Newer
Older
Hal Simpson
committed
"""Controller class for geomag algorithms"""
import argparse
import sys
from typing import List, Optional, Tuple, Union
from obspy.core import Stream, UTCDateTime
Wilbur, Spencer Franklin
committed
from .algorithm import Algorithm, algorithms, AlgorithmException, FilterAlgorithm
from .DerivedTimeseriesFactory import DerivedTimeseriesFactory
from .PlotTimeseriesFactory import PlotTimeseriesFactory
from .StreamTimeseriesFactory import StreamTimeseriesFactory
from . import TimeseriesUtility, Util
from . import binlog
from . import edge
from . import iaga2002
from . import imfjson
from . import pcdcp
from . import imfv122
from . import imfv283
from . import temperature
from . import vbf
class Controller(object):
"""Controller for geomag algorithms.
Parameters
----------
the factory that will read in timeseries data
the factory that will output the timeseries data
Hal Simpson
committed
algorithm: Algorithm
the algorithm(s) that will procees the timeseries data
Notes
-----
Hal Simpson
committed
Run simply sends all the data in a stream to edge. If a startime/endtime is
provided, it will send the data from the stream that is within that
time span.
Update will update any data that has changed between the source, and
the target during a given timeframe. It will also attempt to
recursively backup so it can update all missing data.
def __init__(
self,
inputFactory,
outputFactory,
algorithm: Optional[Algorithm] = None,
inputInterval: Optional[str] = None,
outputInterval: Optional[str] = None,
):
self._inputFactory = inputFactory
self._inputInterval = inputInterval
self._outputInterval = outputInterval
def _get_input_timeseries(
self,
observatory,
channels,
starttime,
endtime,
algorithm=None,
interval=None,
"""Get timeseries from the input factory for requested options.
Parameters
----------
observatory : array_like
observatories to request.
channels : array_like
channels to request.
starttime : obspy.core.UTCDateTime
time of first sample to request.
endtime : obspy.core.UTCDateTime
time of last sample to request.
renames : array_like
list of channels to rename
each list item should be array_like:
the first element is the channel to rename,
the last element is the new channel name
Returns
-------
timeseries : obspy.core.Stream
"""
algorithm = algorithm or self._algorithm
timeseries = Stream()
Wilbur, Spencer Franklin
committed
# get input interval for observatory
# do this per observatory in case an
# algorithm needs different amounts of data
input_start, input_end = algorithm.get_input_interval(
start=starttime, end=endtime, observatory=obs, channels=channels
)
if input_start is None or input_end is None:
continue
timeseries += self._inputFactory.get_timeseries(
observatory=obs,
starttime=input_start,
endtime=input_end,
channels=channels,
interval=interval or self._inputInterval,
return timeseries
def _rename_channels(self, timeseries, renames):
"""Rename trace channel names.
Parameters
----------
timeseries : obspy.core.Stream
stream with channels to rename
renames : array_like
list of channels to rename
each list item should be array_like:
the first element is the channel to rename,
the last element is the new channel name
Returns
-------
timeseries : obspy.core.Stream
"""
for r in renames:
from_name, to_name = r[0], r[-1]
for t in timeseries.select(channel=from_name):
t.stats.channel = to_name
return timeseries
def _get_output_timeseries(
self,
observatory,
channels,
starttime,
endtime,
interval=None,
):
"""Get timeseries from the output factory for requested options.
Parameters
----------
observatory : array_like
observatories to request.
channels : array_like
channels to request.
starttime : obspy.core.UTCDateTime
time of first sample to request.
endtime : obspy.core.UTCDateTime
time of last sample to request.
Returns
-------
timeseries : obspy.core.Stream
"""
timeseries = Stream()
timeseries += self._outputFactory.get_timeseries(
observatory=obs,
starttime=starttime,
endtime=endtime,
channels=channels,
interval=interval or self._outputInterval,
return timeseries
def _run(self, options, input_timeseries=None):
Hal Simpson
committed
"""run controller
options: dictionary
The dictionary of all the command line arguments. Could in theory
contain other options passed in by the controller.
input_timeseries : obspy.core.Stream
Used by run_as_update to save a double input read, since it has
already read the input to confirm data can be produced.
self.run(
observatory=options.observatory,
starttime=options.starttime,
endtime=options.endtime,
input_channels=options.inchannels,
input_timeseries=input_timeseries,
output_channels=options.outchannels,
input_interval=options.input_interval or options.interval,
output_interval=options.output_interval or options.interval,
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
no_trim=options.no_trim,
rename_input_channel=options.rename_input_channel,
rename_output_channel=options.rename_output_channel,
realtime=options.realtime,
)
def _run_as_update(self, options, update_count=0):
"""Updates data.
