Newer
Older
# For case studies approach: select one demographic characteristic (hispanic/latino),
p3_targets <- list(

Azadpour, Elmera
committed
# desktop & mobile maps ------------------------------------------------------------
tar_target(
p3_med_income_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[2]],
percent_leg = FALSE,
outfile_path = "3_visualize/out/med_income_census_2022.png",
leg_title = "Median household income, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,

Azadpour, Elmera
committed
barheight = 1
# tar_target(
# p3_perc_household_income_png,
# plot_census_map(
# census_data = p2_census_acs5sub_income_data[[1]],
# percent_leg = TRUE,
# var = 'percent',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/perc_household_income_2022.png",
# leg_title = "Percent allocated household income\nin the past 12 months, 2022",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$socioeconomic_status,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),

Azadpour, Elmera
committed
# tar_target(
# p3_tot_latino_png,
# plot_census_map(
# census_data = p2_perc_census_acs5_layers_sf[[4]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_hispanic_census_2022.png",
# leg_title = "Total Hispanic, 2022",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$demographic_characteristics,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),

Azadpour, Elmera
committed
tar_target(
p3_perc_latino_png,
plot_census_map(

Azadpour, Elmera
committed
census_data = p2_perc_census_acs5_layers_sf[[4]],
percent_leg = TRUE,

Azadpour, Elmera
committed
conus_sf = p1_conus_sf,

Azadpour, Elmera
committed
leg_title = "Percent Hispanic, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,

Azadpour, Elmera
committed
barheight = 1

Azadpour, Elmera
committed
census_data = p2_census_acs5profile_household_sf,
percent_leg = TRUE,
outfile_path = "3_visualize/out/perc_occupied_households_2022.png",
leg_title = "Percent occupied housing units, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,

Azadpour, Elmera
committed
barheight = 1

Azadpour, Elmera
committed
),
format = "file"
),
# tar_target(
# p3_female_households_png,
# plot_census_map(
# census_data = p2_census_acs5sub_household_data[[2]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_female_households_2022.png",
# leg_title = "Total female households, 2022",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$demographic_characteristics,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),

Azadpour, Elmera
committed
tar_target(

Azadpour, Elmera
committed
plot_census_map(

Azadpour, Elmera
committed
percent_leg = FALSE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/median_rent_2022.png",
leg_title = "Median gross rent, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$socioeconomic_status,

Azadpour, Elmera
committed
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,

Azadpour, Elmera
committed
barheight = 1

Azadpour, Elmera
committed
),
format = "file"
),
# median income by race maps
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# tar_target(
# p3_med_income_white_png,
# plot_census_map(
# census_data = p2_census_acs5sub_income_by_race_data[[1]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/med_income_census_white_2022.png",
# leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nWhite Householder",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$socioeconomic_status,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),
#
# tar_target(
# p3_med_income_black_png,
# plot_census_map(
# census_data = p2_census_acs5sub_income_by_race_data[[2]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/med_income_census_black_2022.png",
# leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nBlack or African American Householder",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$socioeconomic_status,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),
#
# tar_target(
# p3_med_income_american_indian_png,
# plot_census_map(
# census_data = p2_census_acs5sub_income_by_race_data[[3]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/med_income_census_american_indian_2022.png",
# leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nAmerican Indian and Alaska Native Householder",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$socioeconomic_status,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),
#
# tar_target(
# p3_med_income_asian_png,
# plot_census_map(
# census_data = p2_census_acs5sub_income_by_race_data[[4]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/med_income_census_asian_2022.png",
# leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nAsian Householder",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$socioeconomic_status,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),
#
# tar_target(
# p3_med_income_hawaiian_png,
# plot_census_map(
# census_data = p2_census_acs5sub_income_by_race_data[[5]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/med_income_census_hawaiian_2022.png",
# leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nNative Hawaiian and\n Other Pacific Islander Householder",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$socioeconomic_status,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),
#
# tar_target(
# p3_med_income_hispanic_png,
# plot_census_map(
# census_data = p2_census_acs5sub_income_by_race_data[[6]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/med_income_census_hispanic_2022.png",
# leg_title = "Median Household Income in the Past 12 Months\n(in 2022 Inflation-Adjusted Dollars),\nHispanic or Latino Householder",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$socioeconomic_status,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# ),
# disability maps
tar_target(
p3_perc_disable_png,
plot_census_map(
census_data = p2_census_acs5sub_disability_data[[1]],
percent_leg = TRUE,
var = 'estimate',
conus_sf = p1_conus_sf,
outfile_path = "3_visualize/out/perc_disable_census_2022.png",

Azadpour, Elmera
committed
leg_title = "Percent disabled, 2022",
viz_config_df = p0_viz_config_df,
viz_config_pal = p0_viz_config_pal$demographic_characteristics,
width = p0_viz_config_df$width_desktop,
height = p0_viz_config_df$height_desktop,
font_size = p0_viz_config_df$font_size_desktop,

Azadpour, Elmera
committed
barheight = 1

Azadpour, Elmera
committed
),
# tar_target(
# p3_total_disable_png,
# plot_census_map(
# census_data = p2_census_acs5sub_disability_data[[2]],
# percent_leg = FALSE,
# var = 'estimate',
# conus_sf = p1_conus_sf,
# outfile_path = "3_visualize/out/tot_disable_census_2022.png",
# leg_title = "Total disable, 2022",
# viz_config_df = p0_viz_config_df,
# viz_config_pal = p0_viz_config_pal$demographic_characteristics,
# width = p0_viz_config_df$width_desktop,
# height = p0_viz_config_df$height_desktop,
# font_size = p0_viz_config_df$font_size_desktop,
# barwidth = 20,
# barheight = 1
# ),
# format = "file"
# )