller.
    
            Notes
            -----
            Finds gaps in the target data, and if there's new data in the input
                source, calls run with the start/end time of a given gap to fill
                in.
            It checks the start of the target data, and if it's missing, and
                there's new data available, it backs up the starttime/endtime,
                and recursively calls itself, to check the previous period, to see
                if new data is available there as well. Calls run for each new
                period, oldest to newest.
            """
            self.run_as_update(
                observatory=options.observatory,
                output_observatory=options.output_observatory,
                starttime=options.starttime,
                endtime=options.endtime,
    
                input_channels=options.inchannels,
                output_channels=options.outchannels,
    
                input_interval=options.input_interval or options.interval,
                output_interval=options.output_interval or options.interval,
    
                no_trim=options.no_trim,
                realtime=options.realtime,
                rename_input_channel=options.rename_input_channel,
                rename_output_channel=options.rename_output_channel,
                update_limit=options.update_limit,
            )
    
        def run(
            self,
            observatory: List[str],
            starttime: UTCDateTime,
            endtime: UTCDateTime,
    
            algorithm: Optional[Algorithm] = None,
    
            input_channels: Optional[List[str]] = None,
            input_timeseries: Optional[Stream] = None,
            output_channels: Optional[List[str]] = None,
    
            input_interval: Optional[str] = None,
            output_interval: Optional[str] = None,
    
            no_trim: bool = False,
            realtime: Union[bool, int] = False,
            rename_input_channel: Optional[List[List[str]]] = None,
            rename_output_channel: Optional[List[List[str]]] = None,
        ):
            """Run algorithm for a specific time range.
    
            Parameters
            ----------
            observatory: the observatory or list of observatories for processing
            starttime: time of first data
            endtime: time of last data
            input_channels: list of channels to read
            input_timeseries: used by run_as_update, which has already read input.
            output_channels: list of channels to write
    
            input_interval: input data interval
            output_interval: output data interval
    
            no_trim: whether to trim output to starttime/endtime interval
            realtime: number of seconds in realtime interval
            rename_input_channel: list of input channel renames
            rename_output_channel: list of output channel renames
            """
    
            # ensure realtime is a valid value:
            if realtime <= 0:
                realtime = False
    
            algorithm = algorithm or self._algorithm
    
            input_channels = input_channels or algorithm.get_input_channels()
            output_channels = output_channels or algorithm.get_output_channels()
    
            input_interval = input_interval or self._inputInterval
            output_interval = output_interval or self._outputInterval
    
            next_starttime = algorithm.get_next_starttime()
    
            starttime = next_starttime or starttime
    
            timeseries = input_timeseries or self._get_input_timeseries(
    
                observatory=observatory,
    
                starttime=starttime,
                endtime=endtime,
                channels=input_channels,
    
                interval=input_interval,
    
            if next_starttime and realtime:
    
                # when running a stateful algorithms with the realtime option
                # pad/trim timeseries to the interval:
                # [next_starttime, max(timeseries.endtime, now-options.realtime)]
    
                input_start, input_end = TimeseriesUtility.get_stream_start_end_times(
                    timeseries, without_gaps=True
                )
    
                realtime_gap = endtime - realtime
    
                if input_end < realtime_gap:
                    input_end = realtime_gap
                # pad to the start of the "realtime gap"
    
                TimeseriesUtility.pad_timeseries(timeseries, next_starttime, input_end)
    
            if rename_input_channel:
    
                    timeseries=timeseries, renames=rename_input_channel
    
            processed = algorithm.process(timeseries)
    