Parameters
----------
options: dictionary
The dictionary of all the command line arguments. Could in theory
contain other options passed in by the controller.
Notes
-----
Finds gaps in the target data, and if there's new data in the input
source, calls run with the start/end time of a given gap to fill
in.
It checks the start of the target data, and if it's missing, and
there's new data available, it backs up the starttime/endtime,
and recursively calls itself, to check the previous period, to see
if new data is available there as well. Calls run for each new
period, oldest to newest.
"""
self.run_as_update(
observatory=options.observatory,
output_observatory=options.output_observatory,
starttime=options.starttime,
endtime=options.endtime,
input_channels=options.inchannels,
output_channels=options.outchannels,
input_interval=options.input_interval or options.interval,
output_interval=options.output_interval or options.interval,
no_trim=options.no_trim,
realtime=options.realtime,
rename_input_channel=options.rename_input_channel,
rename_output_channel=options.rename_output_channel,
update_limit=options.update_limit,
)
def run(
self,
observatory: List[str],
starttime: UTCDateTime,
endtime: UTCDateTime,
algorithm: Optional[Algorithm] = None,
input_channels: Optional[List[str]] = None,
input_timeseries: Optional[Stream] = None,
output_channels: Optional[List[str]] = None,
input_interval: Optional[str] = None,
output_interval: Optional[str] = None,
no_trim: bool = False,
realtime: Union[bool, int] = False,
rename_input_channel: Optional[List[List[str]]] = None,
rename_output_channel: Optional[List[List[str]]] = None,
):
"""Run algorithm for a specific time range.
Parameters
----------
observatory: the observatory or list of observatories for processing
starttime: time of first data
endtime: time of last data
input_channels: list of channels to read
input_timeseries: used by run_as_update, which has already read input.
output_channels: list of channels to write
input_interval: input data interval
output_interval: output data interval
no_trim: whether to trim output to starttime/endtime interval
realtime: number of seconds in realtime interval
rename_input_channel: list of input channel renames
rename_output_channel: list of output channel renames
"""
# ensure realtime is a valid value:
if realtime <= 0:
realtime = False
algorithm = algorithm or self._algorithm
input_channels = input_channels or algorithm.get_input_channels()
output_channels = output_channels or algorithm.get_output_channels()
input_interval = input_interval or self._inputInterval
output_interval = output_interval or self._outputInterval

Jeremy M Fee
committed
next_starttime = algorithm.get_next_starttime()
starttime = next_starttime or starttime
# input
timeseries = input_timeseries or self._get_input_timeseries(
algorithm=algorithm,
observatory=observatory,
starttime=starttime,
endtime=endtime,
channels=input_channels,
if not timeseries or not algorithm.can_produce_data(
starttime=timeseries[0].stats.starttime,
endtime=timeseries[0].stats.endtime,
stream=timeseries,
):
# don't process if nothing will be produced
Hal Simpson
committed
return

Jeremy M Fee
committed
# pre-process
if next_starttime and realtime:

Jeremy M Fee
committed
# when running a stateful algorithms with the realtime option
# pad/trim timeseries to the interval:
# [next_starttime, max(timeseries.endtime, now-options.realtime)]
input_start, input_end = TimeseriesUtility.get_stream_start_end_times(
timeseries, without_gaps=True
)
realtime_gap = endtime - realtime

Jeremy M Fee
committed
if input_end < realtime_gap:
input_end = realtime_gap
# pad to the start of the "realtime gap"
TimeseriesUtility.pad_timeseries(timeseries, next_starttime, input_end)
# process
if rename_input_channel:
timeseries = self._rename_channels(
timeseries=timeseries, renames=rename_input_channel
processed = algorithm.process(timeseries)
processed.trim(starttime=starttime, endtime=endtime)
if rename_output_channel:
processed = self._rename_channels(
timeseries=processed, renames=rename_output_channel
# output
self._outputFactory.put_timeseries(
timeseries=processed,
starttime=starttime,
endtime=endtime,
channels=output_channels,
interval=output_interval,
Hal Simpson
committed
def run_as_update(
self,
observatory: List[str],
output_observatory: List[str],
starttime: UTCDateTime,
endtime: UTCDateTime,
algorithm: Optional[Algorithm] = None,
input_channels: Optional[List[str]] = None,
output_channels: Optional[List[str]] = None,
input_interval: Optional[str] = None,
output_interval: Optional[str] = None,
no_trim: bool = False,
realtime: Union[bool, int] = False,
rename_input_channel: Optional[List[List[str]]] = None,
rename_output_channel: Optional[List[List[str]]] = None,
update_limit: int = 1,
update_count: int = 0,
):
"""Try to fill gaps in output data.
Hal Simpson
committed
Parameters
----------
observatory: list of observatories for input
output_observatory: list of observatories for output
starttime: time of first data
endtime: time of last data
input_channels: list of channels to read
input_timeseries: used by run_as_update, which has already read input.
output_channels: list of channels to write
input_interval: input data interval
output_interval: output data interval
no_trim: whether to trim output to starttime/endtime interval
realtime: number of seconds in realtime interval
rename_input_channel: list of input channel renames
rename_output_channel: list of output channel renames
Hal Simpson
committed
Notes
-----
Finds gaps in the target data, and if there's new data in the input
source, calls run with the start/end time of a given gap to fill
in.
It checks the start of the target data, and if it's missing, and
there's new data available, it backs up the starttime/endtime,
and recursively calls itself, to check the previous period, to see
if new data is available there as well. Calls run for each new
period, oldest to newest.
Hal Simpson
committed
"""
# If an update_limit is set, make certain we don't step past it.
if update_limit > 0 and update_count >= update_limit:
return
algorithm = algorithm or self._algorithm
if algorithm.get_next_starttime() is not None:
raise AlgorithmException("Stateful algorithms cannot use run_as_update")
input_channels = input_channels or algorithm.get_input_channels()
output_channels = output_channels or algorithm.get_output_channels()
input_interval = input_interval or self._inputInterval
output_interval = output_interval or self._outputInterval
# request output to see what has already been generated
output_timeseries = self._get_output_timeseries(
observatory=output_observatory,
starttime=starttime,
endtime=endtime,
interval=output_interval,
# - output_timeseries can never be empty;
# - output_timeseries' endtime must be greater than
# or equal to its starttime
starttime = output_timeseries[0].stats.starttime
endtime = output_timeseries[0].stats.endtime
print(
"checking gaps",
starttime,
endtime,
output_observatory,
output_channels,
file=sys.stderr,
)
# find gaps in output, so they can be updated
output_gaps = TimeseriesUtility.get_merged_gaps(
TimeseriesUtility.get_stream_gaps(output_timeseries)
)
# check for fillable gap at start
if output_gap[0] == starttime:
delta = TimeseriesUtility.get_delta_from_interval(output_interval)
update_interval = endtime - starttime
recurse_endtime = starttime - delta
recurse_starttime = (
# ensure starttime and endtime are inclusive on first update,
# then exclude previous starttime with subsequent updates
starttime
- update_interval
- (update_count and delta)
self.run_as_update(
algorithm=algorithm,
observatory=observatory,
output_observatory=output_observatory,
starttime=recurse_starttime,
endtime=recurse_endtime,
input_channels=input_channels,
output_channels=output_channels,
input_interval=input_interval,
output_interval=output_interval,
no_trim=no_trim,
realtime=realtime,
rename_input_channel=rename_input_channel,
rename_output_channel=rename_output_channel,
update_limit=update_limit,
update_count=update_count + 1,
)
# fill gap
gap_starttime = output_gap[0]
gap_endtime = output_gap[1]
gap_starttime,
gap_endtime,
output_observatory,
output_channels,
file=sys.stderr,
)
algorithm=algorithm,
observatory=observatory,
starttime=gap_starttime,
endtime=gap_endtime,
input_channels=input_channels,
output_channels=output_channels,
input_interval=input_interval,
output_interval=output_interval,
no_trim=no_trim,
realtime=realtime,
rename_input_channel=rename_input_channel,
rename_output_channel=rename_output_channel,
)
def get_input_factory(args):
"""Parse input factory arguments.