    Cain, Payton David's avatar
    Cain, Payton David committed
            # trim if --no-trim is not set
    
                processed.trim(starttime=starttime, endtime=endtime)
    
            if rename_output_channel:
    
                    timeseries=processed, renames=rename_output_channel
    
            # output
            self._outputFactory.put_timeseries(
    
                timeseries=processed,
                starttime=starttime,
                endtime=endtime,
                channels=output_channels,
    
                interval=output_interval,
    
        def run_as_update(
            self,
            observatory: List[str],
            output_observatory: List[str],
            starttime: UTCDateTime,
            endtime: UTCDateTime,
    
            algorithm: Optional[Algorithm] = None,
    
            input_channels: Optional[List[str]] = None,
            output_channels: Optional[List[str]] = None,
    
            input_interval: Optional[str] = None,
            output_interval: Optional[str] = None,
    
            no_trim: bool = False,
            realtime: Union[bool, int] = False,
            rename_input_channel: Optional[List[List[str]]] = None,
            rename_output_channel: Optional[List[List[str]]] = None,
            update_limit: int = 1,
            update_count: int = 0,
        ):
            """Try to fill gaps in output data.
    
    
            observatory: list of observatories for input
            output_observatory: list of observatories for output
            starttime: time of first data
            endtime: time of last data
            input_channels: list of channels to read
            input_timeseries: used by run_as_update, which has already read input.
            output_channels: list of channels to write
    
            input_interval: input data interval
            output_interval: output data interval
    
            no_trim: whether to trim output to starttime/endtime interval
            realtime: number of seconds in realtime interval
            rename_input_channel: list of input channel renames
            rename_output_channel: list of output channel renames
    
    
            Notes
            -----
            Finds gaps in the target data, and if there's new data in the input
                source, calls run with the start/end time of a given gap to fill
                in.
    
    Hal Simpson's avatar
    Hal Simpson committed
            It checks the start of the target data, and if it's missing, and
                there's new data available, it backs up the starttime/endtime,
                and recursively calls itself, to check the previous period, to see
                if new data is available there as well. Calls run for each new
                period, oldest to newest.
    
            # If an update_limit is set, make certain we don't step past it.
    
            if update_limit > 0 and update_count >= update_limit:
                return
    
            algorithm = algorithm or self._algorithm
    
            if algorithm.get_next_starttime() is not None:
    
                raise AlgorithmException("Stateful algorithms cannot use run_as_update")
    
            input_channels = input_channels or algorithm.get_input_channels()
            output_channels = output_channels or algorithm.get_output_channels()
    
            input_interval = input_interval or self._inputInterval
            output_interval = output_interval or self._outputInterval
    
            print(
                "checking gaps",
    
                output_observatory,
                output_channels,
                file=sys.stderr,
            )
    
            # request output to see what has already been generated
    
            output_timeseries = self._get_output_timeseries(
    
                observatory=output_observatory,
                starttime=starttime,
                endtime=endtime,
    
                channels=output_channels,
    
                interval=output_interval,
    
            if len(output_timeseries) > 0:
                # find gaps in output, so they can be updated
                output_gaps = TimeseriesUtility.get_merged_gaps(
    
                    TimeseriesUtility.get_stream_gaps(output_timeseries)
                )
    
                output_gaps = [
                    [
    
                        # next sample time not used
                        None,
                    ]
                ]
    
    Jeremy M Fee's avatar
    Jeremy M Fee committed
            for output_gap in output_gaps:
    
                input_timeseries = self._get_input_timeseries(
    
                    observatory=observatory,
    
                    starttime=output_gap[0],
                    endtime=output_gap[1],
                    channels=input_channels,
    
                    interval=input_interval,
    
                    starttime=output_gap[0], endtime=output_gap[1], stream=input_timeseries
                ):
    
                if output_gap[0] == starttime:
    
                    # found fillable gap at start, recurse to previous interval
    
                    recurse_starttime, recurse_endtime = get_previous_interval(
                        start=starttime,
                        end=endtime,
    
                        observatory=observatory,
                        output_observatory=output_observatory,
    
                        starttime=recurse_starttime,
                        endtime=recurse_endtime,
    
                        input_channels=input_channels,
                        output_channels=output_channels,
    
                        input_interval=input_interval,
                        output_interval=output_interval,
    