Parameters
----------
args : argparse.Namespace
arguments
Returns
-------
TimeseriesFactory
input timeseries factory
"""
input_factory = None
input_factory_args = None
input_stream = None
# standard arguments
input_factory_args = {}
input_factory_args["interval"] = args.input_interval or args.interval
input_factory_args["observatory"] = args.observatory
input_factory_args["type"] = args.type
input_type = args.input
# stream/url arguments
if args.input_file is not None:
Shavers, Nicholas H
committed
if input_type in ["netcdf", "miniseed"]:
input_stream = open(args.input_file, "rb")
Shavers, Nicholas H
committed
elif input_type in ["imagcdf"]:
input_factory_args["inputFile"] = (
args.input_file
) # imagcdf file is binary but lib used accepts a file path
else:
input_stream = open(args.input_file, "r")
elif args.input_stdin:
input_stream = sys.stdin
elif args.input_url is not None:
if "{" in args.input_url:
input_factory_args["urlInterval"] = args.input_url_interval
input_factory_args["urlTemplate"] = args.input_url
input_stream = StringIO(Util.read_url(args.input_url))
input_factory = edge.EdgeFactory(
host=args.input_host,
port=args.input_port,
locationCode=args.locationcode,
scale_factor=args.input_scale_factor or args.scale_factor,
sncl_mode=args.input_sncl_mode or args.sncl_mode,
**input_factory_args,
# TODO: deal with other goes arguments
input_factory = imfv283.GOESIMFV283Factory(
directory=args.input_goes_directory,
getdcpmessages=args.input_goes_getdcpmessages,
password=args.input_goes_password,
server=args.input_goes_server,
user=args.input_goes_user,
**input_factory_args,
)
elif input_type == "iris":
input_factory = edge.IRISFactory(
base_url=args.iris_url,
network=args.iris_network,
locationCode=args.locationcode,
convert_channels=args.convert_voltbin,
**input_factory_args,
Wilbur, Spencer Franklin
committed
elif input_type == "fdsn":
input_factory = edge.FDSNFactory(
base_url=args.fdsn_url,
Wilbur, Spencer Franklin
committed
network=args.network,
Wilbur, Spencer Franklin
committed
locationCode=args.locationcode,
**input_factory_args,
)
else:
# stream compatible factories
input_factory = iaga2002.IAGA2002Factory(**input_factory_args)
input_factory = netcdf.NetCDFFactory(**input_factory_args)
input_factory = imfv122.IMFV122Factory(**input_factory_args)
input_factory = imfv283.IMFV283Factory(**input_factory_args)
input_factory = pcdcp.PCDCPFactory(**input_factory_args)
elif input_type == "miniseed":
input_factory = edge.MiniSeedFactory(
host=args.input_host,
port=args.input_port,
locationCode=args.locationcode,
convert_channels=args.convert_voltbin,
scale_factor=args.input_scale_factor or args.scale_factor,
sncl_mode=args.input_sncl_mode or args.sncl_mode,
**input_factory_args,
)
input_factory = xml.XMLFactory(**input_factory_args)
input_factory = covjson.CovJSONFactory(**input_factory_args)
Shavers, Nicholas H
committed
elif input_type == "imagcdf":
input_factory = imagcdf.ImagCDFFactory(**input_factory_args)
if input_stream is not None:
input_factory = StreamTimeseriesFactory(
factory=input_factory, stream=input_stream
)
def get_output_factory(args):
"""Parse output factory arguments.
Parameters
----------
args : argparse.Namespace
arguments
Returns
-------
TimeseriesFactory
output timeseries factory
"""
output_factory = None
output_factory_args = None
output_stream = None
output_url = None
# standard arguments
output_factory_args = {}
output_factory_args["interval"] = args.output_interval or args.interval
output_factory_args["observatory"] = args.output_observatory
output_factory_args["type"] = args.type
# stream/url arguments
if args.output_file is not None:
output_stream = open(args.output_file, "wb")
try:
# python 3
output_stream = sys.stdout.buffer
elif args.output_url is not None:
output_url = args.output_url
output_factory_args["urlInterval"] = args.output_url_interval
output_factory_args["urlTemplate"] = output_url
output_type = args.output
# TODO: deal with other edge arguments
locationcode = args.outlocationcode or args.locationcode or None
output_factory = edge.EdgeFactory(
host=args.output_host,
port=args.output_read_port,
write_port=args.output_port,
locationCode=locationcode,
tag=args.output_edge_tag,
forceout=args.output_edge_forceout,
scale_factor=args.input_scale_factor or args.scale_factor,
sncl_mode=args.input_sncl_mode or args.sncl_mode,
**output_factory_args,
output_factory = PlotTimeseriesFactory()
else:
# stream compatible factories
output_factory = binlog.BinLogFactory(**output_factory_args)
output_factory = iaga2002.IAGA2002Factory(**output_factory_args)
output_factory = netcdf.NetCDFFactory(**output_factory_args)
output_factory = imfjson.IMFJSONFactory(**output_factory_args)
output_factory = covjson.CovJSONFactory(**output_factory_args)
output_factory = pcdcp.PCDCPFactory(**output_factory_args)
output_factory = temperature.TEMPFactory(**output_factory_args)
output_factory = vbf.VBFFactory(**output_factory_args)
elif output_type == "miniseed":
# TODO: deal with other miniseed arguments
locationcode = args.outlocationcode or args.locationcode or None
output_factory = edge.MiniSeedFactory(
host=args.output_host,
port=args.output_read_port,
write_port=args.output_port,
locationCode=locationcode,
scale_factor=args.input_scale_factor or args.scale_factor,
sncl_mode=args.input_sncl_mode or args.sncl_mode,
**output_factory_args,
)
output_factory = xml.XMLFactory(**output_factory_args)
elif output_type == "imagcdf":
output_factory = imagcdf.ImagCDFFactory(**output_factory_args)
output_factory = StreamTimeseriesFactory(
factory=output_factory, stream=output_stream
)
return output_factory
def get_previous_interval(
start: UTCDateTime,
end: UTCDateTime,
) -> Tuple[UTCDateTime, UTCDateTime]:
"""Get previous interval for given interval.
Parameters
----------
start
start of interval
end
end of interval
Returns
-------
Previous interval of approximately the same size.
Interval is rounded to nearest second, and ends one millisecond earlier.
"""
# round to nearest second to recover removed microsecond from repeated calls
interval_size = round(end - start)
return (start - interval_size, start - 1e-3)
def get_realtime_interval(
interval_seconds: int,
interval_str: Optional[str] = "second", # default to second for compatibility
) -> Tuple[UTCDateTime, UTCDateTime]:
# calculate endtime/starttime
now = UTCDateTime()
delta = TimeseriesUtility.get_delta_from_interval(interval_str)
endtime = now - now.timestamp % delta
if delta > 60: # handle hour and day intervals
endtime += delta / 2 - 30
starttime = endtime - interval_seconds
return starttime, endtime
def main(args: Optional[List[str]] = None):
"""command line factory for geomag algorithms
Inputs
------
use geomag.py --help to see inputs, or see parse_args.
Notes
-----
parses command line options using argparse, then calls the controller
with instantiated I/O factories, and algorithm(s)
"""
# parse command line arguments by default
if args is None:
args = parse_args(sys.argv[1:])
# only try to parse deprecated arguments if they've been enabled
if args.enable_deprecated_arguments:
parse_deprecated_arguments(args)
# make sure observatory is a tuple
if isinstance(args.observatory, str):
args.observatory = (args.observatory,)
if args.output_observatory is None:
args.output_observatory = args.observatory
elif args.observatory_foreach:
raise Exception(
"Cannot combine" + " --output-observatory and --observatory-foreach"
)
if args.output_stdout and args.update:
raise Exception("Cannot combine" + " --output-stdout and --update")

Jeremy M Fee
committed
# translate realtime into start/end times
if args.realtime:
if args.realtime is True:
# convert interval to number of seconds
if args.interval == "day":
args.realtime = 172800
elif args.interval == "hour":
args.realtime = 7200
elif args.interval == "minute":

Jeremy M Fee
committed
args.realtime = 3600
else:
args.realtime = 600
# calculate endtime/starttime
args.starttime, args.endtime = get_realtime_interval(
args.realtime, args.interval
)

Jeremy M Fee
committed
if args.observatory_foreach:
observatory = args.observatory
observatory_exception = None
for obs in observatory:
args.observatory = (obs,)
args.output_observatory = (obs,)
try:
_main(args)
except Exception as e:
print(
"Exception processing observatory {}".format(obs),
str(e),
file=sys.stderr,
)
if observatory_exception:
print("Exceptions occurred during processing", file=sys.stderr)
sys.exit(1)
else:
_main(args)
def _main(args):
"""Actual main method logic, called by main
Parameters
----------
args : argparse.Namespace
command line arguments
"""
# create controller
input_factory = get_input_factory(args)
if args.input_derived:
input_factory = DerivedTimeseriesFactory(input_factory)
output_factory = get_output_factory(args)
algorithm = algorithms[args.algorithm]()
algorithm.configure(args)
controller = Controller(input_factory, output_factory, algorithm)
if args.update:
controller._run_as_update(args)
controller._run(args)
def parse_args(args):
"""parse input arguments
Parameters
----------
args : list of strings
Returns
-------
argparse.Namespace
dictionary like object containing arguments.