                        no_trim=no_trim,
                        realtime=realtime,
                        rename_input_channel=rename_input_channel,
                        rename_output_channel=rename_output_channel,
                        update_limit=update_limit,
                        update_count=update_count + 1,
                    )
    
                gap_starttime = output_gap[0]
                gap_endtime = output_gap[1]
    
                print(
                    "processing",
    
                    gap_starttime,
                    gap_endtime,
    
                    output_observatory,
                    output_channels,
                    file=sys.stderr,
                )
    
                    observatory=observatory,
                    starttime=gap_starttime,
                    endtime=gap_endtime,
                    input_channels=input_channels,
                    input_timeseries=input_timeseries,
                    output_channels=output_channels,
    
                    input_interval=input_interval,
                    output_interval=output_interval,
    
                    no_trim=no_trim,
                    realtime=realtime,
                    rename_input_channel=rename_input_channel,
                    rename_output_channel=rename_output_channel,
                )
    
    def get_input_factory(args):
        """Parse input factory arguments.
    
        Parameters
        ----------
        args : argparse.Namespace
            arguments
    
        Returns
        -------
        TimeseriesFactory
            input timeseries factory
        """
        input_factory = None
        input_factory_args = None
        input_stream = None
    
        # standard arguments
        input_factory_args = {}
    
        input_factory_args["interval"] = args.input_interval or args.interval
        input_factory_args["observatory"] = args.observatory
        input_factory_args["type"] = args.type
    
        # stream/url arguments
        if args.input_file is not None:
    
            input_stream = open(args.input_file, "r")
    
        elif args.input_stdin:
            input_stream = sys.stdin
        elif args.input_url is not None:
    
            if "{" in args.input_url:
                input_factory_args["urlInterval"] = args.input_url_interval
                input_factory_args["urlTemplate"] = args.input_url
    
                input_stream = StringIO(Util.read_url(args.input_url))
    
        if input_type == "edge":
    
            input_factory = edge.EdgeFactory(
    
                host=args.input_host,
                port=args.input_port,
                locationCode=args.locationcode,
                **input_factory_args
            )
        elif input_type == "miniseed":
    
            input_factory = edge.MiniSeedFactory(
    
                host=args.input_host,
                port=args.input_port,
                locationCode=args.locationcode,
                convert_channels=args.convert_voltbin,
                **input_factory_args
            )
        elif input_type == "goes":
    
            # TODO: deal with other goes arguments
            input_factory = imfv283.GOESIMFV283Factory(
    
                directory=args.input_goes_directory,
                getdcpmessages=args.input_goes_getdcpmessages,
                password=args.input_goes_password,
                server=args.input_goes_server,
                user=args.input_goes_user,
                **input_factory_args
            )
    
        else:
            # stream compatible factories
    
            if input_type == "iaga2002":
    
                input_factory = iaga2002.IAGA2002Factory(**input_factory_args)
    
            elif input_type == "imfv122":
    
                input_factory = imfv122.IMFV122Factory(**input_factory_args)
    
            elif input_type == "imfv283":
    
                input_factory = imfv283.IMFV283Factory(**input_factory_args)
    
            elif input_type == "pcdcp":
    
                input_factory = pcdcp.PCDCPFactory(**input_factory_args)
    
            if input_stream is not None:
    
                input_factory = StreamTimeseriesFactory(
    
                    factory=input_factory, stream=input_stream
                )
    
        return input_factory
    
    
    
    def get_output_factory(args):
        """Parse output factory arguments.
    
        Parameters
        ----------
        args : argparse.Namespace
            arguments
    
        Returns
        -------
        TimeseriesFactory
            output timeseries factory
        """
        output_factory = None
        output_factory_args = None
        output_stream = None
        output_url = None
    
        # standard arguments
        output_factory_args = {}
    
        output_factory_args["interval"] = args.output_interval or args.interval
        output_factory_args["observatory"] = args.output_observatory
        output_factory_args["type"] = args.type
    
        # stream/url arguments
        if args.output_file is not None:
    
            output_stream = open(args.output_file, "wb")
    
        elif args.output_stdout:
    
            try:
                # python 3
                output_stream = sys.stdout.buffer
    
    Jeremy M Fee's avatar
    Jeremy M Fee committed
            except AttributeError:
    
                # python 2
                output_stream = sys.stdout
    
        elif args.output_url is not None:
            output_url = args.output_url
    
            output_factory_args["urlInterval"] = args.output_url_interval
            output_factory_args["urlTemplate"] = output_url
    
        if output_type == "edge":
    
            # TODO: deal with other edge arguments
            locationcode = args.outlocationcode or args.locationcode or None
            output_factory = edge.EdgeFactory(
    
                host=args.output_host,
                port=args.output_read_port,
                write_port=args.output_port,
                locationCode=locationcode,
                tag=args.output_edge_tag,
                forceout=args.output_edge_forceout,
                **output_factory_args
            )
        elif output_type == "miniseed":
    
            # TODO: deal with other miniseed arguments
            locationcode = args.outlocationcode or args.locationcode or None
    
            output_factory = edge.MiniSeedFactory(
    
                host=args.output_host,
                port=args.output_read_port,
                write_port=args.output_port,
                locationCode=locationcode,
                **output_factory_args
            )
        elif output_type == "plot":
    
            output_factory = PlotTimeseriesFactory()
    
        else:
            # stream compatible factories
    
            if output_type == "binlog":
    
                output_factory = binlog.BinLogFactory(**output_factory_args)
    
            elif output_type == "iaga2002":
    
                output_factory = iaga2002.IAGA2002Factory(**output_factory_args)
    
            elif output_type == "imfjson":
    
                output_factory = imfjson.IMFJSONFactory(**output_factory_args)
    
            elif output_type == "pcdcp":
    
                output_factory = pcdcp.PCDCPFactory(**output_factory_args)
    
            elif output_type == "temperature":
    
                output_factory = temperature.TEMPFactory(**output_factory_args)
    
            elif output_type == "vbf":
    
                output_factory = vbf.VBFFactory(**output_factory_args)
            # wrap stream
    
            if output_stream is not None:
    
                output_factory = StreamTimeseriesFactory(
    
                    factory=output_factory, stream=output_stream
                )
    
    def get_previous_interval(
        start: UTCDateTime,
        end: UTCDateTime,
    ) -> Tuple[UTCDateTime, UTCDateTime]:
        """Get previous interval for given interval.
    
        Parameters
        ----------
        start
            start of interval
        end
            end of interval
    
        Returns
        -------
        Previous interval of approximately the same size.
    
        Interval is rounded to nearest second, and ends one millisecond earlier.
    
        """
        # round to nearest second to recover removed microsecond from repeated calls
        interval_size = round(end - start)
    
        return (start - interval_size, start - 1e-3)
    
    def get_realtime_interval(interval_seconds: int) -> Tuple[UTCDateTime, UTCDateTime]:
        # calculate endtime/starttime
        now = UTCDateTime()
        endtime = UTCDateTime(now.year, now.month, now.day, now.hour, now.minute)
        starttime = endtime - interval_seconds
        return starttime, endtime
    
    
    
    def main(args: Optional[List[str]] = None):
    
        """command line factory for geomag algorithms
    
        Inputs
        ------
        use geomag.py --help to see inputs, or see parse_args.
    