"""
parser = argparse.ArgumentParser(
description="""
Read, optionally process, and Write Geomag Timeseries data.
Use @ to read arguments from a file.""",
input_group = parser.add_argument_group("Input", "How data is read.")
input_type_group = input_group.add_mutually_exclusive_group(required=True)
input_type_group.add_argument(
"--input",
choices=(
"edge",
"goes",
"iaga2002",
"imfv122",
"imfv283",
"iris",
Wilbur, Spencer Franklin
committed
"fdsn",
"miniseed",
"pcdcp",
default="edge",
help='Input format (Default "edge")',
)
input_group.add_argument(
"--input-derived",
action="store_true",
default=False,
help="Wrap the input factory in a DerivedTimeseriesFactory",
)
input_group.add_argument(
"--input-file", help="Read from specified file", metavar="FILE"
)
input_group.add_argument(
"--input-host",
default="edgecwb.usgs.gov",
help='Hostname or IP address (Default "edgecwb.usgs.gov")',
metavar="HOST",
)
input_group.add_argument(
"--input-interval",
choices=["day", "hour", "minute", "second", "tenhertz"],
help="Default same as --interval",
metavar="INTERVAL",
)
input_group.add_argument(
"--input-port",
default=2060,
help="Port number (Default 2060)",
metavar="PORT",
type=int,
)
input_group.add_argument(
"--input-scale-factor",
default=None,
help="Override default factory scale_factor (divide on read; multiply on write)",
)
input_group.add_argument(
"--input-sncl-mode",
default=None,
help="Override default factory sncl_mode",
choices=["geomag", "legacy", "fdsn"],
)
input_group.add_argument(
"--input-stdin",
action="store_true",
default=False,
help="Read from standard input",
)
input_group.add_argument(
"--input-url", help="Read from a url or url pattern.", metavar="URL"
)
input_group.add_argument(
"--input-url-interval",
default=86400,
help="""
Seconds of data each url request should return
(default 86400) used to map requests across multiple files
or make multiple requests for chunks of data.
""",
metavar="N",
type=int,
)
input_group.add_argument(
"--inchannels", nargs="*", help="Channels H, E, Z, etc", metavar="CHANNEL"
)
input_group.add_argument(
"--interval",
default="minute",
choices=["day", "hour", "minute", "second", "tenhertz"],
help='Data interval, default "minute"',
metavar="INTERVAL",
)
input_group.add_argument(
"--iris-network",
default="NT",
help="data network",
)
Wilbur, Spencer Franklin
committed
input_group.add_argument(
Wilbur, Spencer Franklin
committed
"--network",
Wilbur, Spencer Franklin
committed
default="NT",
help="data network",
)
input_group.add_argument(
"--iris-url",
default="http://service.iris.edu/irisws",
help="IRIS web service url",
)
input_group.add_argument(
Wilbur, Spencer Franklin
committed
"--fdsn-url",
default="http://service.iris.edu",
help=" FDSN client accessed via IRIS web service url",
)
input_group.add_argument(
Use explicit location code, e.g. "R0", "R1",
instead of "--type"
""",
metavar="CODE",
type=edge.LocationCode,
)
input_group.add_argument(
"--observatory",
default=(None,),
help="""
Observatory code ie BOU, CMO, etc.
CAUTION: Using multiple observatories is not
recommended in most cases; especially with
single observatory formats like IAGA and PCDCP.
""",
metavar="OBS",
nargs="*",
type=str,
required=True,
)
input_group.add_argument(
"--observatory-foreach",
action="store_true",
default=False,
help="When specifying multiple observatories, process"
" each observatory separately",
)
input_group.add_argument(
"--rename-input-channel",
action="append",
help="""
Rename an input channel after it is read,
before it is processed
""",
metavar=("FROM", "TO"),
nargs=2,
)
input_group.add_argument(
"--scale-factor",
default=None,
help="Override default factory scale_factor (divide on read; multiply on write)",
)
input_group.add_argument(
"--sncl-mode",
default=None,
help="Override default factory sncl_mode",
choices=["geomag", "legacy", "fdsn"],