        Notes
        -----
        parses command line options using argparse, then calls the controller
        with instantiated I/O factories, and algorithm(s)
        """
    
        # parse command line arguments by default
        if args is None:
            args = parse_args(sys.argv[1:])
    
        # only try to parse deprecated arguments if they've been enabled
        if args.enable_deprecated_arguments:
            parse_deprecated_arguments(args)
    
        # make sure observatory is a tuple
    
        if isinstance(args.observatory, str):
    
            args.observatory = (args.observatory,)
    
    
        if args.output_observatory is None:
            args.output_observatory = args.observatory
        elif args.observatory_foreach:
    
            raise Exception(
                "Cannot combine" + " --output-observatory and --observatory-foreach"
            )
    
        if args.output_stdout and args.update:
    
            raise Exception("Cannot combine" + " --output-stdout and --update")
    
        # translate realtime into start/end times
        if args.realtime:
            if args.realtime is True:
                # convert interval to number of seconds
    
                if args.interval == "day":
                    args.realtime = 172800
                elif args.interval == "hour":
                    args.realtime = 7200
                elif args.interval == "minute":
    
                    args.realtime = 3600
                else:
                    args.realtime = 600
            # calculate endtime/starttime
    
            args.starttime, args.endtime = get_realtime_interval(args.realtime)
    
        if args.observatory_foreach:
            observatory = args.observatory
    
            observatory_exception = None
    
            for obs in observatory:
                args.observatory = (obs,)
    
                args.output_observatory = (obs,)
    
                try:
                    _main(args)
                except Exception as e:
    
                    print(
                        "Exception processing observatory {}".format(obs),
                        str(e),
                        file=sys.stderr,
                    )
    
            if observatory_exception:
                print("Exceptions occurred during processing", file=sys.stderr)
                sys.exit(1)
    
    
        else:
            _main(args)
    
    
    def _main(args):
        """Actual main method logic, called by main
    
        Parameters
        ----------
        args : argparse.Namespace
            command line arguments
        """
    
        # create controller
        input_factory = get_input_factory(args)
    
        if args.input_derived:
            input_factory = DerivedTimeseriesFactory(input_factory)
    
        output_factory = get_output_factory(args)
    
        algorithm = algorithms[args.algorithm]()
        algorithm.configure(args)
    
        controller = Controller(input_factory, output_factory, algorithm)
    
            controller._run_as_update(args)
    
    
    
    def parse_args(args):
        """parse input arguments
    
        Parameters
        ----------
        args : list of strings
    
        Returns
        -------
        argparse.Namespace
            dictionary like object containing arguments.
        """
        parser = argparse.ArgumentParser(
    
            description="""
                Read, optionally process, and Write Geomag Timeseries data.
                Use @ to read arguments from a file.""",
    
            fromfile_prefix_chars="@",
        )
    
        input_group = parser.add_argument_group("Input", "How data is read.")
    
        input_type_group = input_group.add_mutually_exclusive_group(required=True)
    
        input_type_group.add_argument(
            "--input",
            choices=("edge", "goes", "iaga2002", "imfv122", "imfv283", "miniseed", "pcdcp"),
            default="edge",
            help='Input format (Default "edge")',
        )
    
    
        input_group.add_argument(
            "--input-derived",
            action="store_true",
            default=False,
            help="Wrap the input factory in a DerivedTimeseriesFactory",
        )
    
        input_group.add_argument(
            "--input-file", help="Read from specified file", metavar="FILE"
        )
        input_group.add_argument(
            "--input-host",
    
            default="edgecwb.usgs.gov",
            help='Hostname or IP address (Default "edgecwb.usgs.gov")',
    
            metavar="HOST",
        )
        input_group.add_argument(
            "--input-interval",
    
            choices=["day", "hour", "minute", "second", "tenhertz"],
    
            help="Default same as --interval",
    
            metavar="INTERVAL",
        )
        input_group.add_argument(
            "--input-port",
            default=2060,
            help="Port number (Default 2060)",
            metavar="PORT",
            type=int,
        )
        input_group.add_argument(
            "--input-stdin",
            action="store_true",
            default=False,
            help="Read from standard input",
        )
        input_group.add_argument(
            "--input-url", help="Read from a url or url pattern.", metavar="URL"
        )
        input_group.add_argument(
            "--input-url-interval",
            default=86400,
            help="""
    
                    Seconds of data each url request should return
                    (default 86400) used to map requests across multiple files
                    or make multiple requests for chunks of data.
                    """,
    
            metavar="N",
            type=int,
        )
    
        input_group.add_argument(
            "--inchannels", nargs="*", help="Channels H, E, Z, etc", metavar="CHANNEL"
        )
        input_group.add_argument(
            "--interval",
            default="minute",
            choices=["day", "hour", "minute", "second", "tenhertz"],
            help='Data interval, default "minute"',
            metavar="INTERVAL",
        )
        input_group.add_argument(
            "--locationcode",
            help="""
    
                    Use explicit location code, e.g. "R0", "R1",
                    instead of "--type"
                    """,
    
            metavar="CODE",
            type=edge.LocationCode,
        )
        input_group.add_argument(
            "--observatory",
            default=(None,),
            help="""
    
                    Observatory code ie BOU, CMO, etc.
                    CAUTION: Using multiple observatories is not
                    recommended in most cases; especially with
                    single observatory formats like IAGA and PCDCP.
                    """,
    
            metavar="OBS",
            nargs="*",
            type=str,
            required=True,
        )
        input_group.add_argument(
            "--observatory-foreach",
            action="store_true",
            default=False,
            help="When specifying multiple observatories, process"
            " each observatory separately",
        )
        input_group.add_argument(
            "--rename-input-channel",
            action="append",
            help="""
    
                    Rename an input channel after it is read,
                    before it is processed
                    """,
    
            metavar=("FROM", "TO"),
            nargs=2,
        )
        input_group.add_argument(
            "--type",
            default="variation",
            choices=[
                "variation",
                "reported",
                "provisional",
                "adjusted",
                "quasi-definitive",
                "definitive",
            ],
            help='Data type, default "variation"',
        )
    
        input_group.add_argument(
            "--starttime",
            type=UTCDateTime,
            default=None,
            help="UTC date time YYYY-MM-DD HH:MM:SS",
            metavar="ISO8601",
        )
        input_group.add_argument(
            "--endtime",
            type=UTCDateTime,
            default=None,
            help="UTC date time YYYY-MM-DD HH:MM:SS",
            metavar="ISO8601",
        )
        input_group.add_argument(
            "--realtime",
            default=False,
            const=True,
            help="""
    
                    Default 172800 (last 2 days) when interval is day,
    
                    Default 7200 (last 2 hours) when interval is hour,
    
                    Default 3600 (last hour) when interval is minute,
                    Default 600 (last 10 minutes) otherwise.
                    """,
    
            metavar="N",
            nargs="?",
            type=int,
        )
    
    
        # conversion from bins/volts to nT
    
        input_group.add_argument(
            "--convert-voltbin",
            nargs="*",
            default=None,
            metavar="CHANNEL",
            help="""
    
                    Convert channels from bins/volts to nT.
                    Example: "
                        --inchannels U_Bin U_Volt
                        --interval tenhertz
                        --type variation
                        --convert-voltbin U
                        --outchannels U
                        "
    
        output_group = parser.add_argument_group("Output", "How data is written.")
        output_type_group = output_group.add_mutually_exclusive_group(required=True)
    
        output_type_group.add_argument(
            "--output",
            choices=(
                "binlog",
                "edge",
                "iaga2002",
                "imfjson",
                "miniseed",
                "pcdcp",
                "plot",
                "temperature",
                "vbf",
            ),
            # TODO: set default to 'iaga2002'
            help="Output format",
        )
    
        output_group.add_argument(
            "--outchannels",
            nargs="*",
            default=None,
            help="Defaults to --inchannels",
            metavar="CHANNEL",
        )
        output_group.add_argument(
            "--output-file", help="Write to specified file", metavar="FILE"
        )
        output_group.add_argument(
            "--output-host",
    
            default="edgecwb.usgs.gov",
    
            help="Write to specified host",
            metavar="HOST",
        )
        output_group.add_argument(
            "--output-interval",
            default=None,
            choices=["day", "hour", "minute", "second", "tenhertz"],
            help="Default same as --interval",
            metavar="INTERVAL",